ON SOME CLASSES OF FIRST-ORDER DIFFERENTIAL
SUBORDINATIONS

Sanford S. Miller and Petru T. Mocanu

1. Introduction. Let f and F be analytic in the unit disk U. The function fis
subordinate to F, written f< F or f(z) < F(z), if F is univalent, f(0)=F(0) and
SWU)CFU).

In two previous articles [1 and 5] the authors investigated properties of the
Briot-Bouquet differential subordination

zp’'(z)

1 ——— :
(1) p(z)+ B0 (D) +v <h(z)

This first-order differential subordination has many interesting applications in
the theory of univalent functions [see 1, 5, and 8]. For special values of 3, y and
h it has been investigated by many other authors.

The Briot-Bouquet differential subordination is but a special case of the gen-
eral theory of differential subordinations introduced in [4, Section 4]. Restricting
our attention to first-order differential subordinations, if ¥: C* — C is analytic in
a domain D, if his univalent in U, and if pis analytic in U with (p(z),zp'(z))e D
when z € U, then p is said to satisfy the first-order differential subordination

()] ¥(p(z),2p'(2)) < h(z).

If we take y(r,s)=r+s/(Br++) then the Briot-Bouquet differential subordi-
nation (1) can be written in the form (2).

Condition (2) is a generalization to complex function theory of the concept of
first-order differential inequalities in real function theory. The similarity of the
symbols < and < is appropriate since both represent an inclusion relation. In
the real case there are many applications that require the finding of bounds on
the function p satisfying the differential inequality (2) with < replaced by <.
This is also the case for differential subordinations. We now repeat the following
definitions of dominant and best dominant from [4, Definition 4], here restricted
to the first-order case.

DEFINITION 1. The univalent function g is said to be a dominant of the differ-
ential subordination (2) if p < q for all p satisfying (2). If 4 is a dominant of (2)
and § < g for all dominants g of (2), then § is said to be the best dominant of (2).
(Note that the best dominant is unique up to a rotation of U.)

In this article we determine dominants and best dominants of first-order
differential subordinations. The special case of the Briot-Bouquet differential
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subordination given by (1) and its best dominant were analyzed in {5, Theorem 3].
Second-order differential subordinations, their dominants and best dominants
were discussed in [4]. A good example of a best dominant for an nth-order differ-
ential subordination has been described in a recent paper by Goldstein, Hall,
Sheil-Small, and Smith [2]. These authors show that g(z) = z/2 is the best domi-
nant for the nth-order differential subordination

pRR)+zp' () +22p P (@) + - +z2"p (7)< z.

We will present two major groupings of theorems for the differential subordi-
nation (2). The first grouping involves finding the dominants corresponding to a
given class of functions . The second grouping involves the reverse problem of
finding the class of functions y corresponding to a given dominant g. These
results are given in Sections 3 and 4 respectively. Applications of these results in
univalent function theory are presented in Section 5. Section 2 is concerned with
two lemmas and a review of several definitions that are needed in the remainder
of this article.

2. Preliminaries.

LEMMA 1. Let p be analytic in U and let q be analytic and univalent in U with
p(0)=q(0). If p is not subordinate to q then there exists points zoe U and
$o€dU, and an m=1 for which p(|z| <|zo|) Cq(U),

(i) p(zo) =4q($o), and

(ii) zop'(z0) =m$oq’($0).

The proof of a more general form of this lemma may be found in [4, Lemma 1].

Our next lemma deals with the notion of a subordination chain. A function
L(z,t), ze U, t =0, is a subordination chain if L(-, t) is analytic and univalent
in U for all r =0, L(z, -) is continuously differentiable on [0, «) for all ze U,
and L(z,5)<L(z,t) when0<s=<t.

LEMMA 2 [7, p. 159]. The function L(z,t)=a;(t)z+ ---, with a,(t) # 0 for all
t =0, is a subordination chain if and only if

L
Re[za—/—a-é]>0,
dt

JorzeUand t =0.

For consistency of notation we include the following definitions [7]. Suppose
that fis analytic in U. The function f with f’(0) # 0 is convex (univalent) if and
only if Re[l+zf"(z)/f'(z)]1>0, zeU. The function f, with f’(0)0 and
f(0)=0, is starlike (univalent) if and only if Re[zf'(2)/f(z)]1>0, ze U. The
function fis close-to-convex (univalent) if and only if there is a starlike function
g such that Re[zf"(z)/g(2)]>0, ze U.

3. Differential subordinations I. This section deals with finding dominants and
best dominants for several classes of .
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THEOREM 1. Let h be analytic in U, let ¢ be analytic in a domain D containing
h(U) and suppose

(@) Reo¢(n(z))>0,zeU
and either

(b) h(z) is convex, or

(b)) H(z)=zh'(2)d(h(2)) is starlike.
If p is analytic in U with p(0) = h(0), p(U) C D, and

3) p()+zp'(2)d(p(z)) <h(z),
then p(z)<h(z).

Proof. Without loss of generality we can assume that p and 4 satisfy the condi-
tions of the theorem on the closed disc U. If not, then we can replace p(z) by
2 (z2)=p(rz), and h(z) by h.(z) =h(rz), where 0 <r <1. These new functions
satisfy the conditions of the theorem on U. We would then prove p,(z) < h,(z)
for all 0 <r < 1. By letting r —» 17, we obtain p(z) < h(z).

Cuase 1. Suppose (a) and (b) are satisfied, but p is not subordinate to 4. According
to Lemma 1, there are points zoe U and ¢ € dU, and an m =1 such that

4) P(20) +20p'(20) #(P(z0)) = h($o) + mSoh'($o) p(A($o)).
The complex number (or vector) ¢oh'($o) d(R($o)) satisfies
(5) arg[$oh’'($o) o (h($o)) ] =arg $oh'($o) +arg ¢(h($o)).

From (a) we see that |arg ¢(A($o))| < /2. Using this fact together with the fact
that {p/h’($p) is an outward normal to the boundary of the convex domain A(U),
(5) implies that (4) is a complex number outside of #(U). This contradicts (3) and
hence we conclude that p < 4.

Case 2. If (a) and (b’) are satisfied then we obtain Re[zA'(z)/H(z)]=
Re[l/¢(H#(z))] >0, which implies that 4 is close-to convex (univalent), and hence
that (3) is well defined. Since 4 and H are analytic in U the function

(6) L(z,t)=h(z)+tzh'(2)o(h(z))=h(z)+tH(z)

is analytic in U for all £ =0. From (a) we obtain
oL
% O, 1)=n"O0)[1+1t(h(0))]#0, for=0.

This function is also continuously differentiable on [0, ), for all z € U. A simple
calculation combined with (a) and (b’) yields

oL | aL 1 ZH'(2)
Relz— |—|=Re|—— |+ Re >0,
[ 9z / at] [q‘)(h(z))] [ H(z) ]
for ze U and ¢t = 0. Hence by Lemma 2, L(z,¢) is a subordination chain and we
have L(z,s)<L(z,t) for 0 =s <t. From (6) we obtain 4(z) = L(z,0) and hence
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7 L(¢,t) ¢ h(U),

for |{|=1and 1=0.
Now assume that p < h. As in Case 1 we have condition (4), which can be
rewritten using (6) as

P(20)+20p0'(20) d(P(20)) = L($o, m),

where zo€ U, || =1, and m=1. Combined with (7) this contradicts (3). Hence
p < h, completing the proof of the theorem. d

By carefully selecting the function ¢ we obtain the following corollaries.

COROLLARY 1.1. Let 3 and v be complex numbers with 8 # 0 and let p and h
be analytic in U with h(0) = p(0). If Q(z) = Bh(z)+ satisfies

(@A ReQ(z)>0,zeU
and either

(b) Q is convex, or

(b”) log Q is convex
then

zp'(z)

8 —_—
® p(z)+ Bp(2) + < h(z)

implies that p(z) < h(z).
Proof. If we set ¢(w) = (Bw+~) ! then (8) becomes (3) and since

Rel/¢(h(z)) =Re O(z),

from (a) we obtain Re ¢(#) > 0. Condition (b) implies that 4 is convex, while
condition (b’) implies that H(z)=p"'zd[log Q)1/dz=zh'(2)/(Bh(z)+v) =
zh’'(z) (h(z)) is starlike. All the conditions of Theorem 1 are thus satisfied, and
so we have p<h. O

This corollary provides dominants for the Briot-Bouquet differential subordi-
nation (1). The authors in [1, Theorem 1] proved a weaker form of this corollary
using only conditions (a) and (b). We present an example which requires the use
of (a) and (b’), and which could not be previously handled. If we take y=0,
B=1/a>0, and A(z) = e with 1< |\| < /2, then Q(z) = e/« satisfies (a) and
(b”). The domain Q(U) is lima-bean shaped and is clearly not convex. Thus (b) is
not satisfied in these cases, but we still have

zp'(z)
p(z)

By an analysis similar to that of Corollary 1.1, but using ¢(w)=w++ and
o(w)=(Bw+v) =2 respectively in Theorem 1, we obtain the following corollaries.

pP(R)+ o <eM = p(z)<eM.

COROLLARY 1.2. Let 3 and v be complex numbers with 3# 0 and let p and h
be analytic in U with h(0) = p(0). If Q(z) = Bh(z) +y satisfies
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(i) ReQ(z)>0, zeU and
(i) Q or Q* are convex,
then p(z)+zp'(2)[Bp(z) +v] < h(z) implies p(z) < h(z).

COROLLARY 1.3. Let 8 and ~y be complex numbers with 8 # 0 and let p and h
be analytic in U with h(0) = p(0). If OQ(z) = Lh(z)+ v satisfies

(i) ReQ?*(z)>0, zeUand

(ii) Q or 1/Q are convex,
then p(z)+zp'(2)[Bp(z) +v) 2 < h(z) implies p(z) < h(z).

Our next theorem gives the best dominant for a different class of differential
subordinations.

THEOREM 2. Let h be convex in U and 6 and ¢ be analytic in a domain D. Let
p be analytic in U, with p(0)=h(0)=0(p(0)) and p(U) C D. If the differential
equation

©) 0(q(2)) +29'(z)$(q(z)) = h(z)

has a univalent solution in U that satisfies q(0) = h(0) and
(10) 0(q(z)) <h(z),

then the relation

11 0(p(z))+zp'(z)P(p(2)) < h(z)

implies p(z) < q(z). The function q is the best dominant of (11).

Proof. As in Theorem 1, we can assume that the functions p, ¢ and 4 satisfy
the conditions of this theorem in the closed disc U.

If p is not subordinate to g, then by Lemma 1 there are points zoe U and
o€ dU, and an m =1, such that

0(p(z0)) +200'(20) D(P(20)) = 0(q($0)) +moq’($0) d(q($o)).

We can simplify this latter expression by using (9) and obtain

0(p(20))+20P (z0) 6 (P(20)) = h($o) + (m—1)[A($0) —0(g($0))].

From (10) and the fact that A(U) is convex we conclude that the above right-
hand term (and hence the left-hand term) is not in #(U). This contradicts (i1)
and hence we must have p<gq.

From (9) we see that g also satisfies (11). This implies that the dominant ¢ is
also the best dominant of (11). O

For the special case 8(w)=w we can combine Theorems 1 and 2, and obtain
the following result.

COROLLARY 2.1. Let h be convex in U and let ¢ be analytic in a domain D
containing h(U). Let p be analytic in U with p(0) = h(0) and p(U) C D, and sup-
pose that the differential equation
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(12) q(z2)+2q'(2)9(q(z)) =h(z)

has a univalent solution that satisfies q(0) = h(0). If Red(h(z)) >0, for ze U,
then

(13) pR)+zp'(2)d(p(z)) < h(z)
implies p <q < h, where q is the best dominant of (13).

Proof. From (12) we see that g satisfies (3) and since (a) and (b) of Theorem 1
are satisfied we have g < h. If we take 8(w) =w, then we see that all the condi-
tions of Theorem 2 are satisfied, and we obtain the conclusion of the corollary.

The special case ¢(w)=(Bw++v) !, corresponds to the Briot-Bouquet differ-
ential subordination (1), which was analyzed in [5].

4. Differential subordinations II. In this section we will again consider differ-
ential subordinations of the form (11). However, in this section we first select the
dominant and then find the appropriate A corresponding to this dominant.

THEOREM 3. Let q be univalent in U and let 6 and ¢ be analytic in a domain D
containing q(U), with ¢(w)#0 when weq(U). Set Q(z)=2zq'(z)$(q(z)),
h(z) =0(q(z))+ Q(z) and suppose that

(1) Q is starlike (univalent) in U, and

. zh'(z) =Re[ﬁ’(fI(z)) 4 z2Q'(z) ] >0, zeU.
0(z)

$(q@(z)) Q)

If p is analytic in U, with p(0)=¢g(0), p(U)e D and

(14) 0(p(z))+zp'(2)P(p(2)) <0(q(2))+2q'(z)$(q(z)) =h(z),
then p<gq, and q is the best dominant of (14).

(ii) R

Proof. As was done in Theorem 1, we can assume that the functions p, g and 4
satisfy the conditions of this theorem in the closed disc U.

Since Q is starlike, from (ii) we deduce that the function # is univalent (close-
to-convex) and hence (14) is well defined.

The function

(15) L(z,8)=h(z)+tQ(z)=0(q(z))+(1+1)Q(z)

is analytic in U for all # =0, and is continuously differentiable on [0, o) for all
z e U. From (ii) we obtain

6'(g(0))
$(g(0))
A simple calculation combined with (ii) yields
oL oL 0'(g(z)) zQ'(z) zh'(z)
Re[z Py / Py ] =Re [__—¢(q(z)) +(1+1¢) 0@ ]_>_Re 0z >0.

Hence by Lemma 2, L(z,¢) is a subordination chain and we have L(z,s)<
L(z,t), for0<s=<t. From (15) we obtain L(z,0) = /#(z), and hence we must have

%(0,;)=¢(q(0))q'(0)[ +1+t]¢0, for r=0.
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(16) L(,t)¢ h(U), for |¢|=1 and ¢=0.

Now assume that p < ¢g. From Lemma 1, there are points zo€ U and {, € dU,
and an m =1 such that

8(p(z0)) +2z0p (z0) (P(20)) = 0(q($0)) + m$oq’'($o) 2(q($o))-
Since O(z) =zq’(z)$(q(z)) and m=1, from (15) and (16) we obtain
0(p(z0)) +20P'(20) #(P(20)) =L($o, m—1) & A(U).

But this contradicts (14), and hence we must have p <gq. Since p = q satisfies
(14), the function q is the best dominant of (14). 0J

REMARK. If we take 8(w) =0 in Theorem 3, then condition (ii) reduces to (i)
and we obtain

zp'(2) 9 (p(z)) <2q'(2) $(q(2)) = p(z) <q(z),
when ¢ is univalent and zq'(z) $(q(z)) is starlike.

We conclude this section by considering differential subordinations that are
obtained from Theorem 3 by selecting different dominants q.

(A) Dominant g(z)=z. In this case, besides the requirements that § and ¢ be
analytic in a domain D D U, the conditions of Theorem 3 reduce to

(17) O(z) =z¢(z) is starlike in U,
zh'(z) 0'(z) z2¢'(z)
1 R =R 221 150,
(18) ° 00 e[cb(z) 0 ]>0 and
(19) 0(p(z))+zp'(2) ¢ (p(2)) <0(2) +29(z) = h(z).

If we take ¢(z)=1in (17), (18) and (19) then from Theorem 3 we obtain:

COROLLARY 3.1. Let § be analytic in a domain D D U and suppose Re 8'(z) >
—1. If p is analytic in U, with p(0)=0, p(U)CD and

0(p(z))+zp'(z) <0(z) +z,
then p(z) <z and this is the best dominant.

If we take ¢(z) =60(z)/z, 6(0) =0, in (17), (18) and (19), then from Theorem 3
we obtain:

COROLLARY 3.2. Let 0 be analytic in a domain D D U and suppose § is star-
like in U. If p is analytic in U, with p(0)=0, p(U)CD and

0(p(z)[1+2p'(z)/p(z)]1<20(z),
then p(z) <z, and this is the best dominant.

If we take ¢(z) =6'(z) in (17), (18) and (19) then from Theorem 3 we obtain:

COROLLARY 3.3. Let 0 be analytic in a domain D D U and suppose 6 is convex
in U. If p is analytic in U, with p(0)=0, p(U)CD and
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0(p(z))+zp'(2)0'(p(z)) <0(z)+2z0'(2),
then p(z) <z and this is the best dominant.

If we take 0(z) =z and ¢(z)=(1+Xz)7", |\|=1, in (17), (18) and (19), then
from Theorem 3 we obtain:

COROLLARY 3.4. Let \ be a complex number with |\| <1, and let p be analytic
in U, with p(0)=0. If p satisfies

zp'(z) - z2(24+A\Z2)
14+Ap(2) 14+ Az

then p(z) <z and this is the best dominant.

(20) p(z)+

b

An application of (20) in univalent function theory will be presented in the
next section.

If we take 6(z) =z and ¢(z) to be 1+ Az, or ™, or (1+\z)/(1—\z), then from
Theorem 3 we obtain respectively:

p(z)+zp’ () (1 +Ap(z)) <22+ Nz = p(z)<z for |N\[=<1/2,
p(z)+zp'(z)eM <z(1+e?) = p(z) <z for |\|=1, and

(1+Ap(z)) - 2z
(1-Ap(z)) 1-=X

(B) Dominant q(z)=(1+z)/(1—z). If we take 8(w)=w and ¢(w)=1/w then
conditions (i) and (ii) of Theorem 3 will be satisfied and so we obtain:

p(2)+zp'(z) . = p(z)<z for |\|=+2-1.

COROLLARY 3.5. Let p be analytic in U with p(0)=1. If p satisfies

Zp'(z 14z 27
p(z)+ Pz) < + 7 =h(z),
p(z2) 1-z 1-z

then p(z) <(1+z2)/(1—z) and this is the best dominant.

An application of this result in univalent function theory will be presented in
the next section.

(C) Dominant q(z) =z/(1—2z)% If we take (w)=w and ¢(w)=1/(1+4w)"?
then conditions (i) and (ii) of Theorem 3 will be satisfied and so we obtain:

COROLLARY 3.6. Let p be analytic in U with p(0) =0. If p satisfies
zp'(z) 2z

p(z)+ Jitapz) (d=2)%’

then p(z) <z/(1—z)* and this is the best dominant.

5. Applications to univalent functions. In [3] S. Kudryashov investigated the
maximum value of M for which

1) ")/ f (=) =M
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implies f is univalent in U. He showed that if M =M;=3.05..., where M, is the
root of 8[x(x—2)*1"2—3(4—x)?>=12, then any function f analytic in U that
satisfies (21) will be univalent in U. The maximum value of M cannot be larger
than . This follows from considering the functions f(\, z) = e for |\| < wand
z € U. For these functions | f”/f’| = |\|, whereas f(), z) is univalent if and only
if |[\| <w. The maximum value of M for which (21) implies univalence is un-
known, but this value satisfies M; <M < .

A similar, but sharp result for convexity follows immediately since (21) is
equivalent to [(zf”(z)/f'(z)+1)—1| <M, which implies

Re[zf"(2)/f'(z)+1]>1—M.

Thus, letting M =1 in (21) implies that f is convex. Furthermore, M =1 is the
maximum value for which (21) implies convexity of f.
We now use Corollary 3.5 to obtain a similar result for starlike functions.

THEOREM 4. If f is analytic in U, f(0)=0, and
(22) |f"(2)/f(z)| =2,

Jor ze U, then f is a starlike function.

Proof. From Kudryashov’s result we deduce that f is univalent in U. If we set
p(z)=2f'(z)/f(z), then pis analytic in U, p(0) =1and p(z) #0 for z € U. Using
this p and h(z) = (z2+4z+1)/(1—z2) in Corollary 3.5 we obtain

zf"(2) 1< h(z) = z2f(z) 1+z

< .
S'(z) f(z) 1—z
The function w=h(z) maps U onto the complex plane minus the half-lines
Rew=0, Inw=vV3 and Rew=0, Imw =< —V3. From (22) we have

[(zf"(2)/f'(z)+1)—1] <2

for ze U, and thus zf”(z)/f"(z) is contained in the disc |w—1| <2, for ze U. It
is easy to check that this disc is in #(U), and so we have zf"(z)/f'(z) +1< h(z).
Combining these results with (23) we deduce that (22) implies zf'(z)/f(z) <
(14+2z)/(1—2z). Hence Re z.f'(z)/f(z) > 0 and the function f'is a starlike function.

The function f(z)=e—1 is starlike if and only if |\|<M>, where M,=
2.8329... [6, p. 338]. Since | f"(z)/f'(z)| =|\|, we see that the constant M in (21)
which implies starlikeness of f is at most M,. Hence the maximum value of M
for which (21) implies starlikeness satisfies 2 < M < M,. The exact value of this
M remains an interesting open question.

The result (23) has a representation in terms of the Koebe function k(z)=
z/(1—2z)%. This is the extremal function for many problems in univalent function
theory. If fis starlike, that is z/"(z)/f(z) < (1+2)/(1—z2) =2k’(2)/k(2), then it
is well known that f(z)/z<k(z)/z [7, p. 50]. A simple calculation shows that
zk”/k’+1=h, and so from (23) we obtain the interesting chain

(23)
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14 k/.r ’ k!
zf, +1<i,—-l-1=>£f—-<Z =>—‘/i<£.
f k f k Z z
For our last application we use Corollary 3.4 to obtain another inequality that
implies starlikeness.

THEOREM 5. If f is analytic in U with f(0)=0 and

(24) lzf"(z)/f'(z2)+1]| <2,
then f is starlike and |z f"(z)/f(z)—1|<1.

Proof. If we let h(z)=1+2z+2/(14+2), P(z)=p(z)+1and A=1in Corollary
3.4 we obtain

zP'(z)
P(z)

when P(z) is analytic in U with P(z)#0 and P(0)=1.

From (24) and Schwarz’s lemma we obtain |f”(z)/f’(z)| <3 and hence, by
Kudryashov’s result, the function f is univalent. If we set P(z)=z/f"(z)/f(2),
then P is analytic in U, P(z)#0, for z e U and P(0) = 1. Using this P in (25) we
obtain

(26) 2f"(2)/f () +1<h(z) = 2f"(2)/f(z) —1<z.

Using some simple calculus and analytic geometry, one can show that the disc
|w| <2 is contained in A(U). Thus if (24) is satisfied we have zf"(z)/f'(z) +1<
h(z), which by (26) implies that |z/"(z)/f(z)—1| <1. Hence Re zf"(z)/f(z) >0
and fis a starlike function. O

(25) P(z)+ <h(z)= P(z)—1<z,
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