## IMMERSIONS EQUIVARIANT FOR A GIVEN KILLING VECTOR II ## Norio Ejiri **0.** Introduction. In [1], we showed that any complete Riemannian manifold with a 1-parameter subgroup of isometries and sectional curvatures bounded above by -c < 0 cannot be immersed isometrically and equivariantly into any Euclidean space. On the other hand, we have a negatively curved complete revolution surface whose order of the Gauss curvature at infinity is (distance from a fixed point) $^{-2-e}$ , where e is positive. In this paper, we know that the above estimate is best. That is, we have the following. THEOREM A. Let M be a complete Riemannian manifold of negative curvature and $\rho$ a 1-parameter subgroup of isometries acting nontrivially on M. If there exists a point $x \in M$ such that the maximum of sectional curvatures on the geodesic ball of radius s with center x is bounded above by $-As^{-2}$ , A>0 for large s, then M does not admit any $\rho$ -equivariant isometric immersion into Euclidean spaces. Furthermore, we give analogous results to [1] in the case that the ambient space is a hyperbolic space. That is, we obtain the following. THEOREM B. Let M be a complete Riemannian manifold, and let $\rho(\theta)$ ( $\theta \in \mathbb{R}$ ) be a 1-parameter subgroup of isometries acting nontrivially on M. If the sectional curvatures of $M \le -c < -1$ , then M has no $\rho$ -equivariant isometric immersion into any hyperbolic space with sectional curvature -1. THEOREM C. Let M be an n-dimensional non-compact type symmetric space with Ricci curvature -(n-1)c, c>1, and let $\rho$ be a 1-parameter subgroup of isometries acting nontrivially on M. Then M has no $\rho$ -equivariant isometric immersion into any hyperbolic space with sectional curvature -1. The author is grateful to Professor K. Ogiue for his useful criticism and Professor H. Nagai for his useful suggestions. 1. Revolution surfaces with negative curvatures in $\mathbb{R}^3$ . In this section, we study "the order of the Gauss curvature at infinity" of some complete revolution surfaces with negative curvature in $\mathbb{R}^3$ . Let $(r, \theta)$ be the polar coordinate of $\mathbb{R}^2$ and $(t, r, \theta)$ the coordinate of $\mathbb{R}^3$ . We give a revolution surface S by $$\mathbf{R} \times S^1 \ni (t, \theta) \to (t, \tau(t) \cos \theta, \tau(t) \sin \theta) \in \mathbf{R}^3$$ Received April 10, 1984. Final revision received July 11, 1985. Michigan Math. J. 33 (1986). 76 NORIO EJIRI where $\tau$ is a positive function on **R** and $S^1$ is a unit circle. Therefore the induced metric on $\mathbf{R} \times S^1$ is given by $$(1+(\tau')^2) dt^2 + \tau^2 d\theta^2$$ . Then we obtain the Gauss curvature K of $\mathbb{R} \times S^1$ : $$K = -\frac{\tau''}{\tau(1 + (\tau')^2)^2}.$$ Let us assume that $\tau(t) = t^l$ for $t \ge 1$ and l > 1. Then the Gauss curvature $K_l$ for $t \ge 1$ is given by $$K_l = -\frac{l(l-1)}{t^2(1+l^2t^{2(l-1)})^2}.$$ Choosing an appropriate $\tau(t)$ for $-1 \le t \le 1$ such that $\tau(t)$ for $t \le 1$ is the tractrix, we have a complete revolution surface with negative Gauss curvature. Let $K_s$ be the maximum of the Gauss curvature on the geodesic ball of radius s with center (1,0). Then it is easy to see that $$K_s = -\frac{l(l-1)}{t^2(1+l^2t^{2(l-1)})^2}$$ for $$s = \int_{1}^{t} \sqrt{1 + l^{2} t^{2(l-1)}} dt.$$ Thus there are positive constants $\alpha$ and $\beta$ such that $$-\frac{\alpha}{s^{(4l-2)/l}} \le K_s \le -\frac{\beta}{s^{(4l-2)/l}}$$ for large s. We find that, for any small e > 0, there exists a complete revolution surface of negative curvature such that "the order of the Gauss curvature at infinity from a fixed point x" is (distance from x)<sup>-2-e</sup>. In the next section, we show that the above estimate is best; that is, there is no complete revolution surface of negative curvature such that "the order of the Gauss curvature at infinity from a fixed point x" is (distance from x)<sup>-2</sup>. 2. Complete Riemannian manifolds with negative curvature. Let M be an n-dimensional complete Riemannian manifold with negative curvature and X a Killing vector field on M. Since X is a Jacobi field on $\tau$ , we have $$\nabla_{\tau_*}\nabla_{\tau_*}X = -R_{\tau_*X}\tau_*,$$ where $\tau$ is a geodesic with arc length parameter, $\nabla$ is the covariant differentiation for the metric $\langle , \rangle$ on M, and R is the curvature tensor for $\nabla$ . Let $K_s$ be the maximum of the sectional curvatures of the geodesic ball of radius s with center $x \in M$ . Then we assume that $K_s \leq -A/s^2$ for large s, where s is a positive constant. It implies that, for any point in place of s, there is a positive constant s such that s is a positive constant s is a positive constant s is a positive constant s in the int consider that there exists a constant A such that $K_s < -A/s^2$ for large s. Let $\tau$ be a geodesic with arc length parameter s such that $\tau(0) = x$ and $e_1 (= \tau_*), ..., e_n$ a parallel field of orthonormal frames along $\tau$ . Then, expressing X by $X = \sum_{i=1}^n f^i e_i$ , we have the Jacobi equation: $$f^1 = \text{constant } (=\beta)$$ $f^{i''} = -\sum_{i=2}^n f^j \langle R_{\tau_* e_j} \tau_*, e_i \rangle$ for $i > 1$ . Setting $\sum_{i=2}^{n} (f^{i})^{2} = g$ , we obtain $$g'' = \sum_{i=2}^{n} 2((f^{i})^{2} + f^{i}(f^{i})'')$$ $$= 2\sum_{i=2}^{n} (f^{i})^{2} - 2\sum_{i,j=2}^{n} f^{i}f^{j}\langle R_{\tau_{*}e_{j}}\tau_{*}, e_{i}\rangle.$$ By the assumption on the sectional curvatures of M, we get (2.1) $$g'' \ge 0 \text{ on } (-s_0, s_0),$$ $$g'' \ge 2 \sum_{i=2}^{n} (f')^2 + \frac{1}{As_0^2} g \text{ on } s \le -s_0 \text{ and } s \ge s_0.$$ Choosing $\tau$ such that $X(x)//e_2$ , we have $f^2(x) \neq 0$ , $\beta = 0$ and hence obtain g(0) > 0. If necessary, we set $s \to -s$ and obtain $g'(0) \geq 0$ . Then $g'' \geq 0$ implies that $g(s_0) > 0$ and $g'(s_0) \geq 0$ . Therefore we find that g > 0, $g' \geq 0$ , and $$g'' \ge \frac{(g')^2}{2g} + 2\frac{1}{As^2}g$$ for $s \ge s_0$ . Setting G = g'/g, by (2.1) we obtain $$G' \ge -\frac{1}{2}G^2 + \frac{2}{As^2}$$ . Thus, for any B > A, $$G' > -\frac{1}{2}G^2 + \frac{2}{Rs^2}$$ holds. Now we consider the following ordinary differential equation of Riccati type: (2.2) $$F' = -\frac{1}{2}(F)^2 + \frac{2}{Rs^2} \quad \text{for } s \ge s_0.$$ It is easy to see that c/s, where $c=1+\sqrt{1+4/B}$ , is a solution of (2.2). Using the theory of the ordinary differential equation of Riccati type, we obtain the general solution F: (2.3) $$F = \frac{c}{s} + \frac{(c-1)s_0^c s^{-c}}{s_0^c (s_0^{1-c} - s^{1-c})/2 + (c-1)\alpha},$$ where $\alpha$ is a real number. We can choose $\alpha$ such that $G(s_0) = F(s_0)$ . That is, when $G(s_0) = c/s_0$ we set F = c/s, while in another case we put $\alpha = 1/(G(s_0) - c/s_0)$ . By properties of G and F, we have (2.4) $$(G-F)' > -\frac{1}{2}(G-F)(G+F).$$ Thus $(G-F)'(s_0) > 0$ holds and hence there exists $s_1$ such that G-F > 0 on $(s_0, s_1)$ . If there exists a positive number $s_2$ such that $(G-F)(s_2) = 0$ and G-F > 0 on $(s_0, s_2)$ , then $(G-F)'(s_2) \le 0$ . This is a contradiction for (2.4). We have G(s) > F(s) for $s > s_0$ . If $F \ne c/s$ , then F is given by (2.3). It is easy to show that $s_0/2 + (c-1)\alpha \ne 0$ . If it is zero, then $G(s_0) = F(s_0) \ge 0$ implies $c/s_0 + 1/\alpha \ge 0$ , which contradicts $$\frac{c}{s_0} + \frac{1}{\alpha} = \frac{c}{s_0} - \frac{2(c-1)}{s_0} = \frac{2-c}{s_0} < 0.$$ Hence $s_0/2 + (c-1)\alpha \neq 0$ . For large s, we find that there is a positive constant K such that $$\left| \frac{(c-1)s_0^c}{s_0/2 + (c-1)\alpha - s_0^c s^{1-c}/2} \right| < K.$$ Therefore we conclude $$F(s) \ge \frac{c}{s} - \frac{K}{s^c} = \frac{c}{s} \left( 1 - \frac{K}{cs^{c-1}} \right)$$ for large $s > 0$ . Therefore for any small $\epsilon$ we may consider that $F(s) \ge c(1-\epsilon)/s$ for large s. In both cases, $F(s) \ge c(1-\epsilon)/s$ for large s holds. Since g'/g = G, we obtain $g \ge Ls^{c(1-\epsilon)}$ for large s. For large s, we note $c(1-\epsilon) > 2$ . Using the same argument as in [1] or as in §3 on the length of a Killing vector field of Euclidean space, we have Theorem A. 3. Killing vector fields of an *n*-dimensional hyperbolic space $H^n(-c)$ with constant sectional curvature -c, c > 0. Let $\tau$ be a geodesic with arc length parameter s in $H^n(-c)$ and X a Killing vector field on $H^n(-c)$ . Then X is a Jacobi field along $\tau$ , which satisfies the Jacobi equation: $$\nabla_{\tau_*} \nabla_{\tau_*} X = cX - c\langle X, \tau_* \rangle \tau_*,$$ where $\langle , \rangle$ is the metric on $H^n(-c)$ and $\nabla$ is the covariant differentiation with respect to $\langle , \rangle$ . Let $e_1 (=\tau_*), e_2, \ldots, e_n$ be a parallel field of orthonormal frames along $\tau$ . Then, setting $X = \sum_{i=1}^n f^i e_i$ , we obtain the Jacobi equation $$f'' = 0$$ and $f^{i}'' = cf^{i}$ for $i > 1$ . Thus there are constants $A^i$ and $B^i$ for i > 1 such that $$f^i = A^i e^{\sqrt{c}s} + B^i e^{-\sqrt{c}s}$$ for $i > 1$ . Furthermore, since X is a Killing vector field, $f^1$ must be constant $(=\beta)$ . Consequently we have (3.1) $$X = \alpha \tau_* + \sum_{i=2}^n (A^i e^{\sqrt{c}s} + B^i e^{-\sqrt{c}s}) e_i,$$ (3.2) $$\nabla_{\tau_*} X = \sum_{i=2}^n \sqrt{c} (A^i e^{\sqrt{c}s} - B^i e^{-\sqrt{c}s}) e_i,$$ which imply $$||X||^2(\tau(0)) = \alpha^2 + \sum_{i=1}^n (A^i + B^i)^2,$$ $$\|\nabla_{\tau_*} X\|^2 (\tau(0)) = \sum_{i=2}^n c(A^i - B^i)^2.$$ Then we have the following. LEMMA 3.1. Let $\alpha_{\tau}$ , $A_{\tau}^{i}$ and $B_{\tau}^{i}$ be the constants determined by a geodesic with arc length parameter s such that $\tau(0) = x \in H^{n}(-c)$ . Then, independent of $\tau$ , $|\alpha_{\tau}|$ , $|A_{\tau}^{i}|$ and $|B_{\alpha}^{i}|$ are bounded. Thus there is a constant $\epsilon$ such that $\epsilon$ is independent of $\tau$ ( $\tau(0) = x$ ) and the length of X at $\tau(s)$ for large s is bounded above by $\epsilon e^{\sqrt{c}s}$ . 4. A Killing vector field on a complete Riemannian manifold. Let M be an n-dimensional complete Riemannian manifold with sectional curvature $\leq -c < 0$ . Let $\tau$ be a geodesic with arc length parameter s and X a Killing vector field on M. Since X is a Jacobi field on $\tau$ , we have $$\nabla_{\tau_*}\nabla_{\tau_*}X = -R_{\tau_*X}\tau_*,$$ where $\nabla$ is the covariant differentiation for the metric $\langle , \rangle$ on M and R is the curvature tensor for $\nabla$ . Let $e_1 (= \tau_*), \ldots, e_n$ be a parallel field of orthonormal frames along $\tau$ . Then, expressing X by $X = \sum_{i=1}^n f^i e_i$ and using the same argument as in §2, we have, for $\sum_{i=2}^n (f^i)^2 = g$ , (4.1) $$g'' \ge 2 \sum_{i=2}^{n} (f^i)^{2} + 2cg.$$ In particular, $g'' \ge 2cg$ holds. We assume without loss of generality that $g(\tau(0)) > 0$ and $g'(\tau(0)) > 0$ . $g'' \ge 2cg$ implies that g and g' are positive on $[0, \infty)$ . On the other hand, by Schwarz inequality we have $$g' \leq 2\sqrt{g} \sqrt{\sum_{i=2}^{n} (f^i)^2},$$ which, together with the positiveness of g and g' on $[0, \infty)$ , implies $$g'^2 \leq 4g \left( \sum_{i=2}^n (f^i)'^2 \right).$$ Thus we obtain $$g'' \ge \frac{{g'}^2}{2g} + 2cg.$$ 80 NORIO EJIRI It follows from Schwarz inequality that $g'' \ge 2\sqrt{c}g'$ , which implies $$g \ge g(0) + \frac{1}{2\sqrt{c}} e^{2\sqrt{c}s + \log g'(0)}.$$ THEOREM 4.1. Let M be a complete Riemannian manifold with sectional curvatures $\leq -c$ (c>0) and X a Killing vector field on M. Then there is a geodesic $\tau$ with arc length parameter s and a positive constant $\epsilon$ such that the length of $X(\tau(s))$ for large s is bounded below by $\epsilon e^{\sqrt{c}s}$ . 5. Proof of Theorem B. Let $\tau$ be the same geodesic as in Theorem 4.1. Let $\chi$ be a $\rho$ -equivariant isometric immersion of M into $H^{n+p}(-1)$ . That is, there is a 1-parameter subgroup $\tilde{\rho}$ of isometries of M such that $$\chi(\rho(\theta)x) = \tilde{\rho}(\theta)\chi(x)$$ for all $x \in M$ . Let $X_{\rho}$ and $X_{\tilde{\rho}}$ be Killing vector fields on M and $H^{n+p}(-1)$ generated by $\rho$ and $\tilde{\rho}$ , respectively. Then we have $\chi_*(X_{\rho}) = X_{\tilde{\rho}}$ . We denote by $\tilde{\tau}_s$ the geodesic segment which joins $\chi(\tau(0))$ to $\chi(\tau(s))$ . Furthermore, with respect to the arc length parameter $\tilde{s}$ of $\tilde{\tau}_s$ with $\tilde{\tau}_s(0) = \chi(\tau(0))$ , we denote by $\tilde{s}(s)$ the positive number such that $\tilde{\tau}_s(\tilde{s}(s)) = \chi(\tau(s))$ . It is clear that $\tilde{s}(s) \leq s$ . Since $X_{\tilde{\rho}}$ is a Killing vector field, there are real numbers $\tilde{\alpha}_s$ , $\tilde{A}_s^i$ and $\tilde{B}_s^i$ such that $$X_{\tilde{\rho}}(\tilde{s}) = \tilde{\alpha}_s \tilde{\tau}_{s*}(\tilde{s}) + \sum_{i=2}^{n+p} (\tilde{A}_s^i e^{\tilde{s}} + \tilde{B}_s^i e^{-\tilde{s}}) \tilde{e}_{si},$$ where $\tilde{e}_{s1}$ (= $\tau_{s*}$ ), ..., $\tilde{e}_{s(n+p)}$ is a parallel field of orthonormal frames along $\tilde{\tau}_s$ . By Lemma 3.1, $|\tilde{\alpha}_s|$ , $|\tilde{A}_s^i|$ and $|\tilde{B}_s^i|$ for all s>0 are bounded above by some positive number L. Thus we have $$\|\tilde{X}_{\tilde{\rho}}(\tilde{s}(s))\|^2 \leq L + 4(n+p-1)Le^{2s},$$ which contradicts the definition of $\tau$ . 6. A Killing vector field on a noncompact type symmetric space. Let M be an n-dimensional noncompact type symmetric space with Ricci curvature -(n-1)c, c>0. Then there is a symmetric pair (G,K) such that G/K, where G is the connected component of the Lie group of isometries of M and K is an isotropy subgroup of G, which fixes $o \in M$ (see [2], for example). We denote by $\mathfrak{J}$ and $\mathfrak{K}$ ( $\subset \mathfrak{J}$ ) the Lie algebra of G and the Lie algebra of G, respectively. Let $\mathfrak{J} = \mathfrak{K} + \mathfrak{O}$ be the canonical decomposition of G and G the Killing form of G. Then G is negative definite over G, positive definite over G, and G, G is a 1-parameter subgroup of isometries acting nontrivially on G. Then there is a vector G is such that G is G is G and G are G and G are G and G is an isometry, we have $$k_*(X_{\exp\theta\bar{X}}) = X_{\exp\theta\operatorname{Ad}(k)\bar{X}},$$ where Ad is the adjoint representation of G. Thus it is enough to prove Theorem C with respect to an appropriate $X_{\exp\theta \operatorname{Ad}(k)\bar{X}}$ . We assume without loss of generality that the $\mathscr{O}$ -component $\bar{X}^{\mathscr{O}}$ of $\bar{X}$ is not zero. Then $(\operatorname{Ad}(k)\bar{X})^{\mathscr{O}}$ is not zero. Let $\tau$ be a geodesic with arc length parameter s such that $\tau(0) = o$ and $\tilde{X}$ a Killing vector field of M. Then $\tilde{X}$ along $\tau$ satisfies the Jacobi equation: $$\nabla_{\tau_{\star}} \nabla_{\tau_{\star}} \tilde{X} = -R_{\tau_{\star} \tilde{X}} \tau_{\star},$$ where $\nabla$ is the covariant differentiation of M and R is the curvature tensor. Let $e_1 (= \tau_*), \ldots, e_n$ be a parallel field of orthonormal frames along $\tau$ such that $$\langle R_{\tau_* e_i} \tau_*, e_k \rangle = a_j \delta_{ij}$$ at $o$ . By the fact that M is a symmetric space, we have $$\langle R_{\tau_* e_i} \tau_*, e_k \rangle = a_j \delta_{jk}$$ on $\tau$ . Since $$\sum_{j=2}^{n} a_j = -(n-1)c \quad \text{and} \quad a_j \le 0,$$ there is $i_0$ such that $a_{i_0} \le -c$ . We assume without loss of generality that $i_0 = 2$ . Furthermore, since the adjoint representation of K on $\mathcal{O}$ is irreducible, there is an element $k_0$ such that $$\langle (\mathrm{Ad}(k_0)\bar{X}, e_2) \neq 0.$$ Let $\tilde{X}$ be the Killing vector field generated by $\exp \theta \operatorname{Ad}(k_0)\bar{X}$ . Then there are functions $f_i$ on $\tau$ such that $\tilde{X} = \sum_{i=1}^n f^i e_i$ , and the Jacobi equation gives $f^{2''} = -a_2 f^2$ . If necessary, replacing $e_2$ by $-e_2$ , we obtain $f^2(0) > 0$ and $f^{2''} \ge cf^2$ on $[0, \infty)$ . Thus we have real numbers A > 0 and B such that $$f^2 \ge Ae^{\sqrt{c}s} + Be^{-\sqrt{c}s}$$ by changing s into -s if necessary. Consequently the length of $\tilde{X}(\tau(s))$ for large s is bounded below by (some positive constant) $e^{\sqrt{c}s}$ . 7. Proof of Theorem C. By the same argument as in the proof of Theorem B, we have Theorem C. $\Box$ REMARK. (1) We note that the result obtained in §6 gives a simple proof of Theorem B in [1]. (2) In general, we obtain the following: Let M be a noncompact type symmetric space and N a noncompact type symmetric space with Ricci curvature -(n-1)c. We denote by $\tau$ the minimum value of the sectional curvatures of M. If $c > -\tau$ , then N does not admit a $\rho$ -equivariant isometric immersion into M. ## REFERENCES 1. N. Ejiri, *Immersions equivariant for a given Killing vector*, J. London Math. Soc. (2) 29 (1984), 323-330. 82 NORIO EJIRI 2. S. Helgason, *Differential geometry, Lie groups, and symmetric spaces*, Academic Press, New York, 1978. Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya, Tokyo 158 Japan