IMMERSIONS EQUIVARIANT FOR A GIVEN KILLING VECTOR II

Norio Ejiri

0. Introduction. In [1], we showed that any complete Riemannian manifold with a 1-parameter subgroup of isometries and sectional curvatures bounded above by -c < 0 cannot be immersed isometrically and equivariantly into any Euclidean space.

On the other hand, we have a negatively curved complete revolution surface whose order of the Gauss curvature at infinity is (distance from a fixed point) $^{-2-e}$, where e is positive.

In this paper, we know that the above estimate is best. That is, we have the following.

THEOREM A. Let M be a complete Riemannian manifold of negative curvature and ρ a 1-parameter subgroup of isometries acting nontrivially on M. If there exists a point $x \in M$ such that the maximum of sectional curvatures on the geodesic ball of radius s with center x is bounded above by $-As^{-2}$, A>0 for large s, then M does not admit any ρ -equivariant isometric immersion into Euclidean spaces.

Furthermore, we give analogous results to [1] in the case that the ambient space is a hyperbolic space. That is, we obtain the following.

THEOREM B. Let M be a complete Riemannian manifold, and let $\rho(\theta)$ ($\theta \in \mathbb{R}$) be a 1-parameter subgroup of isometries acting nontrivially on M. If the sectional curvatures of $M \le -c < -1$, then M has no ρ -equivariant isometric immersion into any hyperbolic space with sectional curvature -1.

THEOREM C. Let M be an n-dimensional non-compact type symmetric space with Ricci curvature -(n-1)c, c>1, and let ρ be a 1-parameter subgroup of isometries acting nontrivially on M. Then M has no ρ -equivariant isometric immersion into any hyperbolic space with sectional curvature -1.

The author is grateful to Professor K. Ogiue for his useful criticism and Professor H. Nagai for his useful suggestions.

1. Revolution surfaces with negative curvatures in \mathbb{R}^3 . In this section, we study "the order of the Gauss curvature at infinity" of some complete revolution surfaces with negative curvature in \mathbb{R}^3 .

Let (r, θ) be the polar coordinate of \mathbb{R}^2 and (t, r, θ) the coordinate of \mathbb{R}^3 . We give a revolution surface S by

$$\mathbf{R} \times S^1 \ni (t, \theta) \to (t, \tau(t) \cos \theta, \tau(t) \sin \theta) \in \mathbf{R}^3$$

Received April 10, 1984. Final revision received July 11, 1985. Michigan Math. J. 33 (1986).

76 NORIO EJIRI

where τ is a positive function on **R** and S^1 is a unit circle. Therefore the induced metric on $\mathbf{R} \times S^1$ is given by

$$(1+(\tau')^2) dt^2 + \tau^2 d\theta^2$$
.

Then we obtain the Gauss curvature K of $\mathbb{R} \times S^1$:

$$K = -\frac{\tau''}{\tau(1 + (\tau')^2)^2}.$$

Let us assume that $\tau(t) = t^l$ for $t \ge 1$ and l > 1. Then the Gauss curvature K_l for $t \ge 1$ is given by

$$K_l = -\frac{l(l-1)}{t^2(1+l^2t^{2(l-1)})^2}.$$

Choosing an appropriate $\tau(t)$ for $-1 \le t \le 1$ such that $\tau(t)$ for $t \le 1$ is the tractrix, we have a complete revolution surface with negative Gauss curvature. Let K_s be the maximum of the Gauss curvature on the geodesic ball of radius s with center (1,0). Then it is easy to see that

$$K_s = -\frac{l(l-1)}{t^2(1+l^2t^{2(l-1)})^2}$$

for

$$s = \int_{1}^{t} \sqrt{1 + l^{2} t^{2(l-1)}} dt.$$

Thus there are positive constants α and β such that

$$-\frac{\alpha}{s^{(4l-2)/l}} \le K_s \le -\frac{\beta}{s^{(4l-2)/l}}$$

for large s. We find that, for any small e > 0, there exists a complete revolution surface of negative curvature such that "the order of the Gauss curvature at infinity from a fixed point x" is (distance from x)^{-2-e}. In the next section, we show that the above estimate is best; that is, there is no complete revolution surface of negative curvature such that "the order of the Gauss curvature at infinity from a fixed point x" is (distance from x)⁻².

2. Complete Riemannian manifolds with negative curvature. Let M be an n-dimensional complete Riemannian manifold with negative curvature and X a Killing vector field on M. Since X is a Jacobi field on τ , we have

$$\nabla_{\tau_*}\nabla_{\tau_*}X = -R_{\tau_*X}\tau_*,$$

where τ is a geodesic with arc length parameter, ∇ is the covariant differentiation for the metric \langle , \rangle on M, and R is the curvature tensor for ∇ . Let K_s be the maximum of the sectional curvatures of the geodesic ball of radius s with center $x \in M$. Then we assume that $K_s \leq -A/s^2$ for large s, where s is a positive constant. It implies that, for any point in place of s, there is a positive constant s such that s is a positive constant s is a positive constant s is a positive constant s in the s int

consider that there exists a constant A such that $K_s < -A/s^2$ for large s. Let τ be a geodesic with arc length parameter s such that $\tau(0) = x$ and $e_1 (= \tau_*), ..., e_n$ a parallel field of orthonormal frames along τ . Then, expressing X by $X = \sum_{i=1}^n f^i e_i$, we have the Jacobi equation:

$$f^1 = \text{constant } (=\beta)$$

 $f^{i''} = -\sum_{i=2}^n f^j \langle R_{\tau_* e_j} \tau_*, e_i \rangle$ for $i > 1$.

Setting $\sum_{i=2}^{n} (f^{i})^{2} = g$, we obtain

$$g'' = \sum_{i=2}^{n} 2((f^{i})^{2} + f^{i}(f^{i})'')$$

$$= 2\sum_{i=2}^{n} (f^{i})^{2} - 2\sum_{i,j=2}^{n} f^{i}f^{j}\langle R_{\tau_{*}e_{j}}\tau_{*}, e_{i}\rangle.$$

By the assumption on the sectional curvatures of M, we get

(2.1)
$$g'' \ge 0 \text{ on } (-s_0, s_0),$$
$$g'' \ge 2 \sum_{i=2}^{n} (f')^2 + \frac{1}{As_0^2} g \text{ on } s \le -s_0 \text{ and } s \ge s_0.$$

Choosing τ such that $X(x)//e_2$, we have $f^2(x) \neq 0$, $\beta = 0$ and hence obtain g(0) > 0. If necessary, we set $s \to -s$ and obtain $g'(0) \geq 0$. Then $g'' \geq 0$ implies that $g(s_0) > 0$ and $g'(s_0) \geq 0$. Therefore we find that g > 0, $g' \geq 0$, and

$$g'' \ge \frac{(g')^2}{2g} + 2\frac{1}{As^2}g$$
 for $s \ge s_0$.

Setting G = g'/g, by (2.1) we obtain

$$G' \ge -\frac{1}{2}G^2 + \frac{2}{As^2}$$
.

Thus, for any B > A,

$$G' > -\frac{1}{2}G^2 + \frac{2}{Rs^2}$$

holds. Now we consider the following ordinary differential equation of Riccati type:

(2.2)
$$F' = -\frac{1}{2}(F)^2 + \frac{2}{Rs^2} \quad \text{for } s \ge s_0.$$

It is easy to see that c/s, where $c=1+\sqrt{1+4/B}$, is a solution of (2.2). Using the theory of the ordinary differential equation of Riccati type, we obtain the general solution F:

(2.3)
$$F = \frac{c}{s} + \frac{(c-1)s_0^c s^{-c}}{s_0^c (s_0^{1-c} - s^{1-c})/2 + (c-1)\alpha},$$

where α is a real number. We can choose α such that $G(s_0) = F(s_0)$. That is, when $G(s_0) = c/s_0$ we set F = c/s, while in another case we put $\alpha = 1/(G(s_0) - c/s_0)$. By properties of G and F, we have

(2.4)
$$(G-F)' > -\frac{1}{2}(G-F)(G+F).$$

Thus $(G-F)'(s_0) > 0$ holds and hence there exists s_1 such that G-F > 0 on (s_0, s_1) . If there exists a positive number s_2 such that $(G-F)(s_2) = 0$ and G-F > 0 on (s_0, s_2) , then $(G-F)'(s_2) \le 0$. This is a contradiction for (2.4). We have G(s) > F(s) for $s > s_0$. If $F \ne c/s$, then F is given by (2.3). It is easy to show that $s_0/2 + (c-1)\alpha \ne 0$. If it is zero, then $G(s_0) = F(s_0) \ge 0$ implies $c/s_0 + 1/\alpha \ge 0$, which contradicts

$$\frac{c}{s_0} + \frac{1}{\alpha} = \frac{c}{s_0} - \frac{2(c-1)}{s_0} = \frac{2-c}{s_0} < 0.$$

Hence $s_0/2 + (c-1)\alpha \neq 0$. For large s, we find that there is a positive constant K such that

$$\left| \frac{(c-1)s_0^c}{s_0/2 + (c-1)\alpha - s_0^c s^{1-c}/2} \right| < K.$$

Therefore we conclude

$$F(s) \ge \frac{c}{s} - \frac{K}{s^c} = \frac{c}{s} \left(1 - \frac{K}{cs^{c-1}} \right)$$
 for large $s > 0$.

Therefore for any small ϵ we may consider that $F(s) \ge c(1-\epsilon)/s$ for large s. In both cases, $F(s) \ge c(1-\epsilon)/s$ for large s holds. Since g'/g = G, we obtain $g \ge Ls^{c(1-\epsilon)}$ for large s. For large s, we note $c(1-\epsilon) > 2$.

Using the same argument as in [1] or as in §3 on the length of a Killing vector field of Euclidean space, we have Theorem A.

3. Killing vector fields of an *n*-dimensional hyperbolic space $H^n(-c)$ with constant sectional curvature -c, c > 0. Let τ be a geodesic with arc length parameter s in $H^n(-c)$ and X a Killing vector field on $H^n(-c)$. Then X is a Jacobi field along τ , which satisfies the Jacobi equation:

$$\nabla_{\tau_*} \nabla_{\tau_*} X = cX - c\langle X, \tau_* \rangle \tau_*,$$

where \langle , \rangle is the metric on $H^n(-c)$ and ∇ is the covariant differentiation with respect to \langle , \rangle . Let $e_1 (=\tau_*), e_2, \ldots, e_n$ be a parallel field of orthonormal frames along τ . Then, setting $X = \sum_{i=1}^n f^i e_i$, we obtain the Jacobi equation

$$f'' = 0$$
 and $f^{i}'' = cf^{i}$ for $i > 1$.

Thus there are constants A^i and B^i for i > 1 such that

$$f^i = A^i e^{\sqrt{c}s} + B^i e^{-\sqrt{c}s}$$
 for $i > 1$.

Furthermore, since X is a Killing vector field, f^1 must be constant $(=\beta)$. Consequently we have

(3.1)
$$X = \alpha \tau_* + \sum_{i=2}^n (A^i e^{\sqrt{c}s} + B^i e^{-\sqrt{c}s}) e_i,$$

(3.2)
$$\nabla_{\tau_*} X = \sum_{i=2}^n \sqrt{c} (A^i e^{\sqrt{c}s} - B^i e^{-\sqrt{c}s}) e_i,$$

which imply

$$||X||^2(\tau(0)) = \alpha^2 + \sum_{i=1}^n (A^i + B^i)^2,$$

$$\|\nabla_{\tau_*} X\|^2 (\tau(0)) = \sum_{i=2}^n c(A^i - B^i)^2.$$

Then we have the following.

LEMMA 3.1. Let α_{τ} , A_{τ}^{i} and B_{τ}^{i} be the constants determined by a geodesic with arc length parameter s such that $\tau(0) = x \in H^{n}(-c)$. Then, independent of τ , $|\alpha_{\tau}|$, $|A_{\tau}^{i}|$ and $|B_{\alpha}^{i}|$ are bounded. Thus there is a constant ϵ such that ϵ is independent of τ ($\tau(0) = x$) and the length of X at $\tau(s)$ for large s is bounded above by $\epsilon e^{\sqrt{c}s}$.

4. A Killing vector field on a complete Riemannian manifold. Let M be an n-dimensional complete Riemannian manifold with sectional curvature $\leq -c < 0$. Let τ be a geodesic with arc length parameter s and X a Killing vector field on M. Since X is a Jacobi field on τ , we have

$$\nabla_{\tau_*}\nabla_{\tau_*}X = -R_{\tau_*X}\tau_*,$$

where ∇ is the covariant differentiation for the metric \langle , \rangle on M and R is the curvature tensor for ∇ . Let $e_1 (= \tau_*), \ldots, e_n$ be a parallel field of orthonormal frames along τ . Then, expressing X by $X = \sum_{i=1}^n f^i e_i$ and using the same argument as in §2, we have, for $\sum_{i=2}^n (f^i)^2 = g$,

(4.1)
$$g'' \ge 2 \sum_{i=2}^{n} (f^i)^{2} + 2cg.$$

In particular, $g'' \ge 2cg$ holds. We assume without loss of generality that $g(\tau(0)) > 0$ and $g'(\tau(0)) > 0$. $g'' \ge 2cg$ implies that g and g' are positive on $[0, \infty)$. On the other hand, by Schwarz inequality we have

$$g' \leq 2\sqrt{g} \sqrt{\sum_{i=2}^{n} (f^i)^2},$$

which, together with the positiveness of g and g' on $[0, \infty)$, implies

$$g'^2 \leq 4g \left(\sum_{i=2}^n (f^i)'^2 \right).$$

Thus we obtain

$$g'' \ge \frac{{g'}^2}{2g} + 2cg.$$

80 NORIO EJIRI

It follows from Schwarz inequality that $g'' \ge 2\sqrt{c}g'$, which implies

$$g \ge g(0) + \frac{1}{2\sqrt{c}} e^{2\sqrt{c}s + \log g'(0)}.$$

THEOREM 4.1. Let M be a complete Riemannian manifold with sectional curvatures $\leq -c$ (c>0) and X a Killing vector field on M. Then there is a geodesic τ with arc length parameter s and a positive constant ϵ such that the length of $X(\tau(s))$ for large s is bounded below by $\epsilon e^{\sqrt{c}s}$.

5. Proof of Theorem B. Let τ be the same geodesic as in Theorem 4.1. Let χ be a ρ -equivariant isometric immersion of M into $H^{n+p}(-1)$. That is, there is a 1-parameter subgroup $\tilde{\rho}$ of isometries of M such that

$$\chi(\rho(\theta)x) = \tilde{\rho}(\theta)\chi(x)$$
 for all $x \in M$.

Let X_{ρ} and $X_{\tilde{\rho}}$ be Killing vector fields on M and $H^{n+p}(-1)$ generated by ρ and $\tilde{\rho}$, respectively. Then we have $\chi_*(X_{\rho}) = X_{\tilde{\rho}}$. We denote by $\tilde{\tau}_s$ the geodesic segment which joins $\chi(\tau(0))$ to $\chi(\tau(s))$. Furthermore, with respect to the arc length parameter \tilde{s} of $\tilde{\tau}_s$ with $\tilde{\tau}_s(0) = \chi(\tau(0))$, we denote by $\tilde{s}(s)$ the positive number such that $\tilde{\tau}_s(\tilde{s}(s)) = \chi(\tau(s))$. It is clear that $\tilde{s}(s) \leq s$. Since $X_{\tilde{\rho}}$ is a Killing vector field, there are real numbers $\tilde{\alpha}_s$, \tilde{A}_s^i and \tilde{B}_s^i such that

$$X_{\tilde{\rho}}(\tilde{s}) = \tilde{\alpha}_s \tilde{\tau}_{s*}(\tilde{s}) + \sum_{i=2}^{n+p} (\tilde{A}_s^i e^{\tilde{s}} + \tilde{B}_s^i e^{-\tilde{s}}) \tilde{e}_{si},$$

where \tilde{e}_{s1} (= τ_{s*}), ..., $\tilde{e}_{s(n+p)}$ is a parallel field of orthonormal frames along $\tilde{\tau}_s$. By Lemma 3.1, $|\tilde{\alpha}_s|$, $|\tilde{A}_s^i|$ and $|\tilde{B}_s^i|$ for all s>0 are bounded above by some positive number L. Thus we have

$$\|\tilde{X}_{\tilde{\rho}}(\tilde{s}(s))\|^2 \leq L + 4(n+p-1)Le^{2s},$$

which contradicts the definition of τ .

6. A Killing vector field on a noncompact type symmetric space. Let M be an n-dimensional noncompact type symmetric space with Ricci curvature -(n-1)c, c>0. Then there is a symmetric pair (G,K) such that G/K, where G is the connected component of the Lie group of isometries of M and K is an isotropy subgroup of G, which fixes $o \in M$ (see [2], for example). We denote by \mathfrak{J} and \mathfrak{K} ($\subset \mathfrak{J}$) the Lie algebra of G and the Lie algebra of G, respectively. Let $\mathfrak{J} = \mathfrak{K} + \mathfrak{O}$ be the canonical decomposition of G and G the Killing form of G. Then G is negative definite over G, positive definite over G, and G, G is a 1-parameter subgroup of isometries acting nontrivially on G. Then there is a vector G is such that G is G is G and G are G and G are G and G is an isometry, we have

$$k_*(X_{\exp\theta\bar{X}}) = X_{\exp\theta\operatorname{Ad}(k)\bar{X}},$$

where Ad is the adjoint representation of G. Thus it is enough to prove Theorem C

with respect to an appropriate $X_{\exp\theta \operatorname{Ad}(k)\bar{X}}$. We assume without loss of generality that the \mathscr{O} -component $\bar{X}^{\mathscr{O}}$ of \bar{X} is not zero. Then $(\operatorname{Ad}(k)\bar{X})^{\mathscr{O}}$ is not zero.

Let τ be a geodesic with arc length parameter s such that $\tau(0) = o$ and \tilde{X} a Killing vector field of M. Then \tilde{X} along τ satisfies the Jacobi equation:

$$\nabla_{\tau_{\star}} \nabla_{\tau_{\star}} \tilde{X} = -R_{\tau_{\star} \tilde{X}} \tau_{\star},$$

where ∇ is the covariant differentiation of M and R is the curvature tensor. Let $e_1 (= \tau_*), \ldots, e_n$ be a parallel field of orthonormal frames along τ such that

$$\langle R_{\tau_* e_i} \tau_*, e_k \rangle = a_j \delta_{ij}$$
 at o .

By the fact that M is a symmetric space, we have

$$\langle R_{\tau_* e_i} \tau_*, e_k \rangle = a_j \delta_{jk}$$
 on τ .

Since

$$\sum_{j=2}^{n} a_j = -(n-1)c \quad \text{and} \quad a_j \le 0,$$

there is i_0 such that $a_{i_0} \le -c$. We assume without loss of generality that $i_0 = 2$. Furthermore, since the adjoint representation of K on \mathcal{O} is irreducible, there is an element k_0 such that

$$\langle (\mathrm{Ad}(k_0)\bar{X}, e_2) \neq 0.$$

Let \tilde{X} be the Killing vector field generated by $\exp \theta \operatorname{Ad}(k_0)\bar{X}$. Then there are functions f_i on τ such that $\tilde{X} = \sum_{i=1}^n f^i e_i$, and the Jacobi equation gives $f^{2''} = -a_2 f^2$. If necessary, replacing e_2 by $-e_2$, we obtain $f^2(0) > 0$ and $f^{2''} \ge cf^2$ on $[0, \infty)$. Thus we have real numbers A > 0 and B such that

$$f^2 \ge Ae^{\sqrt{c}s} + Be^{-\sqrt{c}s}$$

by changing s into -s if necessary. Consequently the length of $\tilde{X}(\tau(s))$ for large s is bounded below by (some positive constant) $e^{\sqrt{c}s}$.

7. Proof of Theorem C. By the same argument as in the proof of Theorem B, we have Theorem C. \Box

REMARK. (1) We note that the result obtained in §6 gives a simple proof of Theorem B in [1].

(2) In general, we obtain the following:

Let M be a noncompact type symmetric space and N a noncompact type symmetric space with Ricci curvature -(n-1)c. We denote by τ the minimum value of the sectional curvatures of M. If $c > -\tau$, then N does not admit a ρ -equivariant isometric immersion into M.

REFERENCES

1. N. Ejiri, *Immersions equivariant for a given Killing vector*, J. London Math. Soc. (2) 29 (1984), 323-330.

82 NORIO EJIRI

2. S. Helgason, *Differential geometry, Lie groups, and symmetric spaces*, Academic Press, New York, 1978.

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya, Tokyo 158 Japan