HOMOLOGY PRODUCTS AND THE
ECKMANN-HILTON GROUPS

Kenneth Howell

Let R be a fixed ring with unit; we shall work in the category of left R-modules.
Of course, all results below are equally valid in any abelian category with enough
injectives and projectives.

The Eckmann-Hilton groups, introduced by those authors in [2] and [3], com-
prise the left derived functors of Hom. Our purpose is to define product opera-
tions among the various (both left and right) derived functors of Hom. In par-
ticular, for any A and B let

Ext"(4, B) n>0 ~
I_,4,B) n<o 29 Knld.B)= {ﬁ_n(A,B) n=0.

We obtain bilinear maps natural in A and C and commuting with the connecting
homomorphisms:

H,(B,C)xHA,B)~>H,,,(A,C) unless p<0 and ¢>0
K,(B, C)XK,(A,B)—>K,,,(A,C) wunless p>0 and ¢=<0.

Our approach encompasses Yoneda products, certain products of Eckmann and
Hilton, and some new products as well.

Hilton and Rees [4] considered the group of natural transformations from
Ext?(B, —) to Ext?(A4, —). In a similar vein we apply the products above to de-
scribe natural transformations involving all the derived functors of Hom. Specif-
ically, we show that the group of natural transformations from {H,,; ,(B, —)}cz
to {H,(A, —)}pez is isomorphic to [],(A, B), and dually for J],(A4, B).

Of particular interest is the case R=7ZG, G a finite group, for then we calcu-
late [1,(A4, B) = TorZ% (A, B) and the products above give a product operation
on the homology (and cohomology) of G with coefficients in A.

E n
H,,(A,B)={ xt"(4,B) n>0

1. Complete resolutions.

DEFINITION. A complete resolution X is an exact complex, indexed by all the
integers, with differential raising degree and such that X' is projective for i <0,
X" injective for i > 0.

We may avoid negative indices (in some part) by setting X' = X_;, all integers i.

DEFINITION. A complete resolution for A is a complete resolution X admitting
a factorization by a surjective e and an injective j as shown below, with je = d,.

---—>X2—>X]—>X0—>X]—>X2—>---

A
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DEFINITION. If X is a complete resolution for A and n=0, then [I,(B,A)=
H,_,Hom(B, X) and II,(A, B)=H"Hom(X, B).

Notice that JIo(B, A) is the group of homomorphisms from B to A, modulo
those factoring through a projective mapping onto A. In particular, we can
describe JI(B, A) solely by reference to a projective resolution of A.

Likewise, [1o(A4,B) is the group of homomorphisms from A4 to B, modulo
those which factor through an injective containing 4. And we may compute
I1(A, B) solely by means of an injective resolution.

Of course for n>0, H"*'Hom(B, X )= Ext"(B,A) and H, Hom(X, B) =
Ext"(A, B).

2. Comparison theorems.

DEFINITION. If f:d*(X*)—>d®(Y*®) for some « and 8 in Z, a left ladder
over f is a collection of homomorphisms {f};<. with degree 8 —« forming a
morphism of complexes. That is, such that f'*!'d'=d'*#~*f" all i<a, and
fd*=d°fe.

DEFINITION. A homotopy of left ladders {f'}; -, and {g'}; < over

Sd*(X™) ~d*(X")

is a collection of homomorphisms {o' },<a+,w1tha X o yB-e"1+ <, and
ot d*(X*) - Y?, such that fi—g' =dPf~*"Higiy s/ *1q’, all i <o,

The homotopy type of a left ladder over fis determined by f’; but we shall find
it useful to work with the entire ladder. Now if X — A is a projective resolution
of A and Y — B is an acyclic complex, then any f: A —» B induces a morphism of
complexes F: X — Y. Any two such F are homotopic.

PROPOSITION 1. For any f:d*(X®) - d®(Y?) with « <0, there exists a left
ladder over f, unique up to homotopy.

Proof. Since o <0, X' is projective for i < a.
. — Xa—l > X% d(x(Xa)
S
o YR YR oo dB(yB)_
Dually, define a right ladder over f: d*(X*) - dP(Y®) to be { f'};- .+ making
the following diagram commute.

da(Xa) — X()l+1 — X(x+2 > ees
lf ifa+1 lfcx+2
d¥(YP) » YPH! o YR¥2

DEFINITION. A homotopy of r:ght ladders {f}iso+1 and {g8'}isa+1 OVeEr
f:d(X*)>d*(YP) is (6W}isqe1, 01 X o YVith—a—l for i=a+2, and

ot x ot gh(yP) such that ff—g'=d A * 1646/ *'d" all i >a+1 and
f"“—g"‘“ =jo* 4+ 0%+2@* ¥ in the following diagram.
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a+l a+2 (t+3
gat2 ga+3
dﬁ(Yﬂ) — YB+1 YB+2 . Y8+3

Dual to Proposition 1 we have the following.

PROPOSITION 1’. For any f:d%X%) —d®(Y?), B3=0, there exists a right
ladder over f, unique up to homotopy.

Proof. Since =0, d*(Y?)»> YP+' 5 yB+2_, ... is an injective resolution.

Now it is appropriate to apply both Propositions 1 and 1’ to a map
f:d*(X %) - d®(Y?); for the composition X ¢ > d“(X ) - d?(Y?) > Y repre-
sents an element of Ext? “%A, B).

In particular we define a complete ladder of degree n from X to Y to be
(fYicz, f11X">Y"" commuting with the differentials of X and Y.

PROPOSITION 2. For complete resolutions X and Y, and f:X“—Y" such
that fd* '=0=dPf, a <0 and B=1, there is a complete ladder from X to Y
with d?~1f% = f= f**1d* and degree 8 —a —1, unique up to homotopy.

Proof. fd*~'=0=d"?f implies that for some F:d“(X*)—»d? " (Y?"") the
composition X ®—» d*(X*) > d(Y?)»—>YF is f.

N on—l > X X(r+l - Xa+2 —- e

€

1
] o
I I d(!(X(X) I l
| | l | !
| | 1 I
i A7) E
} | o/ N }

> YB-2 , yb-t YB > YR+l .

By Propositions 1 and 1, f determines a complete ladder with- degree
B—a—1, {f)iez. Clearly d?~'f*=f=fo*1qd°,

To show uniqueness, suppose that { gi }iez is a ladder from X to Y such that
both triangles in the square below commute.

X(x+l
al\lga+l
L

Now d®~'g* = f so by the uniqueness statement of Proposition 1 {f° Ji<q and
{g')i<q are homotopic left ladders. Similarly, by Proposition 1, (f}isq is
homotopic to ('} izari-

Let (o Ji<a+1 be @ homotopy of (i< and (8icas [T },>,¥+, a homotopy
of {f Jiza+1 and {g'}i>a+1- The union of {6'};<, and {7'};5 .+, would be a
homotopy of complete ladders—if there existed a suitable map X “*!' - y#-1
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We contend that ¢%*tle =0=j7%"!, for a suitable choice of ¢/, i<a+1 and
7' i>a+2; hence it is possible to choose X **! - Y#~'to be the zero map.

Indeed o**'e = 0 for some homotopy, since 6% *'e = (f*—g*)— d?~2¢* which
becomes zero on composition with ¢. Hence X projective and ¢%'e(X %) <
d(Y®~2%) implies 0®*'e factors through Y#~2, say by 5: X*—>Y?~2 Replace 0
by (6%+s) and ¢**! by zero. Dually j7¢*! factors through X **2 50 {7'};2 o11
may be replaced by a homotopy {T‘i}i>a+1 with j7¢*!'=0.

Now we characterize Ext(A, B) by means of Proposition 2.

THEOREM 3. Let X be a complete resolution for A, Y a complete resolution
Sor B. Then for n >0, Ext"(A, B) is isomorphic to the set of homotopy classes of
complete ladders from X to Y with degree n.

Proof. Let S"(X,Y) be the set of homotopy classes of complete ladders from
X to Y with degree n. Use Proposition 2 to construct €: Ext (A4, B) - S"(X, Y).
To wit, for any cocycle 7: A —» Y"*!let 6([7]) be that element of S”(X, Y) deter-
mined by taking f equal to Xo— A — Y"*"!in Proposition 2.

o Xy > X —'X()\/X' - X? - ..

[ | : I
| | I | |
| | | A | I
! : I dll(Yli') l I
|
oo N
cee > Y2 y"! L yn —_, yn+! Yn+2 R

Notice also that S"(X, Y) is a functor of 4 and B, for each n=0. The func-
torial map induced by 4 — A is described by the following commutative diagram.
Let X be a complete resolution for 4 and [7] € Ext"(A, B).

— X'] —»)A(O ,\A’I — Xz -
| | I
! | \ / | I
I l A ' |
} | L 1 }
- X - X9 > A - X' -5 Xx? 5
; | l7 ! !
! L ey '
, | a"(Y" |
| Vf | |
- Yn—-] - Y” Yn+1 Yn+2 -

If {f'};cz belongs to 0[] and {g’};cz is constructed by appeal to Proposition
2, we define the functorial map S"(X,Y)— S"(X,Y) by sending [{f};cz] to
[{f'g'}icz]. This makes 6 natural in the first variable because { g/}, .z certainly
belongs to 6([r-g]) = Ext"(g, B)([7]).

Likewise in the second variable, if B— B, and Yis a complete resolution for B,
define S"(X, Y) - 8"(X, Y) as composition with a ladder of degree zero induced

by A, from Y to Y.
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We inspect the connecting homomorphisms; let 0 > A’—>A— A" -0 be an
exact sequence.

LEMMA 1. For any two complete resolutions X' of A’ and X" of A",
(X! + X[ }icz forms a complete resolution of A with the differential given below.

Proof. We must choose the differentials.

AT /
/ 1/ /
/ / /
X{+X1”/ Xe+Xi A X +X74 X ,+X",
/y /
/ /
//9_1 of A //0_1
/
/ // \ /
. —> { — 0 — X7 — X7, —_— e

The maps ¢ and p result from projectivity of Xg and injectivity of X”,. The
maps 0;, i € Z are constructed inductively by projectivity of X/, i =0 and injec-
tivity of X/ for i < —2. Choosing d, =d},+ 0, +d,;, then by [1] the middle row is
a splice of an injective with a projective resolution of A4, hence a complete resolu-
tion for A. [Note that 6, =0.]

Now consider the complete ladders with degree zero H ={X/ > X/ + X/ }icz
and K ={X/+ X} - X/};cz, and the ladder with degree one {0;};cz= L. Com-
position with A, K and L gives a triangle:

Ext(A”,C) — Ext(A, C)
N 'd
Ext(A’, C)
THEOREM 4. The triangle above expresses the standard long exact sequence in
Ext(—, C) induced by 0 - A’ > A—-> A" - 0.

Proof. Let Z be a complete resolution for C; we show that the standard con-
necting homomorphism is composition with L.
If

[T]EEth(A’a C), T:X;I—)C9 j;;’+|:XIIII+I—’XI,1+|+XIII'+]!
and w,: X,+X; =X, then 6([7])=[r7,dps1Jj7+1] in Ext"T!(A”, C). But
Tndps1Jne1=Tp(dns1+0p 1+ di11)J541=0,4150 8([7]1) =[76,41]. Applying the
0 of Theorem 3, 0[7]~ 0[7]-L expresses S™(X’, Z) » S"T1 (X", Z) as claimed.
- Xpy2 > Xpgp > Xy o e

{ S i
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In view of the preceding discussion we will identify S"(X, Y) and Ext"(A4, B).

3. Eckmann-Hilton groups. Suppose that 0 -4’5 A4 —> A" -0 is an exact
sequence. Constructing complete resolutions X’, X and X” per the Lemma of
the preceding section, we notice that 0 - X’ —» X —» X” -0 is a split exact se-
quence of complexes. Hence 0 - Hom(B, X’) - Hom(B, X) - Hom(B, X") -0
and 0 - Hom(X”, B) -» Hom(X, B) - Hom (X", B) — 0 are split exact sequences
of complexes. Thus upon taking homology there result two long exact sequences,
as follows.

-+ = (B, A") - 11o(B, A') - 1o(B, A) » o(B, A”)

1
W - Ext'(B,A") - -

-+ > I11(A’, B) > T1o(A”, B) - [1o(A4, B) - [1o(A’, B)

2
@ — Ext!(4”,B) — ---

Since I1,(B, P)=0 for P projective, n =0, we may conclude by [1, Theorem
5.1, p. 46] that the functors H,(B, —), ne Z, are satellites of [Io(B, —). Dually
the functors K,(—, B), neZ, are satellites of [1o(—, B).

THEOREM 3. If X is a complete resolution for A and Y is a complete resolu-
tion for B, and n =0, then [1,(A, B) is isomorphic to the set of homotopy classes
of left ladders over maps A - d,(Y").

Proof. Given te[l,(A,B), t=[r] for some 7: A—d,(Y,). Then Proposi-
tion 1 asserts that 7 determines a homotopy class of left ladders over 7 with

degree —n, say [{fi}i>o].
> Xy > X > X
| l ' \
D
l iT
I I I
I I
{

Xl

| Wd.(.)

| Y/ RN

> Yo > Y > Y, » Y,

To check that [7]~ [{f;}i=0] is well-defined, suppose [7]=0; so 7= A#h for
some h:A—Y,. In this case we may choose f,=he where e: Xo—> A. Then
Jodi=hed; =0 implies that we may choose f;=0 all i=1. Such an {f};-¢ is
homotopic to zero. Additivity is clear.

Conversely, a left ladder {f;};~( over some f: A —d,(Y,) gives an element of
I1,(A, B), namely [A—d,(Y,) - Y,-]. Suppose {f}i=o is homotopic to zero,
so in particular fo=d, 00+ oe forsome gy: Xg— Y, ando: A—Y,. Then jf=
d,o, for jfe=d, fo=d,(d,, 00+ 0€e)=d,oeand eis onto. Thus [{fi}i>ol—[Jf]
is a well-defined inverse to [7]~ [{fi}i=0] and the theorem is established. In pre-
cisely the same manner we find a characterization of ], (A, B).
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THEOREM 6. If n =0, [1,(A, B) is isomorphic 1o the set of homotopy classes
of right ladders over maps d"(X") - B, for X a complete resolution of A and Y a
complete resolution of B.

. Xn N Xn+l N Xn+2 e

\/'

d "(X
4. Composition of ladders. Fix three complete resolutions X, Y and Z, com-

plete resolutions for 4, B and C respectively, F: X — Y a ladder with degree m,
and G: Y- Z a ladder with degree n.

|
I
|
|
I
'

Y: o ...

THEOREM 7. If F={fi}icz and G =1{g;};cz are complete ladders of degrees
m and n respectively, then GF is a complete ladder of degree m+n. Moreover,
Jor m>0 and n>0, ([G],[F])~|[GF] describes a natural transformation
Ext"(B, C) x Ext™(A, B) - Ext"""™(A, C), namely Yoneda product.

Proof. Clearly GF is a complete ladder. To show that composition of lad-
ders respects homotopy equivalence, we show that [G] =0 implies [GF]=0 and
[F]1=0 implies [GF]=0.

> X > X > Xig oo
S ! !

= Yyt &> Yiewm & Yiogo o
! i !

e Zi—m-—lH—l - Zi—m—n - Zi—m—n—l e

(a) Consulting the diagram, if [G] =0 there is a homotopy {7;};cz such that
gi=dj_py17j+7;1d; for all jeZ. In particular

gi—m.f;'=di—m—n+l(7'f—mf;')+(Ti—m—1ﬁ—l)dh

SO {7i_m fi}iez sShows [GF]=

(b) Similarly, if there exists {o0;};cz With f;=d;_,,+10;+0i_1d;, all i e Z, then
{€i_m+10i}iez IS @ homotopy showing [GF] =

Thus ([G], [F])~ [GF] gives a function

Ext"(B, C) x Ext"(A, B) — Ext"*"(A4, C),

which we remark is additive in both [G] and [F].

To verify naturality, suppose 4: A — A and let X be a complete resolution for
A. By Proposition 2, # induces a unique [{#;};z] with degree zero, and as noted
earlier Ext(As, —) is composition with {#;};-z. Thus the following diagram illus-
trates naturality in A.
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e XH—I e Xi - Xr‘—l -
! ! !

= X - X > Xy o e
l ! !

o> Yy = Yo, o> Y, o -
! ! !

c > Licmentt = Lig—n > Li_gy_p—y > e

Naturality in C follows in the same manner.

Finally to see that ([G], [F])+~ [GF] expresses the Yoneda product, we prove
commutativity in the following square, where the vertical isomorphisms come
from Theorem 3 and Y means Yoneda product.

SNY, Z)xS™X,Y) - S"t"™X, Z)
! |
Ext™(B, C) x Ext”(A, B) > Ext"*"™(A, C).

Consider the following portion of the complete ladders G and F.

T Apaem T Appm—-1 T 0 e Xy > Xy > -
fn—!—m fn+m—l l fm -/Im—l
‘ |
. — Yn — Yn_! —> e ces —» YO — Y > e
En 8n—1 Lo (AA ‘L{I
' B
. — ZO — 7z > eee e > 7N Zn+| — .

N

.- Ym—l - Ym N Ym+l > e

2m—l g L,m+]

1
N Zn+m——l — Zn+/n N Zn+/n+l b eee

Under the isomorphism of Theorem 3, ([G],[F]) corresponds to
(lg'ks), [f'k4]) which equals ((—1)"[ecgn], (—1)"[ep f]) in Ext"(B,C)x
Ext™(A, B). By [5, Exercise 2, p. 91], the Yoneda product of these two classes is
(—1)"*"[ec &n fu+m], which equals [g”*' f'k4]in Ext"*"(A4, C). But [g"*' f'k ]
maps to [GF] under the isomorphism of Theorem 3 gives the result.
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REMARKS. (i) Since the connecting homomorphism Ext’ — Ext'*!is given by
a composition of ladders, ([G], [F])~ [GF] is compatible with the connecting
homomorphisms.

(ii) Theorem 7 constructs maps (natural with respect to A and C)
S"Y,Z)xS™X,Y)—»S"t"™(X, Z) for any integers n and m and any X, Yand Z.

We examine ([G], [F])~ [GF] for non-positive m or n.

(I) Suppose m=<0 and n>0. If G={g;}icz, then [G] is in Ext"(B, C).

If F={f}i=,, some z<0, then [F]=[{f;);=0] belongs to II_,,(A4, B). Then
(IG1, [F1) = [GF] = [{gi-m fi)i=0] gives a new product

Ext"t"™(A,C) ifn+m>0

Ext"(B, C)x II-(4, B) - { - (uem (A, C) if n+m=0

. CO T (. () X' -

A/
l
/d(Y—m)
T —m+2 > Yo > Yo, _—“‘—’\ —-m—-1
! ! 3 !
> Z pens2 > Lot > Loy — Loy >

Proof of invariance with respect to homotopy is omitted throughout.

REMARK. Had the F above been a right ladder, F={f"};> _m+1, iF] would
have belonged to [1_,,(4, B). But {g’ f="*i: x ~m+i ,y’ Z"*},_ | cannot be

extended to the left by means of Proposition 1. Hence the most we would have
obtained is the unsatisfactory

Ext"(B, C) X I[1_.,(A4, B) — I1_.u(A4,d"(Z")).

Similarly, changing G to a left ladder in Case II below is unprofitable.

(I1) Suppose m >0 and n<0.

An F={f}icz represents [F] in Ext"(4,B). If G= [g‘],>z, Z<-—-n+l,
then [G]=[{g'}i=_n41] belongs to [1_,(B,C). Thus ([G],[F])~[GF]=
[(g~ "t fn—m+iy._|] gives a product

Ext”"*"A,C) if m+n>0

_ (B, C)x Ext"(A, B) ~>
H ( ) XA )= {H (m+n)(A C) if m+n=<0.

N X~n—m—| N X—n—m — X-—n—m+1 ..
1) 1] !

N Y—n—l - Y—n N Y—n+l s e
i)

Z! — A — Z! - ..
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(III) F=\{fi}i=- and G={g;}i>s, m<0and n=<0. If r and s are non-positive
consider {fi};=oand {g};=o-

- > X() Xl
\A
l
/d—m(y—m)
> Yoy, ——— Y o e e - Yo\—:*"/yl
B
)
d_.(Z_,)
» / \
> Ly ————> Z—m——n—l > s e > L g, —— Z_,_

Assuming m <0 and »n <0, the diagram above showing

([GL IFD) =~ Ug-m+ifili=o]
illustrates

1___.[-—n(B, C)x H—m(A: B) — H—n—m(As ).

(IV) F={f"};», and G={g'}in,. If r<—m+1 and s<—n+1, m=0 and
n <0, the following product exists. '

. - X—m+l — X—m+2 > eee —» X—n—m+l = X—n—m+2 e
d—m(X —I?l)
1
B
. —’\Yl - Y2 - . - Y-—n+l - Y—n+2 -
d—n(Y—-ﬂ)
)
C\

I1_.(B, C)x I1-u(A4, B)—> I1_,_ (A, C).
We record the observations of (1)-(1V).
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PROPOSITION 8. [I(B, B) and [1(B, B) are given graded ring structures by
the products of (111) and (1V) respectively.

Proof. The identity for I1(B, B) is 1 =[{idy,};>o]. Likewise [{idy,}; <] is the
identity for 1] (B, B).

Recall that
Ext"(B,C) for n>0
II-,.(B,C) for n<0.

LEMMA 9. H(B, C) is a left Ext(C, C)-module and a right 11(B, B) module.
LEMMA 9’. K(B, C) is a right Ext(B, B) module and a left T1(C, C) module.
REMARK. The products (III) and (IV) were known to Eckmann and Hilton.

H,(B,C)= {

5. Natural transformations. We have established maps
Hy(B, C)yx H,(A, B) = Hp 1 4(A4, C);
thus any [¢] in [],(A4, B) gives an element of [{H,,, ,(B, —)},cz, {H,(A4, —=)}pez]-

THEOREM 10. The only natural transformations of graded functors from
{H,(B, =)}pez to {H,(A, —)},cz lowering degree by q [q=0] are multiplica-
tion on the right by elements of 11,(A, B). That is,

[{Hp+q(B: —)}peZa {Hp(A: —)}peZ] = H(;(A, B) for q=0.

Proof. (i) Let
n: Ho(B, —) > H_, (A, —)

be a natural transformation. We claim there is one and only one element
{np+q}peZ belonging to [{Hp+q(Bs _)}peZs [H,,(A, _)}peZ] with =17 Now
{H,(M, —-)}, <z is an exact connected sequence of covariant functors for any
module M. Also, H,,(M, P) =0 for P projective and n <0, and H,(M, Q) =0 for
Q injective and n > 0. Thus we may apply Proposition 5.2 of [1] with &y =1.

(i)
]._—_-[q(A:B) = [].:IO(Ba - )! Hq(A’ '—)]'
For [o]e [1,(A,B) and [7]e IIo(B, C), let 7l ([7]) =[71l0c]. We show that
n~ ng([idz]) is an inverse for ([o] Hn["]). First, since [idg][o]=][0o], [o] Hﬂm -
T]t[;a]([idg]) is the identity.
Conversely, we need n”B‘[‘dB}) =n; that is, for any [7] e [Io(B, C) that

[7]19s([id]) = nc(l7])
in I],(A4, C). Now 7: B — C induces the following commutative square.
Oo(B,B) 5 I1,(A,B)
l 1)
Ho(B, C) =5 T4, C)
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Chasing the diagram, nceIlo(B, T)([ldB])—nc([T])—Hq(A 7)np([idg]) =
[7]1ns8([idg]) as desired. Hence [o]~ {n,[,J,q]pE; is the isomorphism proving the
theorem. O]

REMARKS. (a) From the proof of (i) note that in fact
Hq(As B) = [Eti(Bs _)a I;I(]-—[)(A’ - )]
for any p >0 with g— p =0. More generally, Hilton and Rees [4] proved that
[Ext”(B, —), G]1=S,G(B), which we may rewrite as [H"(B, —), H/(A, —)] =
HP(A, B) for any p>0, ¢ <0.
(b) It is interesting to note that Hilton and Rees also obtain the isomorphism
[Ext”(B, —), Ext/(A4, —)]=S""'I1,_1(4, B).

THEOREM 11. The only natural transformations of graded functors from
{Kp(—,A)pez to {Kp(—, B)}pez lowering degree by q, q =0, are multiplica-
tions on the left by elements of Hq(A B). That is,

[{ p+q(_aA)}peZ’ {Kp(—aB)]peZ] = Hq(Aa B)bylol- {Ialﬂp+{/,pez'
Proof. Proof is entirely dual to that of Theorem 10.
6. Il:(Z, A)=Tor?%(Z, A) for i=2. A natural transformation f:7 - U
induces the following commutative diagram.
LoT - T - R°T
} 1/ !
LoU - U - R°U
Let f be the map induced from L,7T to R°U. Then the sequence of functors
-« L, T, L, T, kernel (f), cokernel(f), R'U, R?U, ---

is the derived sequence of f. It is easily seen that the derived sequence of a map is
an exact connected sequence of functors [1, Chapter V].

Henceforth let the ring R be ZG, for G a finite group, and / the augmen-
tation ideal. If N=3,.c x, N induces a map N*:A/IA - AY for each G-
module A. Denote the derived sequence of N*: Tor4¢(Z, A) — Exts(Z, A) by
{H'(G, A)};cz. In particular we have

Ext,c(Z, A) if i>0

AUG.A) = Coker(A/IA— A%) = A°/NA ifi=0
’ Ker(A/IA — A%) = (N—torsion(A))/IA if i=—1
Tor?S%(Z, A) if i< —1.

PROPOSITION 12. H' =S, H'*! all integers i.

Proof. Let 0 - R—P—-A—0 be a projective presentation of A. Then
S H*Y(G, A)=kernel(H'*(G,R) - H'*\(G, P))=H'"*(G,R)=H'(G, A).

However {H;(Z,A)};c7z is also a sequence of satellites with H;(Z,A) =
Extlg(Z, A) for l>0 So {H(Z,A)}icz={Hi{(Z,A)};cz. In particular we see
that J1;(Z, A)=Tor%%(Z, A) for all i =2.
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