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1. Introduction. Let D be any domain of C that contains the point at infinity.
It is well known that for each c € C \ {0} there is a (univalent) conformal mapping
¢. of D onto the complement of horizontal slits and points, normalized by

o-(z)=cz+o0(1) as z— oo,

Such mappings can be obtained by solving the linear extremal problem
max Re{ch;} over all conformal mappings f of D with expansion

f(z)=cz+~i—'+---

near infinity.
Many authors [1, 2, 4, 5, 6, 7, 8] have generalized this result to univalent,
canonical slit mappings satisfying the partial differential equation

(1) f2=.u'fz+VE in D,

where g and » satisfy the uniform ellipticity condition supp(|u|+|v|) <1 and
where D is finitely connected.

In this article D may have arbitrary connectivity, and we are interested in the
equation (1) with x=0. We shall assume that v is an anti-analytic function and
|v| <1in D, but we shall permit |»| to approach one at the boundary. We shall
obtain horizontal slit mappings which are locally quasiconformal, harmonic.
mappings.

2. Existence. Let a be analytic in D and satisfy |e¢| <1. Then diffeomorphic
solutions of

2 fe=af;

will be locally quasiconformal in D, but the distortion as measured by the dila-
tation quotient (|.f;|+|/z|)/(|fz]—|/f:]) =1 +]a])/(1—]|a]) may be unbounded
at the boundary. In addition, since f;, = af,; where |a| <1, the mapping satisfies

Jzz=0and thus is harmonic. Conversely, each univalent, orientation-preserving,
harmonic mapping f of D satisfies (2) for some analytic function a with |a| <1.
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If a univalent harmonic mapping f of D leaves infinity fixed, then f has the
representation (e.g., see [3, Lemma 3.1])

f()=Az+BZ+aloglz|+ X c,z27"+ > d,z 7"
n=0 n=1
ina neigh_borhood of infinity. Furthermore, if f satisfies (2), then B = a(e0)A and
o =2(GA+a(@)a A)/(1—|a(x)|*), where @, =lim, _, ., z[a(z) —a(0)].

THEOREM 1. Let D be a domain containing oo, let a be an analytic function in
D with |a| <1, and let A e C\{0} be constant. Set ¢ = (1—a(x))A, and denote by
¢. a conformal mapping of D onto a horizontal slit domain, normalized by
éc(z) =cz+0(1) as 7 — oo, Assume that Re{(1+a)/(1—a) d.} is an exact differ-
ential in D\ [oo}. Then there exists a univalent solution f of (2) that maps D onto
a horizontal slit domain and is normalized so that

3) f(z)=Az+a(o)Az+alog|z|+0(1) as z— o,
where a =2(a, A+ a(o)a; A)/(1— Ia(oo)|2) and a;=lim, _, , z[a(z) —a(w)].
Proof. Fix zoe D. Then

@ 1@ = Refi 0 o +imocca)

20 1—a
is a single-valued harmonic function on D whose partial derivatives are

®) fe=a¢i/(1—a) and f;=¢:/(1-a).
Thus f satisfies (2), and since the Jacobian

Jr=fl*=fel* = A =a]®) |9/ |1 —a|?

is positive, f is locally univalent and preserves orientation. Furthermore, since
#.(z) = (1—a(0)) A+ O(z 2) as z — oo, it follows from (5) that f has the normal-
ization (3) except for an additive constant, which we may subtract.

Next we show that f is globally univalent on D and that f(D) is a horizontal
slit domain. For that purpose, let { =&+ iy belong to the horizontal slit domain
Q =¢.(D) and define

14+ac¢.! )
{lia—oz;" d§ } +in,
where {o=¢.(z9). Denote by L, the horizontal line {&+in:£e€R}. Then
F(QNL,) is contained in the same line L, for each 7.
Since F(o0) = o0 and

FO) =o' (0)=( R

e
o

d
— ReF=Re
a¢ {
every line L, contained in Q is mapped in a strictly increasing fashion onto itself.
Each remaining line L; intersects { in countably many open intervals. If I; and I,
denote two such (possibly semi-infinite) intervals with 7, to the left of I, then FF

1+asps! 0
1—aqogp ! ’
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carries /) and I, each in a strictly increasing fashion into L;. It remains to show
that F(I,) is entirely to the left of F(/5).

If &1=§+ijel;and ¢ =§,+i7 € I, then since Q is a horizontal slit domain,
we can find closed intervals J, =[&,+in,, £2+i7,] in @ with 9, - 7as n — co. Now
Re F is increasing on each J, and so Re F({;) <Re F({,) by continuity. Thus
every point of F(I;) is to the left of every point of F(I;). Since these intervals are
open, they are even disjoint.

Therefore F is univalent and F(Q) is a horizontal slit domain. The same is true
of f=Fe¢.and f(D)=F(Q). CJ

REMARKS. (i) Theorem 1 is constructive. Except for an additive constant, a
solution is given by formula (4). Other normalizations are possible. For example,
by adding constants to (4) we may normalize f(z) =0 or f(z¢) =z for a fixed
point zg€ D \ {co}.

(ii) The assumption that Re{(1+a)/(1—a)d¢.} is exact requires o to equal
2a;A/(1—a(e0)) and to be real, where a; =lim; _, ,, z[a(z) —a()]. If D is simple
connected, then these are the only requirements.

(iii) One can obtain a normalized solution of (2) that maps D onto the comple-
ment of points and parallel slits with inclination 0. If we replace a by e*’g and A4
by e ""°4 in Theorem 1, then the function e'®f will have the desired properties.

3. Uniqueness. For arbitrary domains, even the conformal mappings ¢. (i.e.,
a =0) are not uniquely determined. Therefore we shall restrict D somewhat.

THEOREM 2. Let D be a domain containing « and having only countably
many boundary components. Then a univalent solution of (2) that maps D onto
a horizontal slit domain and has normalization (3) is unique.

Proof. If fiand f, are two such mappings, then g = f; — f, satisfies (2), van-
ishes at oo, and is uniformly bounded. Furthermore, Im g is constant on each
boundary component of D.

If D is any relatively compact subdomain of D, then sups|a| is less than one.
By the similarity principle (cf. [2, Theorem 4.3]) the function g is either constant
or open on D. Due to the arbitrary nature of D, the function g is either constant
or open on D. If g is constant, then we are finished since g vanishes at co. If g is
open, then g(D) is a bounded domain which misses all but countably many hori-
zontal lines. The latter is impossible. ]
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