HOMOLOGY PRODUCTS AND THE ECKMANN-HILTON GROUPS

Kenneth Howell

Let R be a fixed ring with unit; we shall work in the category of left R-modules. Of course, all results below are equally valid in any abelian category with enough injectives and projectives.

The Eckmann-Hilton groups, introduced by those authors in [2] and [3], comprise the left derived functors of Hom. Our purpose is to define product operations among the various (both left and right) derived functors of Hom. In particular, for any A and B let

$$H_n(A,B) = \begin{cases} \operatorname{Ext}^n(A,B) & n > 0 \\ \underline{\Pi}_{-n}(A,B) & n \le 0 \end{cases} \text{ and } K_n(A,B) = \begin{cases} \operatorname{Ext}^n(A,B) & n > 0 \\ \overline{\Pi}_{-n}(A,B) & n \le 0. \end{cases}$$

We obtain bilinear maps natural in A and C and commuting with the connecting homomorphisms:

$$H_p(B,C) \times H_q(A,B) \to H_{p+q}(A,C)$$
 unless $p \le 0$ and $q > 0$

$$K_p(B, C) \times K_q(A, B) \rightarrow K_{p+q}(A, C)$$
 unless $p > 0$ and $q \le 0$.

Our approach encompasses Yoneda products, certain products of Eckmann and Hilton, and some new products as well.

Hilton and Rees [4] considered the group of natural transformations from $\operatorname{Ext}^p(B,-)$ to $\operatorname{Ext}^q(A,-)$. In a similar vein we apply the products above to describe natural transformations involving all the derived functors of Hom. Specifically, we show that the group of natural transformations from $\{H_{p+q}(B,-)\}_{p\in\mathbb{Z}}$ to $\{H_p(A,-)\}_{p\in\mathbb{Z}}$ is isomorphic to $\underline{\Pi}_q(A,B)$, and dually for $\overline{\Pi}_q(A,B)$.

Of particular interest is the case $R = \mathbb{Z}G$, G a finite group, for then we calculate $\prod_{n}(A,B) \cong \operatorname{Tor}_{n-1}^{\mathbb{Z}G}(A,B)$ and the products above give a product operation on the homology (and cohomology) of G with coefficients in A.

1. Complete resolutions.

DEFINITION. A complete resolution X is an exact complex, indexed by all the integers, with differential raising degree and such that X^i is projective for $i \le 0$, X^i injective for i > 0.

We may avoid negative indices (in some part) by setting $X^i = X_{-i}$, all integers i.

DEFINITION. A complete resolution for A is a complete resolution X admitting a factorization by a surjective ϵ and an injective j as shown below, with $j\epsilon = d_0$.

$$\cdots \to X_2 \to X_1 \to X_0 \to X^1 \to X^2 \to \cdots$$

Received June 28, 1983. Revision received April 25, 1984. Michigan Math. J. 32 (1985).

DEFINITION. If X is a complete resolution for A and $n \ge 0$, then $\underline{\Pi}_n(B, A) = H_{n-1} \operatorname{Hom}(B, X)$ and $\overline{\Pi}_n(A, B) = H^n \operatorname{Hom}(X, B)$.

Notice that $\underline{\Pi}_0(B,A)$ is the group of homomorphisms from B to A, modulo those factoring through a projective mapping onto A. In particular, we can describe $\underline{\Pi}(B,A)$ solely by reference to a projective resolution of A.

Likewise, $\overline{\Pi}_0(A, B)$ is the group of homomorphisms from A to B, modulo those which factor through an injective containing A. And we may compute $\overline{\Pi}(A, B)$ solely by means of an injective resolution.

Of course for n > 0, $H^{n+1} \operatorname{Hom}(B, X) = \operatorname{Ext}^n(B, A)$ and $H_n \operatorname{Hom}(X, B) = \operatorname{Ext}^n(A, B)$.

2. Comparison theorems.

DEFINITION. If $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$ for some α and β in \mathbb{Z} , a *left ladder over f* is a collection of homomorphisms $\{f^i\}_{i \leq \alpha}$ with degree $\beta - \alpha$ forming a morphism of complexes. That is, such that $f^{i+1}d^i = d^{i+\beta-\alpha}f^i$ all $i < \alpha$, and $fd^{\alpha} = d^{\beta}f^{\alpha}$.

DEFINITION. A homotopy of left ladders $\{f^i\}_{i \leq \alpha}$ and $\{g^i\}_{i \leq \alpha}$ over

$$f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(X^{\beta})$$

is a collection of homomorphisms $\{\sigma^i\}_{i \leq \alpha+1}$ with $\sigma^i : X^i \to Y^{\beta-\alpha-1+i}$, $i \leq \alpha$, and $\sigma^{\alpha+1} : d^{\alpha}(X^{\alpha}) \to Y^{\beta}$, such that $f^i - g^i = d^{\beta-\alpha-1+i}\sigma^i + \sigma^{i+1}d^i$, all $i \leq \alpha$.

The homotopy type of a left ladder over f is determined by f; but we shall find it useful to work with the entire ladder. Now if $X \to A$ is a projective resolution of A and $Y \to B$ is an acyclic complex, then any $f: A \to B$ induces a morphism of complexes $F: X \to Y$. Any two such F are homotopic.

PROPOSITION 1. For any $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$ with $\alpha \leq 0$, there exists a left ladder over f, unique up to homotopy.

Proof. Since $\alpha \le 0$, X^i is projective for $i \le \alpha$.

$$\cdots \to X^{\alpha-1} \to X^{\alpha} \twoheadrightarrow d^{\alpha}(X^{\alpha})$$

$$\downarrow^{f}$$

$$\cdots \to Y^{\beta-1} \to Y^{\beta} \twoheadrightarrow d^{\beta}(Y^{\beta}).$$

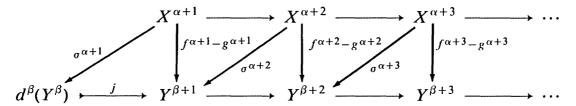
Dually, define a right ladder over $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$ to be $\{f^i\}_{i \geq \alpha+1}$ making the following diagram commute.

$$d^{\alpha}(X^{\alpha}) \mapsto X^{\alpha+1} \to X^{\alpha+2} \to \cdots$$

$$\downarrow^{f} \qquad \downarrow^{f^{\alpha+1}} \qquad \downarrow^{f^{\alpha+2}}$$

$$d^{\beta}(Y^{\beta}) \mapsto Y^{\beta+1} \to Y^{\beta+2} \to \cdots$$

DEFINITION. A homotopy of right ladders $\{f^i\}_{i \geq \alpha+1}$ and $\{g^i\}_{i \geq \alpha+1}$ over $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$ is $\{\sigma^i\}_{i \geq \alpha+1}$, $\sigma^i: X^i \to Y^{i+\beta-\alpha-1}$, for $i \geq \alpha+2$, and $\sigma^{\alpha+1}: X^{\alpha+1} \to d^{\beta}(Y^{\beta})$ such that $f^i - g^i = d^{i+\beta-\alpha-1}\sigma^i + \sigma^{i+1}d^i$ all $i > \alpha+1$ and $f^{\alpha+1} - g^{\alpha+1} = j\sigma^{\alpha+1} + \sigma^{\alpha+2}d^{\alpha+1}$ in the following diagram.



Dual to Proposition 1 we have the following.

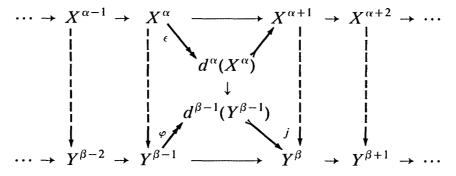
PROPOSITION 1'. For any $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$, $\beta \ge 0$, there exists a right ladder over f, unique up to homotopy.

Proof. Since $\beta \ge 0$, $d^{\beta}(Y^{\beta}) \mapsto Y^{\beta+1} \to Y^{\beta+2} \to \cdots$ is an injective resolution. Now it is appropriate to apply both Propositions 1 and 1' to a map $f: d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta})$; for the composition $X^{\alpha} \to d^{\alpha}(X^{\alpha}) \to d^{\beta}(Y^{\beta}) \to Y^{\beta+1}$ represents an element of $\operatorname{Ext}^{\beta-\alpha}(A,B)$.

In particular we define a *complete ladder* of degree n from X to Y to be $\{f^i\}_{i\in\mathbb{Z}}, f^i: X^i \to Y^{n+i}, \text{ commuting with the differentials of } X \text{ and } Y.$

PROPOSITION 2. For complete resolutions X and Y, and $f: X^{\alpha} \to Y^{\beta}$ such that $fd^{\alpha-1} = 0 = d^{\beta}f$, $\alpha \le 0$ and $\beta \ge 1$, there is a complete ladder from X to Y with $d^{\beta-1}f^{\alpha} = f = f^{\alpha+1}d^{\alpha}$ and degree $\beta - \alpha - 1$, unique up to homotopy.

Proof. $fd^{\alpha-1} = 0 = d^{\beta}f$ implies that for some $F: d^{\alpha}(X^{\alpha}) \to d^{\beta-1}(Y^{\beta-1})$ the composition $X^{\alpha} \to d^{\alpha}(X^{\alpha}) \to d(Y^{\beta}) \to Y^{\beta}$ is f.



By Propositions 1 and 1', f determines a complete ladder with degree $\beta - \alpha - 1$, $\{f^i\}_{i \in \mathbb{Z}}$. Clearly $d^{\beta - 1}f^{\alpha} = f = f^{\alpha + 1}d^{\alpha}$.

To show uniqueness, suppose that $\{g^i\}_{i\in\mathbb{Z}}$ is a ladder from X to Y such that both triangles in the square below commute.

$$X^{\alpha} \to X^{\alpha+1}$$

$$g^{\alpha} \downarrow \qquad \downarrow g^{\alpha+1}$$

$$Y^{\beta-1} \to Y^{\beta}$$

Now $d^{\beta-1}g^{\alpha} = f$ so by the uniqueness statement of Proposition 1 $\{f^i\}_{i \leq \alpha}$ and $\{g^i\}_{i \leq \alpha}$ are homotopic left ladders. Similarly, by Proposition 1', $\{f^i\}_{i \geq \alpha}$ is homotopic to $\{g^i\}_{i \geq \alpha+1}$.

Let $(\sigma^i)_{i \leq \alpha+1}$ be a homotopy of $\{f^i\}_{i \leq \alpha}$ and $\{g^i\}_{i \leq \alpha}$, $\{\tau^i\}_{i \geq \alpha+1}$ a homotopy of $\{f^i\}_{i \geq \alpha+1}$ and $\{g^i\}_{i \geq \alpha+1}$. The union of $\{\sigma^i\}_{i \leq \alpha}$ and $\{\tau^i\}_{i \geq \alpha+2}$ would be a homotopy of complete ladders—if there existed a suitable map $X^{\alpha+1} \to Y^{\beta-1}$.

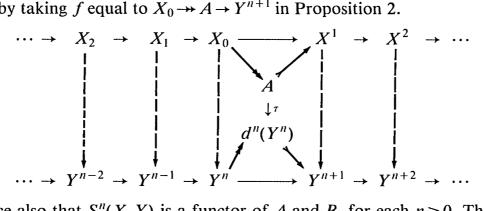
We contend that $\sigma^{\alpha+1} \epsilon = 0 = j\tau^{\alpha+1}$, for a suitable choice of σ^i , $i \le \alpha+1$ and τ^i , $i \ge \alpha+2$; hence it is possible to choose $X^{\alpha+1} \to Y^{\beta-1}$ to be the zero map.

Indeed $\sigma^{\alpha+1}\epsilon = 0$ for some homotopy, since $\sigma^{\alpha+1}\epsilon = (f^{\alpha}-g^{\alpha})-d^{\beta-2}\sigma^{\alpha}$ which becomes zero on composition with φ . Hence X^{α} projective and $\sigma^{\alpha+1}\epsilon(X^{\alpha})\subseteq d(Y^{\beta-2})$ implies $\sigma^{\alpha+1}\epsilon$ factors through $Y^{\beta-2}$, say by $s:X^{\alpha}\to Y^{\beta-2}$. Replace σ^{α} by $(\sigma^{\alpha}+s)$ and $\sigma^{\alpha+1}$ by zero. Dually $j\tau^{\alpha+1}$ factors through $X^{\alpha+2}$ so $\{\tau^i\}_{i\geq \alpha+1}$ may be replaced by a homotopy $\{\hat{\tau}^i\}_{i\geq \alpha+1}$ with $j\hat{\tau}^{\alpha+1}=0$.

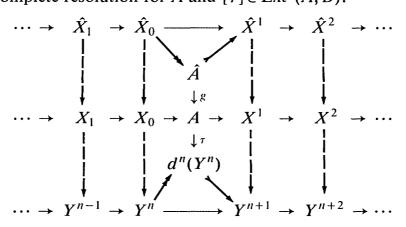
Now we characterize Ext(A, B) by means of Proposition 2.

THEOREM 3. Let X be a complete resolution for A, Y a complete resolution for B. Then for n > 0, $\operatorname{Ext}^n(A, B)$ is isomorphic to the set of homotopy classes of complete ladders from X to Y with degree n.

Proof. Let $S^n(X, Y)$ be the set of homotopy classes of complete ladders from X to Y with degree n. Use Proposition 2 to construct $\theta \colon \operatorname{Ext}^n(A, B) \to S^n(X, Y)$. To wit, for any cocycle $\tau \colon A \to Y^{n+1}$ let $\theta([\tau])$ be that element of $S^n(X, Y)$ determined by taking f equal to $X_0 \to A \to Y^{n+1}$ in Proposition 2.



Notice also that $S^n(X, Y)$ is a functor of A and B, for each $n \ge 0$. The functorial map induced by $\hat{A} \to A$ is described by the following commutative diagram. Let \hat{X} be a complete resolution for \hat{A} and $[\tau] \in \operatorname{Ext}^n(A, B)$.



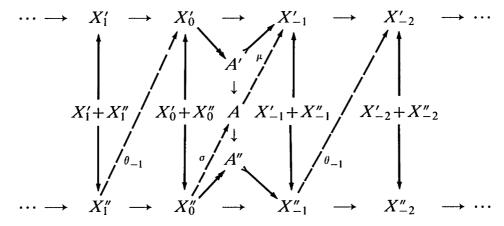
If $\{f^i\}_{i \in \mathbb{Z}}$ belongs to $\theta[\tau]$ and $\{g^i\}_{i \in \mathbb{Z}}$ is constructed by appeal to Proposition 2, we define the functorial map $S''(X, Y) \to S''(\hat{X}, Y)$ by sending $[\{f^i\}_{i \in \mathbb{Z}}]$ to $[\{f^ig^i\}_{i \in \mathbb{Z}}]$. This makes θ natural in the first variable because $\{f^ig^i\}_{i \in \mathbb{Z}}$ certainly belongs to $\theta([\tau \circ g]) = \operatorname{Ext}''(g, B)([\tau])$.

Likewise in the second variable, if $B \to \hat{B}$, and \hat{Y} is a complete resolution for \hat{B} , define $S^n(X, Y) \to S^n(X, \hat{Y})$ as composition with a ladder of degree zero induced by h, from Y to \hat{Y} .

We inspect the connecting homomorphisms; let $0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$ be an exact sequence.

LEMMA 1. For any two complete resolutions X' of A' and X'' of A'', $\{X'_i + X''_i\}_{i \in \mathbb{Z}}$ forms a complete resolution of A with the differential given below.

Proof. We must choose the differentials.



The maps σ and μ result from projectivity of X_0'' and injectivity of X_{-1}' . The maps θ_i , $i \in \mathbb{Z}$ are constructed inductively by projectivity of X_i'' , $i \ge 0$ and injectivity of X_i' for $i \le -2$. Choosing $d_n = d_n' + \theta_n + d_n''$, then by [1] the middle row is a splice of an injective with a projective resolution of A, hence a complete resolution for A. [Note that $\theta_0 = 0$.]

Now consider the complete ladders with degree zero $H = \{X'_i \to X'_i + X''_i\}_{i \in \mathbb{Z}}$ and $K = \{X'_i + X''_i \to X''_i\}_{i \in \mathbb{Z}}$, and the ladder with degree one $\{\theta_i\}_{i \in \mathbb{Z}} = L$. Composition with H, K and L gives a triangle:

$$\operatorname{Ext}(A'',C) \to \operatorname{Ext}(A,C)$$

$$\nwarrow \qquad \qquad \swarrow$$

$$\operatorname{Ext}(A',C)$$

THEOREM 4. The triangle above expresses the standard long exact sequence in $\operatorname{Ext}(-,C)$ induced by $0 \to A' \to A \to A'' \to 0$.

Proof. Let Z be a complete resolution for C; we show that the standard connecting homomorphism is composition with L.

If

$$[\tau] \in \operatorname{Ext}^{n}(A', C), \quad \tau : X'_{n} \to C, \quad j''_{n+1} : X''_{n+1} \to X'_{n+1} + X''_{n+1},$$

and $\pi_n: X'_n + X''_n \to X'_n$, then $\delta([\tau]) = [\tau \pi_n d_{n+1} j''_{n+1}]$ in $\operatorname{Ext}^{n+1}(A'', C)$. But $\pi_n d_{n+1} j'_{n+1} = \pi_n (d'_{n+1} + \theta_{n+1} + d''_{n+1}) j'_{n+1} = \theta_{n+1}$ so $\delta([\tau]) = [\tau \theta_{n+1}]$. Applying the θ of Theorem 3, $\theta[\tau] \mapsto \theta[\tau] \circ L$ expresses $S^n(X', Z) \to S^{n+1}(X'', Z)$ as claimed.

$$\cdots \to X_{n+2}'' \to X_{n+1}'' \to X_n'' \to \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \to X_{n+1}' \to X_n' \to X_{n-1}' \to \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$C \qquad \qquad \downarrow$$

$$\cdots \to Z_1 \to Z_0 \to Z_1' \to \cdots$$

In view of the preceding discussion we will identify $S^n(X, Y)$ and $\operatorname{Ext}^n(A, B)$.

3. Eckmann-Hilton groups. Suppose that $0 \to A' \to A \to A'' \to 0$ is an exact sequence. Constructing complete resolutions X', X and X'' per the Lemma of the preceding section, we notice that $0 \to X' \to X \to X'' \to 0$ is a split exact sequence of complexes. Hence $0 \to \operatorname{Hom}(B, X') \to \operatorname{Hom}(B, X) \to \operatorname{Hom}(B, X'') \to 0$ and $0 \to \operatorname{Hom}(X'', B) \to \operatorname{Hom}(X, B) \to \operatorname{Hom}(X', B) \to 0$ are split exact sequences of complexes. Thus upon taking homology there result two long exact sequences, as follows.

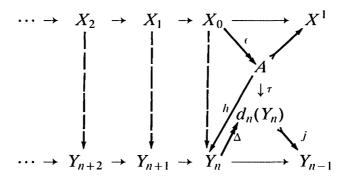
(1)
$$\cdots \to \underline{\Pi}_{1}(B, A'') \to \underline{\Pi}_{0}(B, A') \to \underline{\Pi}_{0}(B, A) \to \underline{\Pi}_{0}(B, A'')$$
$$\to \operatorname{Ext}^{1}(B, A') \to \cdots$$

(2)
$$\cdots \to \overline{\Pi}_1(A', B) \to \overline{\Pi}_0(A'', B) \to \overline{\Pi}_0(A, B) \to \overline{\Pi}_0(A', B) \\ \to \operatorname{Ext}^1(A'', B) \to \cdots$$

Since $\underline{\Pi}_n(B,P) = 0$ for P projective, $n \ge 0$, we may conclude by [1, Theorem 5.1, p. 46] that the functors $H_n(B,-)$, $n \in \mathbb{Z}$, are satellites of $\underline{\Pi}_0(B,-)$. Dually the functors $K_n(-,B)$, $n \in \mathbb{Z}$, are satellites of $\underline{\Pi}_0(-,B)$.

THEOREM 5. If X is a complete resolution for A and Y is a complete resolution for B, and $n \ge 0$, then $\prod_n (A, B)$ is isomorphic to the set of homotopy classes of left ladders over maps $A \to d_n(Y^n)$.

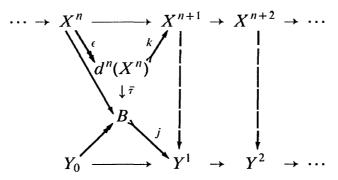
Proof. Given $t \in \underline{\prod}_n(A, B)$, $t = [\tau]$ for some $\tau: A \to d_n(Y_n)$. Then Proposition 1 asserts that τ determines a homotopy class of left ladders over τ with degree -n, say $[\{f_i\}_{i\geq 0}]$.



To check that $[\tau] \mapsto [\{f_i\}_{i\geq 0}]$ is well-defined, suppose $[\tau] = 0$; so $\tau = \Delta h$ for some $h: A \to Y_n$. In this case we may choose $f_0 = h\epsilon$ where $\epsilon: X_0 \to A$. Then $f_0 d_1 = h\epsilon d_1 = 0$ implies that we may choose $f_i = 0$ all $i \geq 1$. Such an $\{f_i\}_{i\geq 0}$ is homotopic to zero. Additivity is clear.

Conversely, a left ladder $\{f_i\}_{i\geq 0}$ over some $f:A\to d_n(Y_n)$ gives an element of $\underline{\Pi}_n(A,B)$, namely $[A\to d_n(Y_n)\to Y_{n-1}]$. Suppose $\{f_i\}_{i\geq 0}$ is homotopic to zero, so in particular $f_0=d_{n+1}\,\sigma_0+\sigma\epsilon$ for some $\sigma_0\colon X_0\to Y_{n+1}$ and $\sigma\colon A\to Y_n$. Then $jf=d_n\,\sigma$, for $jf\epsilon=d_n\,f_0=d_n(d_{n+1}\,\sigma_0+\sigma\epsilon)=d_n\,\sigma\epsilon$ and ϵ is onto. Thus $[\{f_i\}_{i\geq 0}]\mapsto [jf]$ is a well-defined inverse to $[\tau]\mapsto [\{f_i\}_{i\geq 0}]$ and the theorem is established. In precisely the same manner we find a characterization of $\overline{\Pi}_n(A,B)$.

THEOREM 6. If $n \ge 0$, $\overline{\prod}_n(A, B)$ is isomorphic to the set of homotopy classes of right ladders over maps $d^n(X^n) \to B$, for X a complete resolution of A and Y a complete resolution of B.



4. Composition of ladders. Fix three complete resolutions X, Y and Z, complete resolutions for A, B and C respectively, $F: X \to Y$ a ladder with degree m, and $G: Y \to Z$ a ladder with degree n.

THEOREM 7. If $F = \{f_i\}_{i \in \mathbb{Z}}$ and $G = \{g_i\}_{i \in \mathbb{Z}}$ are complete ladders of degrees m and n respectively, then GF is a complete ladder of degree m+n. Moreover, for m>0 and n>0, ([G],[F]) $\mapsto [GF]$ describes a natural transformation $\operatorname{Ext}^n(B,C) \times \operatorname{Ext}^m(A,B) \to \operatorname{Ext}^{n+m}(A,C)$, namely Yoneda product.

Proof. Clearly GF is a complete ladder. To show that composition of ladders respects homotopy equivalence, we show that [G] = 0 implies [GF] = 0 and [F] = 0 implies [GF] = 0.

(a) Consulting the diagram, if [G] = 0 there is a homotopy $\{\tau_i\}_{i \in \mathbb{Z}}$ such that $g_i = d_{i-n+1}\tau_i + \tau_{i-1}d_i$ for all $j \in \mathbb{Z}$. In particular

$$g_{i-m}f_i = d_{i-m-n+1}(\tau_{i-m}f_i) + (\tau_{i-m-1}f_{i-1})d_i$$

so $\{\tau_{i-m} f_i\}_{i \in \mathbb{Z}}$ shows [GF] = 0.

(b) Similarly, if there exists $\{\sigma_i\}_{i \in \mathbb{Z}}$ with $f_i = d_{i-m+1}\sigma_i + \sigma_{i-1}d_i$, all $i \in \mathbb{Z}$, then $\{g_{i-m+1}\sigma_i\}_{i \in \mathbb{Z}}$ is a homotopy showing [GF] = 0.

Thus $([G], [F]) \mapsto [GF]$ gives a function

$$Ext^n(B, C) \times Ext^m(A, B) \to Ext^{n+m}(A, C),$$

which we remark is additive in both [G] and [F].

To verify naturality, suppose $h: \hat{A} \to A$ and let \hat{X} be a complete resolution for \hat{A} . By Proposition 2, h induces a unique $[\{h_i\}_{i \in \mathbb{Z}}]$ with degree zero, and as noted earlier $\operatorname{Ext}(h, -)$ is composition with $\{h_i\}_{i \in \mathbb{Z}}$. Thus the following diagram illustrates naturality in A.

Naturality in C follows in the same manner.

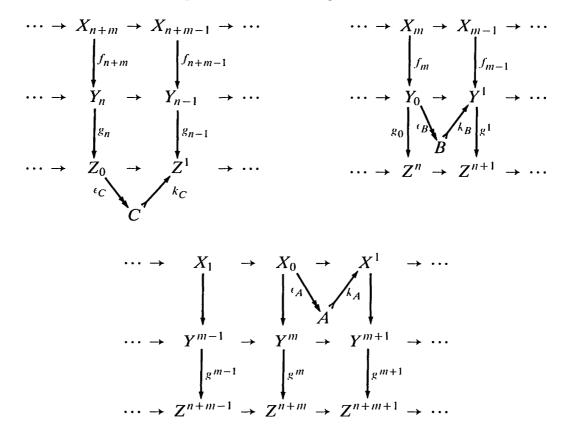
Finally to see that $([G], [F]) \mapsto [GF]$ expresses the Yoneda product, we prove commutativity in the following square, where the vertical isomorphisms come from Theorem 3 and Y means Yoneda product.

$$S^{n}(Y, Z) \times S^{m}(X, Y) \rightarrow S^{n+m}(X, Z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}^{n}(B, C) \times \operatorname{Ext}^{m}(A, B) \stackrel{Y}{\rightarrow} \operatorname{Ext}^{n+m}(A, C).$$

Consider the following portion of the complete ladders G and F.



Under the isomorphism of Theorem 3, ([G], [F]) corresponds to $([g^1k_B], [f^1k_A])$ which equals $((-1)^n[\epsilon_C g_n], (-1)^m[\epsilon_B f_m])$ in $\operatorname{Ext}^n(B, C) \times \operatorname{Ext}^m(A, B)$. By [5, Exercise 2, p. 91], the Yoneda product of these two classes is $(-1)^{n+m}[\epsilon_C g_n f_{n+m}]$, which equals $[g^{m+1}f^1k_A]$ in $\operatorname{Ext}^{n+m}(A, C)$. But $[g^{m+1}f^1k_A]$ maps to [GF] under the isomorphism of Theorem 3 gives the result.

REMARKS. (i) Since the connecting homomorphism $\operatorname{Ext}^i \to \operatorname{Ext}^{i+1}$ is given by a composition of ladders, $([G], [F]) \mapsto [GF]$ is compatible with the connecting homomorphisms.

(ii) Theorem 7 constructs maps (natural with respect to A and C) $S^{n}(Y, Z) \times S^{m}(X, Y) \to S^{n+m}(X, Z)$ for any integers n and m and any X, Y and Z. We examine $([G], [F]) \mapsto [GF]$ for non-positive m or n.

(I) Suppose $m \le 0$ and n > 0. If $G = \{g_i\}_{i \in \mathbb{Z}}$, then [G] is in $\operatorname{Ext}^n(B, C)$.

If $F = \{f_i\}_{i \ge z}$, some $z \le 0$, then $[\hat{F}] = [\{f_i\}_{i \ge 0}]$ belongs to $\underline{\prod}_{-m}(A, B)$. Then $([G], [\hat{F}]) \to [G\hat{F}] = [\{g_{i-m}f_i\}_{i \ge 0}]$ gives a new product

Proof of invariance with respect to homotopy is omitted throughout.

REMARK. Had the F above been a right ladder, $F = \{f^i\}_{i \ge -m+1}$, [F] would have belonged to $\overline{\prod}_{-m}(A,B)$. But $\{g^if^{-m+i}: X^{-m+i} \to Y^i \to Z^{n+i}\}_{i \ge 1}$ cannot be extended to the left by means of Proposition 1. Hence the most we would have obtained is the unsatisfactory

$$\operatorname{Ext}^n(B,C) \times \overline{\prod}_{-m}(A,B) \to \overline{\prod}_{-m}(A,d^n(Z^n)).$$

Similarly, changing G to a left ladder in Case II below is unprofitable.

(II) Suppose m > 0 and $n \le 0$.

An $F = \{f_i\}_{i \in \mathbb{Z}}$ represents [F] in $\operatorname{Ext}^m(A, B)$. If $G = \{g^i\}_{i \geq z}, z \leq -n+1$, then $[\hat{G}] = [\{g^i\}_{i \geq -n+1}]$ belongs to $\overline{\prod}_{-n}(B, C)$. Thus $([\hat{G}], [F]) \mapsto [\hat{G}F] = [\{g^{-n+i}f^{-n-m+i}\}_{i \geq 1}]$ gives a product

$$\bar{\prod}_{-n}(B,C) \times \operatorname{Ext}^{m}(A,B) \to \begin{cases}
\operatorname{Ext}^{m+n}(A,C) & \text{if } m+n > 0 \\
\bar{\prod}_{-(m+n)}(A,C) & \text{if } m+n \leq 0.
\end{cases}$$

$$\cdots \to X^{-n-m-1} \to X^{-n-m} \to X^{-n-m+1} \to \cdots$$

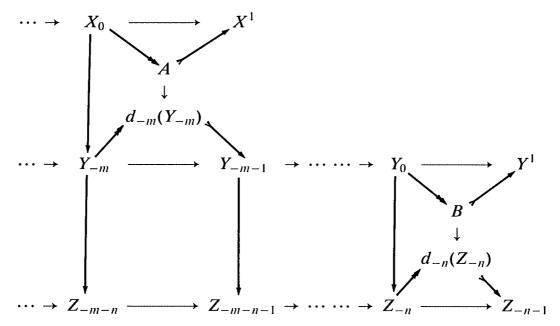
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \to Y^{-n-1} \to Y^{-n} \to Y^{-n+1} \to \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z^{-1} \to Z^{0} \to Z^{1} \to \cdots$$

(III) $F = \{f_i\}_{i \ge r}$ and $G = \{g_i\}_{i \ge s}$, $m \le 0$ and $n \le 0$. If r and s are non-positive consider $\{f_i\}_{i \ge 0}$ and $\{g_i\}_{i \ge 0}$.



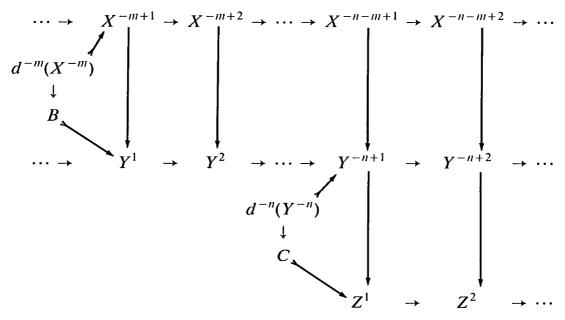
Assuming $m \le 0$ and $n \le 0$, the diagram above showing

$$([G], [F]) \mapsto [\{g_{-m+i}, f_i\}_{i \ge 0}]$$

illustrates

$$\underline{\prod}_{-n}(B,C) \times \underline{\prod}_{-m}(A,B) \to \underline{\prod}_{-n-m}(A,C)$$
.

(IV) $F = \{f^i\}_{i \ge r}$ and $G = \{g^i\}_{i \ge s}$. If $r \le -m+1$ and $s \le -m+1$, $m \le 0$ and $n \le 0$, the following product exists.



$$\overline{\prod}_{-n}(B,C)\times\overline{\prod}_{-m}(A,B)\to\overline{\prod}_{-n-m}(A,C).$$

We record the observations of (I)-(IV).

PROPOSITION 8. $\underline{\Pi}(B,B)$ and $\overline{\underline{\Pi}}(B,B)$ are given graded ring structures by the products of (III) and (IV) respectively.

Proof. The identity for $\underline{\Pi}(B, B)$ is $1 = [\{id_{Y_i}\}_{i \ge 0}]$. Likewise $[\{id_{Y_i}\}_{i < 0}]$ is the identity for $\overline{\Pi}(B, B)$.

Recall that

$$H_n(B,C) = \begin{cases} \operatorname{Ext}^n(B,C) & \text{for } n > 0 \\ \prod_{-n}(B,C) & \text{for } n \le 0. \end{cases}$$

LEMMA 9. H(B, C) is a left $\operatorname{Ext}(C, C)$ -module and a right $\underline{\Pi}(B, B)$ module. LEMMA 9'. K(B, C) is a right $\operatorname{Ext}(B, B)$ module and a left $\overline{\Pi}(C, C)$ module. REMARK. The products (III) and (IV) were known to Eckmann and Hilton.

5. Natural transformations. We have established maps

$$H_p(B,C) \times H_q(A,B) \rightarrow H_{p+q}(A,C);$$

thus any $[\sigma]$ in $\underline{\Pi}_q(A, B)$ gives an element of $[\{H_{p+q}(B, -)\}_{p \in \mathbb{Z}}, \{H_p(A, -)\}_{p \in \mathbb{Z}}].$

THEOREM 10. The only natural transformations of graded functors from $\{H_p(B,-)\}_{p\in\mathbb{Z}}$ to $\{H_p(A,-)\}_{p\in\mathbb{Z}}$ lowering degree by q $[q\geq 0]$ are multiplication on the right by elements of $\prod_a (A,B)$. That is,

$$[\{H_{p+q}(B,-)\}_{p\in\mathbb{Z}}, \{H_p(A,-)\}_{p\in\mathbb{Z}}] \approx \prod_{q} (A,B) \text{ for } q \ge 0.$$

Proof. (i) Let

$$\eta: H_0(B, -) \to H_{-q}(A, -)$$

be a natural transformation. We claim there is one and only one element $\{\eta_{p+q}\}_{p\in \mathbf{Z}}$ belonging to $[\{H_{p+q}(B,-)\}_{p\in \mathbf{Z}}, \{H_p(A,-)\}_{p\in \mathbf{Z}}]$ with $\eta_0=\eta$. Now $\{H_n(M,-)\}_{n\in \mathbf{Z}}$ is an exact connected sequence of covariant functors for any module M. Also, $H_n(M,P)=0$ for P projective and $n\leq 0$, and $H_n(M,Q)=0$ for Q injective and n>0. Thus we may apply Proposition 5.2 of [1] with $\Phi_0=\eta$. (ii)

$$\underline{\Pi}_q(A,B)\approx [\,\underline{\Pi}_0(B,-)\,,\,\underline{\Pi}_q(A,-)\,].$$

For $[\sigma] \in \underline{\Pi}_q(A, B)$ and $[\tau] \in \underline{\Pi}_0(B, C)$, let $\eta_C^{[\sigma]}([\tau]) = [\tau][\sigma]$. We show that $\eta \mapsto \eta_B([\mathrm{id}_B])$ is an inverse for $([\sigma] \mapsto \eta^{[\sigma]})$. First, since $[\mathrm{id}_B][\sigma] = [\sigma]$, $[\sigma] \mapsto \eta_B^{[\sigma]}([\mathrm{id}_B])$ is the identity.

Conversely, we need $\eta^{\eta_B([\mathrm{id}_B])} = \eta$; that is, for any $[\tau] \in \underline{\Pi}_0(B,C)$ that

$$[\tau]\eta_B([\mathrm{id}_B]) = \eta_C([\tau])$$

in $\prod_{q}(A, C)$. Now $\tau: B \to C$ induces the following commutative square.

$$\underline{\Pi}_{0}(B,B) \xrightarrow{\eta_{B}} \underline{\Pi}_{q}(A,B)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underline{\Pi}_{0}(B,C) \xrightarrow{\eta_{C}} \underline{\Pi}_{q}(A,C)$$

Chasing the diagram, $\eta_C \circ \underline{\Pi}_0(B, \tau)([\mathrm{id}_B]) = \eta_C([\tau]) = \underline{\Pi}_q(A, \tau)\eta_B([\mathrm{id}_B]) = [\tau]\eta_B([\mathrm{id}_B])$ as desired. Hence $[\sigma] \mapsto {\eta_{p+q}^{[\sigma]}}_{p \in \mathbb{Z}}$ is the isomorphism proving the theorem.

REMARKS. (a) From the proof of (i) note that in fact

$$\underline{\Pi}_q(A,B) \simeq [\operatorname{Ext}^p(B,-), \underline{\Pi}_{q-p}(A,-)]$$

for any p > 0 with $q - p \ge 0$. More generally, Hilton and Rees [4] proved that $[\operatorname{Ext}^p(B, -), G] \simeq S_p G(B)$, which we may rewrite as $[H^p(B, -), H^q(A, -)] \simeq H^{q-p}(A, B)$ for any p > 0, $q \le 0$.

(b) It is interesting to note that Hilton and Rees also obtain the isomorphism $[\operatorname{Ext}^p(B,-),\operatorname{Ext}^q(A,-)] \simeq S^{p-1} \prod_{g-1} (A,B)$.

THEOREM 11. The only natural transformations of graded functors from $\{K_p(-,A)\}_{p\in\mathbb{Z}}$ to $\{K_p(-,B)\}_{p\in\mathbb{Z}}$ lowering degree by $q,\ q\geq 0$, are multiplications on the left by elements of $\overline{\prod}_a(A,B)$. That is,

$$[\{K_{p+q}(-,A)\}_{p\in\mathbb{Z}}, \{K_p(-,B)\}_{p\in\mathbb{Z}}] \approx \bar{\prod}_q(A,B) \, by \, [\sigma] \mapsto \{^{|\sigma|}\eta_{p+q}\}_{p\in\mathbb{Z}}.$$

Proof. Proof is entirely dual to that of Theorem 10.

6. $\prod_{i}(\mathbf{Z}, A) \approx \operatorname{Tor}_{i-1}^{\mathbf{Z}G}(\mathbf{Z}, A)$ for $i \geq 2$. A natural transformation $f: T \to U$ induces the following commutative diagram.

$$L_0T \to T \to R^0T$$

$$\downarrow \qquad \downarrow^f \qquad \downarrow$$

$$L_0U \to U \to R^0U$$

Let \overline{f} be the map induced from L_0T to R^0U . Then the sequence of functors

$$\cdots L_2T, L_1T$$
, kernel (\bar{f}) , cokernel (\bar{f}) , R^1U , R^2U , \cdots

is the *derived sequence* of f. It is easily seen that the derived sequence of a map is an exact connected sequence of functors [1, Chapter V].

Henceforth let the ring R be $\mathbb{Z}G$, for G a finite group, and I the augmentation ideal. If $N = \sum_{x \in G} x$, N induces a map $N^* : A/IA \to A^G$ for each G-module A. Denote the derived sequence of $N^* : \operatorname{Tor}_0^{\mathbb{Z}G}(\mathbb{Z}, A) \to \operatorname{Ext}_{\mathbb{Z}G}^0(\mathbb{Z}, A)$ by $\{\hat{H}^i(G, A)\}_{i \in \mathbb{Z}}$. In particular we have

$$\hat{H}^{i}(G,A) = \begin{cases} \operatorname{Ext}_{ZG}^{i}(\mathbf{Z},A) & \text{if } i > 0 \\ \operatorname{Coker}(A/IA \to A^{G}) = A^{G}/NA & \text{if } i = 0 \\ \operatorname{Ker}(A/IA \to A^{G}) = (N - \operatorname{torsion}(A))/IA & \text{if } i = -1 \\ \operatorname{Tor}_{i-1}^{ZG}(\mathbf{Z},A) & \text{if } i < -1. \end{cases}$$

PROPOSITION 12. $\hat{H}^i = S_1 \hat{H}^{i+1}$ all integers i.

Proof. Let $0 \to R \to P \to A \to 0$ be a projective presentation of A. Then $S_1 \hat{H}^{i+1}(G, A) = \text{kernel}(\hat{H}^{i+1}(G, R) \to \hat{H}^{i+1}(G, P)) = \hat{H}^{i+1}(G, R) = \hat{H}^i(G, A)$.

However $\{H_i(\mathbf{Z}, A)\}_{i \in \mathbf{Z}}$ is also a sequence of satellites with $H_i(\mathbf{Z}, A) = \operatorname{Ext}_{\mathbf{Z}G}^i(\mathbf{Z}, A)$ for i > 0. So $\{\hat{H}^i(\mathbf{Z}, A)\}_{i \in \mathbf{Z}} = \{H_i(\mathbf{Z}, A)\}_{i \in \mathbf{Z}}$. In particular we see that $\prod_i (\mathbf{Z}, A) = \operatorname{Tor}_{i-1}^{\mathbf{Z}G}(\mathbf{Z}, A)$ for all $i \ge 2$.

ACKNOWLEDGMENT. This paper is based on a thesis submitted by the author in partial fulfillment of the requirements for the Ph.D. at the University of Rochester. I would like to thank my advisor Professor Charles Watts who suggested the study of the Eckmann-Hilton groups to me. I am also indebted to Dr. Jeffrey Nelson for many illuminating conversations.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N.J., 1956.
- 2. B. Eckmann, Homotopie et dualite, Colloque de topologie algébrique, Louvain, 1956.
- 3. P. Hilton, *Homotopy and duality*, Lecture notes, Cornell University (1958–1959).
- 4. P. Hilton and D. Rees, Natural maps of extension functors and a theorem of R. G. Swan, Proc. Cambridge Philos. Soc. 57 (1961), 489-502.
- 5. S. MacLane, Homology, Springer, Berlin, 1967.

Skidmore College Saratoga Springs, New York