IMMERSIONS EQUIVARIANT FOR
A GIVEN KILLING VECTOR II

Norio Ejiri

0. Introduction. In [1], we showed that any complete Riemannian manifold
with a l-parameter subgroup of isometries and sectional curvatures bounded
above by —c <0 cannot be immersed isometrically and equivariantly into any
Euclidean space.

On the other hand, we have a negatively curved complete revolution surface
whose order of the Gauss curvature at infinity is (distance from a fixed point) ~27¢,
where e is positive.

In this paper, we know that the above estimate is best. That is, we have the
following.

THEOREM A. Let M be a complete Riemannian manifold of negative curva-
ture and p a 1-parameter subgroup of isometries acting nontrivially on M. If
there exists a point x € M such that the maximum of sectional curvatures on the
geodesic ball of radius s with center x is bounded above by —As 2, A>0 for large
s, then M does not admit any p-equivariant isometric immersion into Euclidean
spaces.

Furthermore, we give analogous results to [1] in the case that the ambient
space is a hyperbolic space. That is, we obtain the following.

THEOREM B. Let M be a complete Riemannian manifold, and let p(0) (6 € R)
be a 1-parameter subgroup of isometries acting nontrivially on M. If the sectional
curvatures of M < —c< —1, then M has no p-equivariant isometric immersion
into any hyperbolic space with sectional curvature —1.

THEOREM C. Let M be an n-dimensional non-compact type symmetric space
with Ricci curvature —(n—1)c, c¢>1, and let p be a 1-parameter subgroup of
isometries acting nontrivially on M. Then M has no p-equivariant isometric
immersion into any hyperbolic space with sectional curvature —1.

The author is grateful to Professor K. Ogiue for his useful criticism and Pro-
fessor H. Nagai for his useful suggestions.

1. Revolution surfaces with negative curvatures in R3. In this section, we
study “the order of the Gauss curvature at infinity” of some complete revolution
surfaces with negative curvature in R3.

Let (r, 8) be the polar coordinate of R2 and (¢, r, ) the coordinate of R3. We
give a revolution surface S by

RXxS!s(¢,0) — (¢, 7(¢t)cos 8, 7(¢) sinf) e R3,
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where 7 is a positive function on R and S! is a unit circle. Therefore the induced
metric on Rx S! is given by
(1+(7')?) dt* + 7% d§>.

Then we obtain the Gauss curvature K of Rx S!:

”

T
T+ (7))

Let us assume that 7(¢) = ¢/ for t =1 and /> 1. Then the Gauss curvature K, for

t=1is given by

_ I(I-1)
1= £2(1+412¢20-D)y2 "
Choosing an appropriate 7(f) for —1 < ¢ < 1 such that 7(¢) for ¢ <1is the tractrix,
we have a complete revolution surface with negative Gauss curvature. Let K be

the maximum of the Gauss curvature on the geodesic ball of radius s with center
(1, 0). Then it is easy to see that

_ [(I—-1)
ST f2(1412£20-1))2

s= S: I+ 20201 g,

Thus there are positive constants « and 8 such that

o4 ¢

T gar=2y1 =K;=-— s 41=2)/1

for

for large s. We find that, for any small e > 0, there exists a complete revolution
surface of negative curvature such that “the order of the Gauss curvature at in-
finity from a fixed point x” is (distance from x)~27°. In the next section, we
show that the above estimate is best; that is, there is no complete revolution sur-
face of negative curvature such that “the order of the Gauss curvature at infinity
from a fixed point x” is (distance from x) 2.

2. Complete Riemannian manifolds with negative curvature. Let A be an n-
dimensional complete Riemannian manifold with negative curvature and X a
Killing vector field on M. Since X is a Jacobi field on 7, we have

VT-; VT* X = _RT* X Tx ’

where 7 is a geodesic with arc length parameter, V is the covariant differentiation
for the metric ( , ) on M, and R is the curvature tensor for V. Let K be the max-
imum of the sectional curvatures of the geodesic ball of radius s with center
x € M. Then we assume that K, < -—A/52 for large s, where A is a positive con-
stant. It implies that, for any point in place of x, there is a positive constant B
such that K, < —B/s? for large s. Thus, for a point x such that X (x) = 0, we may
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consider that there exists a constant A such that K;< —A/s? for large s. Let 7

be a geodesic with arc length parameter s such that 7(0) =x and ¢, (=74), ..., €,

a parallel field of orthonormal frames along 7. Then, expressing X by X =
"_1 fle;, we have the Jacobi equation:

f!=constant (=8)

f! =—2f(RT*er*,e,) for i>1.
Jj=2

Setting 37> (f')?>=g, we obtain

g” 202+ £1(H)

E,M=

~

n

2 (f )’2 2 E f‘fj<Rr.e Txy €;).

i,j=2
By the assumption on the sectional curvatures of M, we get

g”=0 on (—so,50),

2.1)

”">2 )2 < — d s=s0.
g igz(f) +As§g on s so and s=s5¢
Choosing 7 such that X(x)//e;, we have f?(x)#0, 8=0 and hence obtain
2(0) > 0. If necessary, we set s » —s and obtain g’(0) =0. Then g”=0 implies
that g(s¢) >0 and g’(s¢) =0. Therefore we find that g>0, g’=0, and

(g7)2 1
= +2AS2g for s=s,.

2g
Setting G =g’/g, by (2.1) we obtain
1 _, 2
P
G = > G°+ R
Thus, for any B> A,
, 1 2
G >— > G+ B2

holds. Now we consider the following ordinary differential equation of Riccati
type:

1
2.2) F'= ——Z—(F)2+ for s=sy.

Bs?
It is easy to see that ¢/s, where c=1++/1+4/B, is a solution of (2.2). Using the
theory of the ordinary differential equation of Riccati type, we obtain the general
solution F:

c (c—1)s§s ¢

2.3) F=— s§(sd—c—s179)/2+(c— e’
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where « is a real number. We can choose « such that G(sy) = F(so). That is, when
G(sp) =c¢/sp we set F'=c/s, while in another case we put a=1/(G(sy) —c/sy).
By properties of G and F, we have

(2.4) (G—F)'>—3(G—F)(G+F).

Thus (G—F)’(s¢) >0 holds and hence there exists s; such that G—F>0 on
(s0,51). If there exists a positive number s, such that (G—F)(s,) =0 and
G—F>0 on (sg,5,), then (G—F)'(s,)<0. This is a contradiction for (2.4).
We have G(s)> F(s) for s>sq. If F#c/s, then F is given by (2.3). It is easy
to show that so/2+(c—1)a#=0. If it is zero, then G(sy) =F(sy) =0 implies
¢/sp+1/a =0, which contradicts

c 1 c 2(c—=1) 2-c

So (04 So So So

<0.

Hence s¢/2+ (c—1)a# 0. For large s, we find that there is a positive constant K
such that

(c—1)s5
So/2+(c—1)a—s§s1—¢/2

|<1<.

Therefore we conclude
c K c ( K
1—
csc—1

) for large s> 0.

Therefore for any small e we may consider that F(s)=c(1—e¢)/s for large s.
In both cases, F(s)=c(l1—e¢)/s for large s holds. Since g’/g= G, we obtain
g=Ls1~9) for large s. For large s, we note c(1—e¢) > 2.

Using the same argument as in [1] or as in §3 on the length of a Killing vector
field of Euclidean space, we have Theorem A.

3. Killing vector fields of an zn-dimensional hyperbolic space H"(—c) with
constant sectional curvature —c¢, ¢ > 0. Let 7 be a geodesic with arc length para-
meter s in H"(—c) and X a Killing vector field on H"(—c¢). Then X is a Jacobi
field along 7, which satisfies the Jacobi equation:

VT* VT‘X= X — (X, T4)Tx,

where ¢, ) is the metric on H"(—c) and V is the covariant differentiation with
respect to { , ). Let e, (=7.),e,,..., e, be a parallel field of orthonormal frames
along 7. Then, setting X = X7_, f'e;, we obtain the Jacobi equation

f"=0 and f"=cf’ for i>1.
Thus there are constants A’ and B’ for i >1 such that
fi=AleVS 4 Bie=Ves  for i>1.

Furthermore, since X is a Killing vector field, /! must be constant (=3). Conse-
quently we have
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n - -
3.1) X=ar.+ 3 (A'eVS4 Bie~V)e,,
i=2
n - -
(3.2) V, X= 3 Vc(A'eVs— Ble V)¢,

i=2
which imply
n - -
|X|2(7(0)) = o>+ X (A'+ B')?,
i=1
n

V.. X[*(r(0) = & c(A'~B')”.

Then we have the following.

LEMMA 3.1. Let o, A’ and B. be the constants determined by a geodesic with
arc length parameter s such that 7(0)=xe H"(—c). Then, independent of r,
|t,|, |AL| and |B.| are bounded. Thus there is a constant € such that € is inde-
pende;lllt of 7 (7(0) =x) and the length of X at 7(s) for large s is bounded above
by eeves.

4. A Killing vector field on a complete Riemannian manifold. Let M be an »-
dimensional complete Riemannian manifold with sectional curvature < —c<0.
Let 7 be a geodesic with arc length parameter s and X a Killing vector field on M.
Since X is a Jacobi field on 7, we have

VT,. VT*XZ —RT.,X Ty

where V is the covariant differentiation for the metric { , > on M and R is the cur-
vature tensor for V. Let ¢; (= 74), ..., €, be a parallel field of orthonormal frames
along 7. Then, expressing X by X=>7_, f i e; and using the same argument as in
§2, we have, for X7, (fH*=g,

4.1 g"=2 i (fH"%2+2cg.
i=2

In particular, g”=2cg holds. We assume without loss of generality that g(7(0))>0
and g’(7(0))>0. g”=2cg implies that g and g’ are positive on [0, ). On the
other hand, by Schwarz inequality we have

n .
g'=2vg | 2 (H?,
i=2
which, together with the positiveness of g and g’ on [0, ), implies
n -
er=as( §.0).
i=2

Thus we obtain
12

2g

g”Z

+2cg.
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It follows from Schwarz inequality that g” = 2+vcg’, which implies

1 ,
> o(0) + 2ycs+log g (0).
g=g(0) 2ve

THEOREM 4.1. Let M be a complete Riemannian manifold with sectional cur-
vatures < —c (¢ >0) and X a Killing vector field on M. Then there is a geodesic
T with arc length parameter s and a positive constant e such that the length of
X(7(s)) for large s is bounded below by eeV*.

5. Proof of Theorem B. Let 7 be the same geodesic as in Theorem 4.1. Let x
be a p-equivariant isometric immersion of M into H"*?P(—1). That is, there is a
1-parameter subgroup 6 of isometries of M such that

x(p(0)x) =p(0)x(x) for all xe M.

Let X, and X be Killing vector fields on M and H n+P(—1) generated by p and
P, respectively. Then we have x.(X,) =X;. We denote by 7; the geodesic seg-
ment which joins x(7(0)) to x(7(s)). Furthermore, with respect to the arc length
parameter § of 7y with 7,(0) = x(7(0)), we denote by §(s) the positive number
such that 7,(8§(s)) = x(7(s)). It is clear that §(s) =s. Since X} is a Killing vector
field, there are real numbers &, A% and B! such that

ntp . .

Xﬁ(g) = a&sTs+(S)+ E (A;'es"}'B.s{e—s)ésis

i=2
where €51 (=754), ---5 €s(n+p) 1S a parallel field of orthonormal frames along 7;.
By Lemma 3.1, |&s|, |AL]| and |B{| for all s > 0 are bounded above by some posi-
tive number L. Thus we have

IjXﬁ(g(s))lIZSL+4(n+p_I)Le2s’

which contradicts the definition of 7. O

6. A Killing vector field on a noncompact type symmetric space. Let M be an
n-dimensional noncompact type symmetric space with Ricci curvature —(n—1)e,
¢ > 0. Then there is a symmetric pair (G, K) such that G/K, where G is the con-
nected component of the Lie group of isometries of M and K is an isotropy sub-
group of G, which fixes o € M (see [2], for example). We denote by Jand X (C §)
the Lie algebra of G and the Lie algebra of K, respectively. Let § = & + @ be the
canonical decomposition of § and B the Killing form of §. Then B is negative
definite over X, positive definite over @, and B(J, @) =0. Considering Ty M as
@, we give the metric by positive scalar multiple of B. Let p be a 1-parameter sub-
group of isometries acting nontrivially on M. Then there is a vector X € § such
that p(8) =exp 8X. Since k € K acts on M as an isometry, we have

k. (Xexpa)_() =Xexp0Ad(k)X‘a

where Ad is the adjoint representation of G. Thus it is enough to prove Theorem C
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with respect to an appropriate Xex,gadx)x- We assume without loss of generality
that the ®-component X ® of X is not zero. Then (Ad(k)X)? is not zero.

Let 7 be a geodesic with arc length parameter s such that 7(0)=o0 and X a
Killing vector field of M. Then X along 7 satisfies the Jacobi equation:

V, V, X=—R, 37,

where V is the covariant differentiation of M and R is the curvature tensor. Let
e (=74),...,e, be a parallel field of orthonormal frames along 7 such that

<R1.ej7*’ €k> = ajéij at o.
By the fact that M is a symmetric space, we have
(R,‘ejf_*, ex)=a;dj on 7.

Since

M=

aj=—(n—1)c and a;=0,
2

J
there is iy such that a;,< —c. We assume without loss of generality that iy =2.
Furthermore, since the adjoint representation of K on @ is irreducible, there is
an element k, such that

((Ad(ko) X, e)# 0.

Let X be the Killing vector field generated by exp § Ad(ky)X. Then there are
functions f; on 7 such that X = X%_, f'e;, and the Jacobi equation gives f2” =
—a, f2. If necessary, replacing e, by —e,, we obtain f2(0)>0and f2"=cf?on
[0, o). Thus we have real numbers A >0 and B such that

f2= AeV*S 4+ Be VS

by changing s into —s if necessary. Consequently the length of X(7(s)) for large
s is bounded below by (some positive constant)e"a".

7. Proof of Theorem C. By the same argument as in the proof of Theorem B,
we have Theorem C. O

REMARK. (1) We note that the result obtained in §6 gives a simple proof of
Theorem B in [1].

(2) In general, we obtain the following:

Let M be a noncompact type symmetric space and N a noncompact type sym-
metric space with Ricci curvature —(n—1)c. We denote by v the minimum value
of the sectional curvatures of M. If c> —7, then N does not admit a p-equivari-
ant isometric immersion into M.
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