ON THE UNITARY EQUIVALENCE OF CLOSE C*-ALGEBRAS

Mahmood Khoshkam

Introduction. A central question in the theory of perturbations of C^* -algebras is to determine which C^* -algebras A satisfy the following property: Every C^* -algebra B "sufficiently close" to A is unitarily equivalent to it (cf. [3], [4], [11]). In this paper we use "Ext" theory in order to find new C^* -algebras with this property.

Let D be a separable C^* -subalgebra of a C^* -algebra C and suppose that D is an extension of a C^* -algebra A by a C^* -algebra I. Under certain assumptions on A and I we show that if D' is a C^* -subalgebra of C, "sufficiently close" to D, then D and D' are unitarily equivalent. To that end, we prove that D' is also an extension of A by I and show that these two extensions are unitarily equivalent. This second problem is dealt with by viewing the two extensions of A by I given by D and D' through the six-term exact sequence of K-theory associated with the two extensions, using the Rosenberg and Schochet universal coefficient formula (cf. [13]) and Theorem 2.11 of [9].

I would like to express my gratitude to G. Skandalis for his numerous helpful suggestions.

NOTATIONS. Throughout this paper H will denote a separable infinite dimensional Hilbert space. $\mathcal{L}(H)$ is the C^* -algebra of bounded linear operators on H and K(H) is the C^* -algebra of compact operators. If A is a C^* -algebra M(A) denotes the multiplier algebra of A.

The distance between the C^* -subalgebras A and B of a C^* -algebra C is defined by

$$d(A, B) = \operatorname{Max} \left\{ \sup_{a \in A_1} \inf_{b \in B_1} ||a - b||; \sup_{b \in B_1} \inf_{a \in A_1} ||a - b|| \right\},\,$$

where A_1 and B_1 denote the unit balls of A and B respectively.

- 1. Some results from the theory of extensions. Here we recall some facts about Kasparov's bi-functor Ext(A, B) (cf. [8]).
- 1.1. Let A be a separable nuclear C^* -algebra and B a C^* -algebra with countable approximate unit. An (A, B) extension is a short exact sequence

$$0 \to B \otimes K(H) \to D \xrightarrow{\phi} A \to 0$$
.

Such an extension will be denoted by the pair (D, ϕ) . We note that (cf. [2]) such extensions are in one-to-one correspondence with *-homomorphisms $\sigma: A \to M(B \otimes K(H))/B \otimes K(H)$. Two extensions σ_1 and σ_2 are said to be unitarily equivalent (write $\sigma_1 \ \overline{u} \ \sigma_2$) if there exists a unitary $u \in M(B \otimes K(H))$ such

Received June 13, 1984. Final revision received July 23, 1984. Michigan Math. J. 31 (1984).

that $\sigma_1(a) = u\sigma_2(a)u^*$ for every $a \in A$. An extension σ is said to be trivial if it has a lifting $\pi: A \to M(B \otimes K(H))$. The sum $\sigma_1 \oplus \sigma_2$ is defined to be the direct sum $\sigma_1 \oplus \sigma_2(a) = \sigma_1(a) \oplus \sigma_2(a)$ (with the identification of $M_2(M(B \otimes K(H)))$) with $M(B \otimes K(H))$. Now Ext(A, B) is the set of equivalence classes of (A, B) extensions with respect to the relation: $\sigma_1 \sim \sigma_2$ if and only if there exist trivial extensions τ_1, τ_2 such that $\sigma_1 \oplus \tau_1 \underbrace{\pi}_{\mathcal{I}} \sigma_2 \oplus \tau_2$.

1.2. In 1.1 if A and B are unital one may define $\operatorname{Ext}_s(A,B)$ to be the set of unital extensions divided by the equivalence relation $\phi_1 \sim \phi_2$ if and only if there exist unitarily trivial extensions τ_1 and τ_2 such that $\phi_1 \oplus \tau_1 = \phi_2 \oplus \tau_2$. Here an extension τ is said to be unitarily trivial if it has a unital lifting $\pi: A \to M(B \otimes K(H))$. In [15] G. Skandalis studies the bi-functor $\operatorname{Ext}_s(A,B)$ and shows that it is a group that is homotopy invariant in both variables and that $\operatorname{Ext}_s(A,B) \cong \operatorname{Ext}(A_C,B \otimes C_0(\mathbf{R}))$, where

$$A_c = \{f : [0,1] \to A : f(1) = 0, f(0) \in \mathbb{C}\}.$$

In the case that $B = \mathbb{C}$ it follows from Voiculescu's theorem [16] that $\operatorname{Ext}_s(A, B) = \operatorname{Ext}_s(A)$, where $\operatorname{Ext}_s(A)$ is the Brown-Douglas-Fillmore strong Ext group [1]—that is, the group of unitary equivalence classes of unital essential extensions of A by K(H).

- 1.3. If A is a unital C^* -algebra and X is a compact finite dimensional metrizable space, then by the result of Pimsner, Popa, and Voisculescu [12] $\operatorname{Ext}(A, C(X))$ is the group of homogeneous extensions $0 \to C(X) \otimes K(H) \to D \xrightarrow{\phi} A \to 0$ [12, Definition 1.7] divided by unitary equivalence.
- 1.4. To each extension $0 \to B \otimes K(H) \to D \xrightarrow{\phi} A \to 0$ one can associate a sixterm exact sequence of abelian groups

$$K_1(B) \to K_1(D) \xrightarrow{\phi_*} K_1(A) \xrightarrow{\delta_1} K_0(B) \to K_0(D) \xrightarrow{\phi_*} K_0(A) \xrightarrow{\delta_0} K_1(B)$$
.

The pair (δ_0, δ_1) defines a homomorphism

$$\gamma : \operatorname{Ext}(A, B) \to \operatorname{Hom}(K_0(A), K_1(B)) \oplus \operatorname{Hom}(K_1(A), K_0(B)).$$

J. Rosenberg and C. Schochet [13] showed that for a large class n of C^* -algebras, the homomorphism γ is onto; they established the following "universal coefficient" formula

$$0 \to \operatorname{Ext}(K_0(A), K_0(B)) \oplus \operatorname{Ext}(K_1(A), K_1(B))$$

$$\to \operatorname{Ext}(A, B) \xrightarrow{\gamma} \operatorname{Hom}(K_0(A), K_1(B)) \oplus \operatorname{Hom}(K_1(A), K_0(B)) \to 0.$$

1.5. We recall that a subgroup H of an abelian group G is said to be a pure subgroup if for every positive integer n and $h \in H$ the equation nx = h is solvable in H whenever it has a solution in G [7, §23]. Equivalently $H \otimes \Gamma \xrightarrow{i \otimes id} G \otimes \Gamma$ is injective for every abelian group Γ , where $i: H \to G$ is the inclusion map. If H is a pure subgroup of G we say $0 \to H \to G \to G/H \to 0$ is a pure extension of G/H by H.

2. Some lemmas.

2.1. DEFINITION. We say that a nuclear C^* -algebra A has property P_{ϵ} if for each pair of C^* -algebras, $B \subseteq C$, and for every *-monomorphism $i: A \to C$ the relation $d(i(A), B) < \epsilon$ implies that there exists a *-isomorphism $\rho: A \to B$. If moreover d(i(A), B) < 1/38, we require that $\rho_*: K_*(A) \to K_*(B)$ is the closeness isomorphism given by proposition 2.4 of [9]. This closeness isomorphism is obtained by mapping a projection (or a unitary) in $M_n(A^+)$ to a nearby projection (or a unitary) in $M_n(B^+)$.

Commutative C^* -algebras, separable unital continuous trace C^* -algebras, and ideal C^* -algebras all have this property for suitable ϵ 's (cf. [3], [11]).

2.2. REMARK. We will use Lemma 1.2 and part of Lemma 2.6 of [10] in several places. Using the estimate of [9, Lemma 1.10] in the proof of these lemmas one obtains the following: If A and B are C^* -subalgebras of a C^* -algebra D such that d(A, B) = k < 1/11 and I is a closed ideal in A, then there exists a unique closed ideal in B such that $d(I, J) \le \alpha(2k) + 3k$. Moreover, there are C^* -subalgebras A_0 and B_0 of a C^* -algebra D_0 , respectively *-isomorphic to A/I and B/J, such that

$$d(A_0, B_0) \le \frac{\alpha(2k)}{2} + k$$
, where $\alpha(k) = 2\sin\frac{\arcsin k}{2}$.

We are going to use the function $\alpha: [0,1] \to [0,\sqrt{2}]$ frequently in this paper.

2.3. LEMMA. Let A and B be separable C^* -algebras in the class n (see 1.4) such that every pure extension (see 1.5) of $K_*(B)$ by $K_*(A)$ splits. Let $0 \to B \to D \xrightarrow{\phi} A \to 0$ be an extension such that for every nuclear C^* -algebra C the connecting maps of K-theory given by the extension $0 \to B \otimes C \to D \otimes C \xrightarrow{\phi \otimes id} A \otimes C \to 0$ are zero. Then (D, ϕ) defines the zero element of $\operatorname{Ext}(A, B)$.

Proof. By virtue of the universal coefficient formula (1.4) it suffices to show that

$$0 \to K_*(B) \to K_*(D) \xrightarrow{\phi_*} K_*(A) \to 0$$

splits. If this does not split the hypothesis of the Lemma implies that $K_*(B)$ is not a pure subgroup of $K_*(D)$ (see 1.5). This is turn implies that there exists a positive integer n such that $K_*(B) \otimes \mathbb{Z}_n \to K_*(D) \otimes \mathbb{Z}_n$ is not injective. This, together with the fact that $K_*(0_{n+1}) = \mathbb{Z}_n$ (cf. [6]) and the Künneth formula [14, Theorem 4.1], imply that $K_*(B \otimes 0_{n+1}) \to K_*(D \otimes 0_{n+1})$ is not injective $(0_m$ denotes the Cuntz algebra [5]). But this last statement contradicts the hypothesis by letting $C = 0_{n+1}$, and the proof is complete.

2.4. LEMMA. Let D and D' be C^* -subalgebras of a C^* -algebra C such that d(D,D')=k < 1/100. Suppose that $0 \to I \xrightarrow{j} D \xrightarrow{\phi} A \to 0$ is exact, where A and I are C^* -algebras having property P_{ϵ_1} and P_{ϵ_2} respectively. If $\alpha(2k)/2 + k < \epsilon_1$ and $\alpha(2k)+3k < \epsilon_2$, then there exist *-homomorphisms j' and ϕ' making $0 \to I \xrightarrow{j'} D' \xrightarrow{\phi'} A \to 0$ exact and the following diagram commutative.

$$K_{1}(I) \rightarrow K_{1}(D) \xrightarrow{\phi_{\star}} K_{1}(A) \xrightarrow{\delta_{1}} K_{0}(I) \rightarrow K_{0}(D) \xrightarrow{\phi_{\star}} K_{0}(A) \xrightarrow{\delta_{0}} K_{1}(I).$$

$$\parallel \qquad \uparrow \downarrow \qquad \parallel \qquad \parallel \qquad \uparrow \downarrow \qquad \parallel \qquad \parallel$$

$$K_{1}(I) \rightarrow K_{1}(D') \xrightarrow{\phi_{\star}'} K_{1}(A) \xrightarrow{\delta_{1}'} K_{0}(I) \rightarrow K_{0}(D') \xrightarrow{\phi_{\star}'} K_{0}(A) \xrightarrow{\delta_{0}'} K_{1}(I)$$

Proof. With no loss of generality we may assume that I is contained in D as a closed ideal. Then since d(D,D')=k by Remark 2.2 there exists a unique closed ideal I' in D' such that $d(I,I') \leq 3k + \alpha(2k)$. Also there are C^* -algebras D_0 and D'_0 *-isomorphic to D/I and D'/I' such that $d(D_0,D'_0) < k + \alpha(2k)/2$. Now since I has property P_{ϵ_2} and $d(I,I') \leq 3k + \alpha(2k) < \epsilon_2$, there exists an *-isomorphism $j':I \to I'$. Also since A has property P_{ϵ_1} and $A \cong D/I \cong D_0$ the relation $d(D_0,D'_0) \leq \alpha(2k)/2+k < \epsilon_1$ implies that D_0 and D'_0 are *-isomorphic. This and the fact that D_0 and D'_0 are respectively *-isomorphic to D/I and D'/I' give a *-isomorphism $\rho:D/I \to D'/I'$. Now define $\phi':D' \to A$ by $\phi'(d')=\phi(d)$ if $\rho(d+I)=d'+I'$. It is routine to check that ϕ' is well-defined and that it is a *-homomorphism making $0 \to I \xrightarrow{j'} D' \xrightarrow{\phi'} A \to 0$ exact. Since k < 1/100 the commutativity of the diagram follows from [9, Theorem 2.11] and the fact that ρ and j' induce the isomorphism τ mentioned in 2.1.

- 2.5. LEMMA. Let D, D', I, ϕ, ϕ' and k be as in 2.4. Moreover, assume that A and I belong to the class n (see 1.4).
 - (i) If (D, ϕ) defines the zero element of $\operatorname{Ext}(A, I)$, then so does (D', ϕ') .
- (ii) If k < 1/200, $\alpha(4k) + 6k < \epsilon_1$, $\alpha(4k)/2 + 2k < \epsilon_2$, and if A and D are unital and (D, ϕ) defines the zero element of $\operatorname{Ext}_s(A, I)$, then so does (D', ϕ') .
- **Proof.** (i) Since (D, ϕ) is a trivial extension the connecting maps δ_0 and δ_1 are zero and the extension (D, ϕ) is given by the split short exact sequence $0 \to K_*(I) \to K_*(D) \xrightarrow{\phi_*} K_*(A) \to 0$. Now the commutativity of the diagram given in 2.4 obviously implies that δ'_0 and δ'_1 , the connecting maps given by the extension (D', ϕ') , are also zero and that $0 \to K_*(I) \to K_*(D') \xrightarrow{\phi'_*} K_*(A) \to 0$ splits. Now Rosenberg, Schochet's universal coefficient formula (see 1.4) shows that (D', ϕ') is trivial in Ext(A, I).
- (ii) We recall our comment in 1.2, that $\operatorname{Ext}_s(A,I) \cong \operatorname{Ext}(A_c,I \otimes C_0(\mathbf{R}))$. This isomorphism is given by the map that sends an extension $0 \to I \to E \xrightarrow{\psi} A \to 0$ to the extension $0 \to I \otimes C_0(0,1) \to E_c \xrightarrow{\hat{\psi}} A_c \to 0$, where $(\hat{\psi}f)(t) = \psi(f(t))$ for every $f \in E_c$ and $t \in [0,1]$ (see 1.2 for the notation). Now by [4, Theorem 3.4] $d(D_c, D'_c) \leq 2d(D, D')$ and we can apply the first part of the lemma to the extensions $(D_c, \hat{\phi})$ and $(D'_c, \hat{\phi}')$. This implies that $(D'_c, \hat{\phi}')$ is trivial in $\operatorname{Ext}(A_c, I \otimes C_0(\mathbf{R}))$ which in turn shows that (D', ϕ') is trivial in $\operatorname{Ext}_s(A, I)$ as desired.
- 2.6. LEMMA. Let D, D', I, A, ϕ, ϕ' and k be as in 2.5. Furthermore let k < 1/2400. If every pure extension of $K_*(I)$ by $K_*(A)$ splits, then
 - (i) $(D, \phi) \sim (D', \phi')$ in $\operatorname{Ext}(A, I)$; and
 - (ii) when A and D are unital, then $(D, \phi) \sim_s (D', \phi')$ in $\operatorname{Ext}_s(A, I)$.
- *Proof.* (i) Let x in Ext(A, I) be the difference of the two extensions (D, ϕ) and (D', ϕ') . Since d(D, D') = k by [4, Theorem 3.1], $d(D \otimes B, D' \otimes B) \leq 12k < 12$

1/100 for every nuclear C^* -algebra B. Therefore by [9, Theorem 2.11] the two extensions

$$0 \to I \otimes B \otimes K(H) \to D \otimes B \to A \otimes B \to 0$$
 and $0 \to I \otimes B \otimes K(H) \to D' \otimes B \to A \otimes B \to 0$

have the same connecting maps δ_0 , δ_1 . Using this and the universal coefficient formula (1.4) we deduce that the hypothesis of 2.3 holds for the extension x. Hence x is trivial which shows that $(D, \phi) \sim (D', \phi')$ in Ext(A, I).

- (ii) This follows simply by applying (i) to $(D_c, \hat{\phi})$ and $(D'_c, \hat{\phi}')$, noting that by [4, Theorem 3.2] $d(D_c, D'_c) \le 2d(D, D')$, where $(D_c, \hat{\phi})$ and $(D'_c, \hat{\phi}')$ are described in the proof of Lemma 2.5 (ii).
- 2.7. LEMMA. Let D, D' be C^* -subalgebras of a C^* -algebra C and let I, J be closed ideals in D and I', J' closed ideals in D'. Let $K = \{x \in D \mid xJ \subseteq I\}$ and $K' = \{x \in D' \mid xJ' \subseteq I'\}$. Then
 - (i) If $I' \subseteq J'$ and d(I, I') + d(J, J') < 1, then $I \subseteq J$.
 - (ii) $d(K, K') \le 3d(D, D') + 2d(I, I') + 2d(J, J')$.

Proof. Let $d(I,I') = \gamma$, $d(J,J') = \delta$ and d(D,D') = k. (i) Let $x \in I$, $||x|| \le 1$. Then there exists $x' \in I'$ such that $||x'|| \le 1$ and $||x-x'|| \le \gamma$. As $I' \subseteq J'$ there exists $y \in J$ with $||x'-y|| \le \delta$. Hence $||x-y|| \le \delta + \gamma$. Let $\pi: I \to D/J$ be the projection. We get $||\pi|| \le \gamma + \delta < 1$. This implies that $d(I \cap J, I) < 1$, which shows that $I \cap J = I$, that is, $I \subseteq J$.

(ii) Let $\epsilon > 0$. Let $x \in K$ with $||x|| \le 1$. Let $x' \in D'$ with $||x - x'|| \le k + \epsilon$, and $||x|| \le 1$. Let $z' \in J'$, $||z'|| \le 1$ and choose $z \in J$ such that $||z - z'|| \le \delta$ and $||z|| \le 1$. Then

$$||x'z'-xz|| \le ||x'(z'-z)|| + ||(x'-x)z|| \le k + \delta + \epsilon.$$

Now $xz \in I$. Hence there exists $y \in I'$ with $||xz-y|| \le \gamma$. We get $||x'z'-y|| \le k+\delta+\gamma+\epsilon$. Let $p:D'\to M(J'/I')$ be the natural map (given by $p(a)\bar{b}=a\bar{b}$, $a\in D'$, $b\in J'$, where \bar{b} denotes the class of b modulo I'). We have $||p(x')|| \le k+\delta+\gamma+\epsilon$. Hence there exists $x''\in\ker p=K'$ with $||x'-x''|| \le k+\delta+\gamma+\epsilon$. Put $\hat{x}=x''/\sup(1,||x''||)$. We have $||x'-\hat{x}|| \le 2(k+\delta+\gamma+\epsilon)$. Hence $||x-\hat{x}|| \le 3k+2\delta+2\gamma+3\epsilon$. By symmetry for every $y\in K'$, $||y||\le 1$ we can find $\hat{y}\in K$ such that $||\hat{y}||\le 1$ and $||y-\hat{y}||\le 3k+2\delta+2\gamma+3\epsilon$. Hence $d(K,K')\le 3k+2\delta+2\gamma+3\epsilon$. But ϵ was arbitrary and we must have $d(K,K')\le 3k+2\delta+2\gamma$.

2.8. DEFINITION. An extension $0 \rightarrow I \rightarrow D \rightarrow A \rightarrow 0$ is said to be a homogeneous extension if for every closed ideal J in I the homomorphism $D/I \rightarrow M(I/J)$ is injective.

We note that if $I = C(X) \otimes K(H)$ this definition coincides with the definition of homogeneous X-extension given by Pimsner, Popa, and Voiculescu (cf. [12]).

- 2.9. LEMMA. Let D and D' be C^* -subalgebras of a C^* -algebra C such that d(D,D')=k < 1/11. Let I be a closed ideal in D and I' the closed ideal in D' such that $d(I,I') \leq 3k + \alpha(2k)$ (see 2.2). Let $\phi:D \to D/I$ and $\phi':D' \to D'/I'$ be the quotient maps.
- (i) If I is an essential ideal in D and $9k+2\alpha(2k)<1$, then I' is an essential ideal in D.

(ii) If the extension (D, ϕ) is homogeneous and $15k + 4\alpha(2k) < 1$, then (D', ϕ') is also homogeneous.

Proof. (i) If I is an essential ideal, then Ann(I, D) = 0. Now 2.7 (ii) implies that $d(Ann(I, D), Ann(I', D')) \le 9k + 2\alpha(2k) < 1$. Hence Ann(I', D') = 0.

(ii) This also follows by applying 2.7 and definition 2.8.

3. Main results.

3.1. THEOREM. Let D be a C^* -subalgebra of a C^* -algebra C such that $0 \to K(H) \to D \xrightarrow{\phi} A \to 0$ is an essential extension. Let D' be a C^* -subalgebra of C and let d(D, D') = k. If A is commutative and $\alpha(4.2.299(3k + \alpha(2k))) < 1/200$ or A is separable unital with continuous trace and

$$3k + \alpha(2k) < (10^4.86.35.12)^{-2}(2.299)^{-1}$$

then $D = uD'u^*$ for a unitary operator u.

Proof. Since d(D, D') = k < 1/11 by 2.2 there exists a unique closed ideal I' in D' such that $d(I', K(H)) \le 3k + \alpha(2k) = \delta$. As $\delta < 1/600$ by [3, Theorem 5.1] there exists a unitary operator v such that $K(H) = vI'v^*$ and $||v-1|| < 299\delta$. Now $d(D, vD'v^*) < 2.299\delta$ and replacing D' by $vD'v^*$ we may and will assume that $K(H) \subset D'$. Then $d(D/K(H), D'/K(H)) < 2.299\delta$ and $D/K(H) \cong A$. Hence there exists a *-isomorphism $\rho: D/K(H) \to D'/K(H)$ such that $||\rho-\mathrm{id}_{D/K(H)}|| \le 2.\alpha(4.2.299\delta) < 1/100$ when A is commutative [4, Theorem 5.3] and

$$\|\rho - \mathrm{id}_{D/K(H)}\| < 100.86.35.12(2.299)^{1/2} < 1/100$$

in the case that A is unital separable with continuous trace [11, Theorem 4.22]. Let $0 \to K(H) \to D' \xrightarrow{\phi'} A \to 0$ be the extension obtained as described in 2.4 (here I = I' = K(H)) and let $\sigma, \sigma' : A \to L(H)/K(H)$ be the *-homomorphisms associated with (D, ϕ) and (D', ϕ') respectively. Then it is easy to verify that $\|\sigma - \sigma'\| = \|\rho - \mathrm{id}_{D/K(H)}\|$. Choose an extension σ'' such that $\sigma \oplus \sigma''$ is unitarily trivial. Then since $\|\sigma \oplus \sigma'' - \sigma' \oplus \sigma''\| = \|\sigma - \sigma'\|$ we have

$$d(q^{-1}(\sigma \oplus \sigma''(A)), q^{-1}(\sigma' \oplus \sigma''(A))) < \|\rho - \mathrm{id}_{D/K(H)}\| < \frac{1}{100}$$

 $(q: L(H) \to L(H)/K(H))$ is the quotient map). Now Lemma 2.5 (ii) when applied to the extensions $\sigma \oplus \sigma''$ and $\sigma' \oplus \sigma''$ implies that $\sigma' \oplus \sigma''$ is also unitarily trivial. This obviously means that σ and σ' belongs to the same class in $\operatorname{Ext}_s(A, K(H))$, that is, $\sigma_{\widetilde{s}}$ σ' . Now since (D, ϕ) is an essential extension it follows from 2.9 (i) that (D', ϕ') is also an essential extension. Hence $\sigma_{\widetilde{s}}$ σ' implies that $\sigma_{\widetilde{u}}$ σ' (see 1.2). This obviously shows that $D = uD'u^*$ as desired.

3.2. COROLLARY. Let D and D' be C^* -algebras acting on H and suppose that D is generated by the identity operator K(H) and a countable family of essentially commutative, essentially normal operators. If d(D,D')=k and $\alpha(4.2.299(3k+\alpha(2k))<1/200$, then $D=uD'u^*$ for some unitary operator u.

Proof. The assumption implies that D is an extension of C(X) by K(H) for some compact metrizable space X [1]. Now the corollary follows directly from 3.1.

It is desirable to iterate 3.1 as this would imply that property P_{ϵ} (see 2.1) is preserved under extension by K(H) for a certain class of C^* -algebras. However, the argument given in 3.1 can not be repeated since the unitary u obtained there may not be close to 1. This problem (although not in full generality) is avoided in the following.

3.3. THEOREM. Let D be a C^* -subalgebra of a C^* -algebra C such that $0 \rightarrow K(H) \rightarrow D \rightarrow A \rightarrow 0$ is an essential extension. Let D' be a C^* -subalgebra of C and let d(D,D')=k. Suppose that A is in the class n (see 1.4) and has property P_{ϵ_0} . If $\alpha(4k)/2+2k < \epsilon_0$ and $\alpha(4k)+6k < 1/600$ and $K_0(A)$ is the direct sum of a torsion group with a free abelian group, then $D=uD'u^*$ for some unitary operator u.

Proof. Since K(H) has the property P_{ϵ} with $\epsilon = 1/600$ [4, Theorem 5.1], by using 2.4 we obtain a second essential extension $0 \to I \to D' \stackrel{\phi'}{\to} A \to 0$. Now the assumption on $K_0(A)$ implies that pure extensions of $\mathbf{Z} = K_0(K(H))$ by $K_0(A)$ split. Hence by 2.6 (ii), $(D, \phi)_{\widetilde{s}}(D', \phi')$. Now the argument given at the end of the proof of 3.1 may be repeated to show that $(D, \phi)_{\widetilde{u}}(D', \phi')$, which implies $D = uD'u^*$.

Note that if $K_0(A)$ is finitely generated and $0 \rightarrow K(H) \rightarrow D \rightarrow A \rightarrow 0$ is an extension, then $K_0(D)$ is also finitely generated (hence the direct sum of a torsion group with a free abelian group), and Theorem 3.4 can be iterated in this case. The following theorem applies to a more general situation.

3.4. THEOREM. Let D be a unital C^* -subalgebra of a C^* -algebra C such that $0 \to C(X) \otimes K(H) \to D \xrightarrow{\phi} A \to 0$ is an homogeneous extension, for some unital C^* -algebra A which has property P_{ϵ_0} and belongs to the class n. Let D' be a C^* -subalgebra C and d(D,D')=k with $\alpha(4k)/2+2k<\epsilon_0$ and $\alpha(4k)+6k<1/103$. If every pure extension of $K_*(X)$ by $K_*(A)$ splits, then $D=uD'u^*$ for some unitary operator u.

Proof. First we note that by [11, Theorem 3.8] $C(X) \otimes K(H)$ has property P_{ϵ} for $\epsilon = 1/103$. Then let (D', ϕ') be the extension given by 2.4. Now usual arguments show that D' is unital and by construction (D', ϕ') is also a unital extension. Now by 2.6 (ii), $(D, \phi)_{\widetilde{s}}(D', \phi')$ and this would imply that $(D, \phi)_{\widetilde{u}}(D', \phi')$ if we show that (D', ϕ') is also a homogeneous extension (see 1.3). But this follows from 2.9 (ii) and the remark made after 2.8. This ends the proof of the theorem.

REFERENCES

- 1. L. Brown, R. Douglas, and P. Fillmore, *Extensions of C*-algebras and K-homology*, Ann. of Math. (2) 105 (1977), 265–324.
- 2. R. C. Busby, *Double centralizers and extensions of C*-algebras*, Trans. Amer. Math. Soc. 132 (1968), 79–99.

- 3. E. Christensen, *Perturbation of operator algebras*, Invent. Math. 43 (1977), 1-13.
- 4. ——, Near inclusions of C*-algebras, Acta Math. 144 (1980), 249–265.
- 5. J. Cuntz, *Simple C*-algebras generated by isometries*, Comm. Math. Phys. 57 (1977), 173–185.
- 6. ——, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181–197.
- 7. L. Fuchs, Abelian groups, Hungarian Academy of Sciences, Budapest, 1958.
- 8. G. G. Kasparov, *The operator K-functor and extensions of C*algebras*, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 571-636.
- 9. M. Khoskham, *Perturbations of C*-algebras and K-Theory*, J. Operator Theory 12 (1984), 89-99.
- 10. J. Phillips, *Perturbations of C*-algebras*, Indiana Univ. Math. J. 23 (1974), 1167–1176.
- 11. J. Phillips and I. Raeburn, *Perturbations of C*-algebras* II, Proc. London Math. Soc. (3) XLIII (1981), 46-72.
- 12. M. Pimsner, S. Popa, and D. Voiculescu, *Homogeneous C*-extensions of* $C(X) \otimes K(H)$, I, J. Operator Theory 1 (1979), 55–108.
- 13. J. Rosenberg and C. Schochet, *The classification of extensions of C*-algebras*, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 105–110.
- 14. C. Schochet, *Topological method for C*-algebras* II: geometric resolutions and the Künneth formula, Pacific J. Math. 98 (1982), 443-458.
- 15. G. Skandalis, On the strong Ext bifunctor, Queen's Mathematical preprint #1983-19.
- 16. D. Voiculescu, *A non-commutative Weyl-von Neumann theorem*, Rev. Roumaine Pures Appl. 21 (1976), 97-113.

Department of Pure Mathematics University of Waterloo Waterloo, Ontario

Current address: Department of Mathematics University of Saskatchewan Saskatoon, Saskatchewan