ON THE UNITARY EQUIVALENCE OF
CLOSE C*-ALGEBRAS

Mahmood Khoshkam

Introduction. A central question in the theory of perturbations of C*-algebras
is to determine which C*-algebras A satisfy the following property: Every C*-
algebra B “sufficiently close” to A is unitarily equivalent to it (cf. [3], [4], [11]).
In this paper we use “Ext” theory in order to find new C*-algebras with this
property.

Let D be a separable C*-subalgebra of a C*-algebra C and suppose that D is an
extension of a C*-algebra A by a C*-algebra /. Under certain assumptions on 4
and 7 we show that if D’is a C*-subalgebra of C, “sufficiently close” to D, then D
and D’ are unitarily equivalent. To that end, we prove that D’is also an extension
of A by I and show that these two extensions are unitarily equivalent. This
second problem is dealt with by viewing the two extensions of A by I given by D
and D’ through the six-term exact sequence of K-theory associated with the two
extensions, using the Rosenberg and Schochet universal coefficient formula (cf.
[13]) and Theorem 2.11 of [9].

I would like to express my gratitude to G. Skandalis for his numerous helpful
suggestions.

NOTATIONS. Throughout this paper A will denote a separable infinite dimen-
sional Hilbert space. £(H) is the C*-algebra of bounded linear operators on H
and K(H) is the C*-algebra of compact operators. If A is a C*-algebra M(A)
denotes the multiplier algebra of A.

The distance between the C*-subalgebras 4 and B of a C*-algebra C is defined
by

d(A,B)=Max{ sup inf |[a—b]|; sup inf ||a—b1|},
aeAl bGBl bGBl aeAl

where A, and B, denote the unit balls of A and B respectively.

1. Some results from the theory of extemsions. Here we recall some facts
about Kasparov’s bi-functor Ext(A, B) (cf. [8]).

1.1. Let A be a separable nuclear C*-algebra and B a C*-algebra with count-
able approximate unit. An (A, B) extension is a short exact sequence

0->BRKH)>D 3 A-0.

Such an extension will be denoted by the pair (D, ¢). We note that (cf. [2])
such extensions are in one-to-one correspondence with *-homomorphisms
0:A->M(BRK(H))/BQK(H). Two extensions ¢; and o, are said to be uni-
tarily equivalent (write g; i 0, ) if there exists a unitary ue M(BQK(H)) such
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that g;(a) = uoy(a)u* for every a € A. An extension o is said to be trivial if it has a
lifting 7: A > M(BQK(H)). The sum o@D, is defined to be the direct sum
0@ oy(a) =o(a)Doy(a) (with the identification of M,(M(B®K(H))) with
M(B®K(H)). Now Ext(A, B) is the set of equivalence classes of (A, B) exten-
sions with respect to the relation: ¢; ~ 0, if and only if there exist trivial exten-
sions Tis T2 such that 01@71 T 02@7’2.

1.2. In 1.1if A and B are unital one may define Ext (A, B) to be the set of
unital extensions divided by the equivalence relation ¢; ~ ¢, if and only if there
exist unitarily trivial extensions 7; and 7, such that ¢;® 7, 7 $o®D 7,. Here an ex-
tension 7 is said to be unitarily trivial if it has a unital lifting 7: A > M(BQK(H)).
In [15] G. Skandalis studies the bi-functor Ext (A, B) and shows that it is a
group that is homotopy invariant in both variables and that Ext (A, B) =
Ext(A., B&Q Cy(R)), where

Ac=1{f:10,11-A4: f(1)=0, f(0)eC}.

In the case that B = C it follows from Voiculescu’s theorem [16] that Ext (A, B) =
Ext (A), where Ext (A) is the Brown-Douglas-Fillmore strong Ext group [1]—
that is, the group of unitary equivalence classes of unital essential extensions of
Aby K(H).

1.3. If Ais a unital C*-algebra and X is a compact finite dimensional metriz-
able space, then by the result of Pimsner, Popa, and Voisculescu [12] Ext(A4, C(X))
is the group of homogeneous extensions 0— C(X)QRK(H)— D BA0 [12,
Definition 1.7] divided by unitary equivalence.

1.4. To each extension 0 - BRK(H) — D3 A—0 one can associate a six-
term exact sequence of abelian groups :

K\(B) — Ky(D) 2 Ki(A) 2> Ko(B) = Ko( D) 22> Ko(A) 2> Ky(B).
The pair (g, 6;) defines a homomorphism
v: Ext(A4, B) » Hom(Ky(A), K;(B))® Hom(K (A4), Ko(B)).

J. Rosenberg and C. Schochet [13] showed that for a large class n of C*-algebras,
the homomorphism 7 is onto; they established the following “universal coeffi-
cient” formula

0 — Ext(Ko(A4), Ko(B))DExt(K(A4), K\(B))
— Ext(4, B) > Hom(Ky(A), Ki(B))®Hom(K,(A4), Ko(B)) 0.

1.5. We recall that a subgroup H of an abelian group G is said to be a pure
subgroup if for every positive integer n and s € H the equation nx = A is solvable
in H whenever it has a solution in G [7, §23]. Equivalently H ®I‘~'®—'d> GRT'is
injective for every abelian group I', where i: H — G is the inclusion map. If H
is a pure subgroup of G we say 0 > H—- G- G/H—0 is a pure extension of
G/H by H.
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2. Some lemmas.

2.1. DEFINITION. We say that a nuclear C*-algebra A has property P. if for
each pair of C*-algebras, B < C, and for every *monomorphism i: A — C the re-
lation d(i(A), B) < e implies that there exists a *-isomorphism p: A — B. If more-
over d(i(A),B)<1/38, we require that p,:K.(4)— K.(B) is the closeness
isomorphism given by proposition 2.4 of [9]. This closeness isomorphism is ob-
tained by mapping a projection (or a unitary) in M, (A") to a nearby projection
(or a unitary) in M, (B™").

Commutative C*-algebras, separable unital continuous trace C*-algebras, and
ideal C*-algebras all have this property for suitable €’s (cf. [3], [11]).

2.2. REMARK. We will use Lemma 1.2 and part of Lemma 2.6 of [10] in several
places. Using the estimate of [9, Lemma 1.10] in the proof of these lemmas one
obtains the following: If 4 and B are C*-subalgebras of a C*-algebra D such that
d(A,B)=k<1/11 and I is a closed ideal in A4, then there exists a unique closed
ideal in B such that d(/, J) < a(2k)+3k. Moreover, there are C*-subalgebras A,
and By of a C*-algebra Dy, respectively *isomorphic to A/7 and B/J, such that

5 .
(2k) +k, where a(k)=2sin EE—S-IE—I—{—.

d(Ap, By) =

We are going to use the function «: [0, 1] — [0, V2] frequently in this paper.

2.3. LEMMA. Let A and B be separable C*-algebras in the class n (see
1.4) such that every pure extension (see 1.5) of K.(B) by K.(A) splits. Let
0— B— D3 A0 be an extension such that Jor every nuclear C*-algebra C the
connecting maps of K-theory given by the extension 0 > BQC— DR C .q&—®’-‘1>
AR C —0 are zero. Then (D, ¢) defines the zero element of Ext(A, B).

Proof. By virtue of the universal coefficient formula (1.4) it suffices to show
that

0> Ku(B) > Ko (D) 2> K, .(A)—> 0

splits. If this does not split the hypothesis of the Lemma implies that K, (B) is
not a pure subgroup of K,.(D) (see 1.5). This is turn implies that there exists a
positive integer n such that K,(B)®Z, - K.(D)®Z, is not injective. This,
together with the fact that K,(0,,;,) =Z, (cf. [6]) and the Kiinneth formula [14,
Theorem 4.1}, imply that K, (B®O0,.)— K.(D®O0,,,) is not injective (0,,
denotes the Cuntz algebra [5]). But this last statement contradicts the hypothesis
by letting C=0,,,, and the proof is complete. O

2.4. LEMMA. Let D and D' be C*-subalgebras of a C*-algebra C such that
d(D,D’) =k <1/100. Suppose that 0— 1% D % A—0 is exact, where A and I
are C*-algebras having property P and P, respectively. If a(2k)/2+k < ¢ and
oz(2k)+3k< €5, then there exist *-homomorphisms j' and ¢’ making 0— I
D’ % A— 0 exact and the Jollowing diagram commutative.
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K1) = K{(D) 2> K\(A) 2 Ko(I) - Ko(D) 2> Ko(A) 2> Ki(I).
It ] I i T I f
Ki(I) —» Ky(D') 2 Ki(A) 2 Ko(I) - Ko(D') 2> Ko(A) 2> K ()

Proof. With no loss of generality we may assume that 7 is contained in D as a
closed ideal. Then since d(D, D) = k by Remark 2.2 there exists a unique closed
ideal 7’ in D’ such that d(/,I’) <3k+«a(2k). Also there are C*-algebras D, and
Dj§ *-isomorphic to D/I and D’/I' such that d(Dgy, Dj) <k+ a(2k)/2. Now
since 7 has property P, and d(I,1’) <3k+a(2k) < ¢, there exists an *-isomor-
phism j’:I—I’. Also since A has property P, and A =D/I =D, the relation
d(Dy, D}) < a(2k)/2+ k < ¢; implies that Dy and D{ are *-isomorphic. This and
the fact that Dy, and D} are respectively *-isomorphic to D/I and D’/I’ give a

*-isomorphism p:D/I— D’/I’. Now define ¢':D’—> A by ¢'(d’)=¢(d) if
p(d+I)=d’+1I'. It is routine to check that ¢’ is well-defined and that it is a

*-homomorphism making 0 — 7 4> D’ % A—0 exact. Since k <1/100 the com-
mutativity of the diagram follows from [9, Theorem 2.11] and the fact that p and
J’ induce the isomorphism 7 mentioned in 2.1.

2.5. LEMMA. Let D,D’, I, ¢, ¢’ and k be as in 2.4. Moreover, assume that A
and I belong to the class n (see 1.4).

(1) If (D, ¢) defines the zero element of Ext(A, I), then so does (D', ¢').

(i) If k<1/200, a(4k)+6k<e;, a(dk)/2+2k<ey, and if A and D are
unital and (D, ¢) defines the zero element of Ext (A, I}, then so does (D', ¢').

Proof. (i) Since (D, ¢) is a trivial extension the connecting maps 6y and §,
are zero and the extension (D, ¢) is given by the split short exact sequence
0> K. (I)— K.(D) K «(A) — 0. Now the commutativity of the diagram given
in 2.4 obviously implies that 6, and 6{, the connecting maps given by the exten-
sion (D’, ¢’), are also zero and that 0 > K,(I)— K.(D’ )—+K (A) — 0 splits.
Now Rosenberg, Schochet’s universal coefficient formula (see 1.4) shows that
(D', ¢’) is trivial in Ext(A4, 7).

(ii) We recall our comment in 1.2, that Ext (A4, I') = Ext(A., I&Q Cy(R)). This
isomorphism is given by the map that sends an extension 0 +/—>FE 5> A—>0
to the extension 0— I® Cy(0,1)— E. ~>A -0, where (Jf)(¢)=v(f(t)) for
every feE. and te[0,1] (see 1.2 for the notation). Now by [4, Theorem
3.4 d(D.,D})<2d(D,D’) and we can apply the first part of the lemma to
the extensions (D, ¢) and (D, $’). This implies that (D!, ¢’) is trivial in
Ext(A., I®Q Co(R)) which in turn shows that (D’, ¢’) is trivial in Ext (A, I) as
desired. L]

2.6. LEMMA. Let D,D',1,A,¢,¢’ and k be as in 2.5. Furthermore let
k <1/2400. If every pure extension of K.(I) by K.(A).splits, then

(i) (D, o)~ (D’,¢’) in Ext(A,I); and

(ii) when A and D are unital, then (D, ¢) ~.(D’, ¢’) in Ext (A, T).

Proof. (i) Let x in Ext(A, I') be the difference of the two extensions (D, ¢)
and (D', ¢’). Since d(D, D’) = k by [4, Theorem 3.1], d(D® B, D'QB) <12k <
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1/100 for every nuclear C*-algebra B. Therefore by [9, Theorem 2.11] the two
extensions

0> IQBRK(H)—>DRXB—+AQB—0 and
0+ IXBRXK(H)>D'®B>ARXB—0

have the same connecting maps 6g, 6;. Using this and the universal coefficient
formula (1.4) we deduce that the hypothesis of 2.3 holds for the extension x.
Hence x is trivial which shows that (D, ¢) ~ (D’, qS’) in Ext (A, I).

(ii) This follows simply by applying (i) to (D., ¢) and (D¢, é), notmg that by
[4, Theorem 3.2] d(D.,D!)<2d(D,D’), where (D.,$) and (D., $’) are de-
scribed in the proof of Lemma 2.5 (ii). (W

2.7. LEMMA. Let D, D’ be C*-subalgebras of a C*-algebra C and let I, J be
closed ideals in D and I',J’ closed ideals in D’'. Let K={xeD|xJ<SI} and
K'={xeD'|xJ'cI'}. Then

G IfFreJ’ anddd,I'y+d(J,J')<]1, then I J.

(i) d(K,K’)S3d(D,D)+2d(I,I')Y+2d(J,J").

Proof. Let d(I,I")="~, d(J,J')=6 and d(D,D’)=k. (i) Let xel, |x|=<1.
Then there exists x’ € I’ such that |x’| =1 and |x—x’| <vy. As I' € J' there exists
yeJ with |x'—y|<4. Hence |x—y|=<8+7. Let w:I— D/J be the projection.
We get | 7| £ v+ 6 <1. This implies that d(/NJ, I') <1, which shows that INJ =
I, that is, IS J.

(ii) Let € > 0. Let x € K with | x| <1. Let x"e D" with |[x—x’| = k+¢,and |x| =
1. Let z’€ J’, |z’| £1 and choose z € J such that |[z—2z’| £ 6 and |z| £ 1. Then

¥z’ —xz] S |¥'(2' = D) |+ (' = x)z] Sk +d+e.

Now xzel. Hence there exists ye I’ with |xz—y|<vy. We get |x'z’—y| <
k+6+vy+e Let p: D’ M(J'/I') be the natural map (given by p(a)b=ab,
aeD’, beJ’, where b denotes the class of b modulo 7’). We have |p(x")| £
k+06++v+e. Hence there exists x” e ker p=K’ with |x'—x"|Sk+06+vy+e.
Put x=x"/sup(l, [x”]). We have |x'—x|S2(k+8+v+e€). Hence |x—xX| <
3k+28+2v+3e. By symmetry for every ye K’, |y| =1 we can find y € K such
that |y|<1and |y—p|=3k+26+2y+3e. Hence d(K,K’) <3k+25+2y+3e.
But € was arbitrary and we must have d(K,K’') <3k+26+24.

2.8. DEFINITION. An extension 0—/— D-—> A4 — 0 is said to be a homoge-
neous extension if for every closed ideal J in / the homomorphism D/I — M(1/J)
is injective.

We note that if 7= C(X)XK(H) this definition coincides with the definition
of homogeneous X-extension given by Pimsner, Popa, and Voiculescu (cf. [12]).

2.9. LEMMA. Let D and D' be C*-subalgebras of a C*-algebra C such that
d(D,D’)=k < 1/11. Let I be a closed ideal in D and I’ the closed ideal in D’ such
that d(I,1')<3k+a(2k) (see 2.2). Let ¢:D— D/I and ¢’':D’'— D'/I’ be the
quotient maps.

(i) If I is an essential ideal in D and 9k +2a(2k) <1, then I’ is an essential
ideal in D.



336 MAHMOOD KHOSHKAM

(i1) If the extension (D, ¢) is homogeneous and 15k +4«(2k) <1, then (D', ¢’)
is also homogeneous.

Proof. (i) If I is an essential ideal, then Ann(Z, D)=0. Now 2.7 (ii) implies
that d(Ann(Z, D), Ann(/’, D)) <9k+2a(2k) <1. Hence Ann(/’,D’)=0.
(i) This also follows by applying 2.7 and definition 2.8.

3. Main results.

3.1. THEOREM. Let D be a C*-subalgebra of a C*-algebra C such that
0— K(H)— D% A— 0 is an essential extension. Let D' be a C*-subalgebra of C
and let d(D,D’)=k. If A is commutative and «(4.2.299(3k+ a(2k))) <1/200
or A is separable unital with continuous trace and

3k+ a(2k) < (10%.86.35.12) 2(2.299) |,
then D= uD'u* for a unitary operator u.

Proof. Since d(D, D’) =k <1/11 by 2.2 there exists a unique closed ideal 7’ in
D’ such that d(I’, K(H))<3k+a(2k)=06. As 6<1/600 by [3, Theorem 5.1]
there exists a unitary operator v such that K(H)=vl’v* and |v—1| <2994. Now
d(D, vD’'v*) < 2.2996 and replacing D’ by vD’v* we may and will assume that
K(H)CD'. Then d(D/K(H),D/K(H))<2.2996 and D/K(H)=A. Hence
there exists a *-isomorphism p: D/K(H)— D’/K(H) such that |p—idp/km)| =
2.2(4.2.2996) < 1/100 when A is commutative [4, Theorem 5.3] and

| o —idp/k ey | < 100.86.35.12(2.299)"2 < 1/100

in the case that A is unital separable with continuous trace [11, Theorem 4.22].
Let 0~ K(H)— D’ %, 40 be the extension obtained as described in 2.4 (here
I=I'=K(H)) and let 0,0": A— L(H)/K(H) be the *-homomorphisms associ-
ated with (D, ¢) and (D’, ¢’) respectively. Then it is easy to verify that |o—o’| =
|o—idp/k(sy|. Choose an extension ¢” such that ¢@o¢” is unitarily trivial. Then
since |[c@o” —o’'@a”|=|o—a’| we have

. 1
d(@g o@D a"(A)), g N o'D0o"(A)) <|p—idpun] < —==

100
(q: L(H) - L(H)/K(H) is the quotient map). Now Lemma 2.5 (ii) when applied
to the extensions s@®¢” and ¢’@¢” implies that ¢’@D ¢” is also unitarily trivial.
This obviously means that ¢ and ¢’ belongs t > the same class in Ext (A, K(H)),
that is, o + ¢’. Now since (D, ¢) is an essential extension it follows from 2.9 (i)
that (D’, ¢’) is also an essential extension. Hence ¢ + ¢’ implies that o 3 ¢’ (see
1.2). This obviously shows that D= uD’u* as desired. Ol

3.2. COROLLARY. Let D and D’ be C*-algebras acting on H and suppose
that D is generated by the identity operator K(H) and a countable family of
essentially commutative, essentially normal operators. If d(D,D’)=k and
a(4.2.299(3k + a(2k)) <1/200, then D =uD'u* for some unitary operator u.
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Proof. The assumption implies that D is an extension of C(X) by K(H) for
some compact metrizable space X [1]. Now the corollary follows directly from 3.1.

It is desirable to iterate 3.1 as this would imply that property P, (see 2.1) is
preserved under extension by K(H) for a certain class of C*-algebras. However,
the argument given in 3.1 can not be repeated since the unitary u obtained there
may not be close to 1. This problem (although not in full generality) is avoided in
the following.

3.3. THEOREM. Let D be a C*-subalgebra of a C*-algebra C such that
0— K(H)—>D—> A—0is an essential extension. Let D' be a C*-subalgebra of C
and let d(D,D’) = k. Suppose that A is in the class n (see 1.4) and has property
P If o(4k)/242k < €y and a(dk)+ 6k <1/600 and Ky(A) is the direct sum of
a torsion group with a free abelian group, then D= uD’u* for some unitary
operator u.

Proof. Since K(H) has the property P, with ¢ =1/600 [4, Theorem 5.1],
by using 2.4 we obtain a second essential extension 0—/— D’ % 4 —0. Now
the assumption on Ky(A) implies that pure extensions of Z=Ky(K(H)) by
Ky(A) split. Hence by 2.6 (ii), (D, ¢) + (D', ’). Now the argument given at the
end of the proof of 3.1 may be repeated to show that (D, ¢) & (D’, ¢’), which
implies D= uD’'u*. [l

Note that if Ky(A) is finitely generated and 0 - K(H)—> D —> A— 0 is an ex-
tension, then Ky(D) is also finitely generated (hence the direct sum of a torsion
group with a free abelian group), and Theorem 3.4 can be iterated in this case.

The following theorem applies to a more general situation.

3.4. THEOREM. Let D be a unital C*-subalgebra of a C*-algebra C such that
0—-C(X)RK(H)—»D3 A0 is an homogeneous extension, for some unital
C*-algebra A which has property P., and belongs to the class n. Let D' be a
C*-subalgebra C and d(D,D’)=k with a(4k)/2+2k<ey and a(dk)+6k<
1/103. If every pure extension of K.(X) by K.(A) splits, then D= uD’u* for
some unitary operator u.

Proof. First we note that by [11, Theorem 3.8] C(X)® K(H) has property P,
for e=1/103. Then let (D’, ¢’) be the extension given by 2.4. Now usual arguments
show that D’ is unital and by construction (D', ¢’) is also a unital extension. Now
by 2.6 (ii), (D, ¢) ¥ (D’, ¢’) and this would imply that (D, ¢) 5 (D’, ¢’) if we
show that (D’, ¢") is also a homogeneous extension (see 1.3). But this follows from
2.9 (ii) and the remark made after 2.8. This ends the proof of the theorem. ]

REFERENCES

1. L. Brown, R. Douglas, and P. Fillmore, Extensions of C*-algebras and K-homology,
Ann. of Math. (2) 105 (1977), 265-324.

2. R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math.
Soc. 132 (1968), 79-99.



338 MAHMOOD KHOSHKAM

E. Christensen, Perturbation of operator algebras, Invent. Math. 43 (1977), 1-13.

, Near inclusions of C*-algebras, Acta Math. 144 (1980), 249-265.

. J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977),

173-185.

, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181-197.

L. Fuchs, Abelian groups, Hungarian Academy of Sciences, Budapest, 1958.

8. G. G. Kasparov, The operator K-functor and extensions of C*algebras, 1zv. Akad.
Nauk SSSR Ser. Mat. 44 (1980), 571-636.

9. M. Khoskham, Perturbations of C*-algebras and K-Theory, J. Operator Theory 12
(1984), 89-99.

10. J. Phillips, Perturbations of C*-algebras, Indiana Univ. Math. J. 23 (1974), 1167-1176.

11. J. Phillips and 1. Raeburn, Perturbations of C*-algebras 11, Proc. London Math.
Soc. (3) XLIII (1981), 46-72.

12. M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous C*-extensions of
C(X)®K(H), I, J. Operator Theory 1 (1979), 55-108.

13. J. Rosenberg and C. Schochet, The classification of extensions of C*-algebras, Bull.
Amer. Math. Soc. (N.S.) 4 (1981), 105-110.

14. C. Schochet, Topological method for C*-algebras 11. geometric resolutions and the
Kiinneth formula, Pacific J. Math. 98 (1982), 443-458.

15. G. Skandalis, On the strong Ext bifunctor, Queen’s Mathematical preprint #1983-19.

16. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine

Pures Appl. 21 (1976), 97-113.

Lll-h?-)

e

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario

Current address:
Department of Mathematics
University of Saskatchewan
Saskatoon, Saskatchewan



