REPRESENTATIONS OF THE ‘
DISCRETE HEISENBERG GROUP AND
COCYCLES OF AN IRRATIONAL ROTATION
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Introduction. One of the most familiar examples in ergodic theory is that of an
irrational rotation of a circle. These rotations are well understood in many ways,
but continue to be studied in their appearances outside ergodic theory proper.
For example, we mention their uses in C*-algebras [4, 25, 26, 30], function
algebras [10, 12] and unitary representations of groups [15, 16, 22, 23, 28]. The
main purpose of this paper is to present some information about (one-) cocycles
(defined below) of irrational rotations in the context of representation theory,
and to raise a few questions in that same context.

The existence of irreducible cocycles of every dimension is known from gen-
eral arguments [28, 32, 35], and explicit formulas have been given in some cases
[1, 5, 13, 15]. Our interest is in specific formulas, just as specific formulas are
sought when studying group representations. Indeed, we derive cocycle formulas
from formulas for representations of the discrete Heisenberg group, and then
use the cocycles to get formulas for representations of the Mautner group. Thus
we are closely tied to representation theory in our motivation and in our method.
Besides the explicitness of the cocycle formulas, we want to emphasize that they
arise in a systematic way in the representation theory setting.

Cocycles appear in the representation theory of locally compact groups (taken
here to be second countable) when forming induced representations. Let G be a
locally compact group with a (right) Borel action on a compact metric space X. If
U is the unitary group of a Hilbert space X, a Borel function S: XX G — U such
that S(x, g18,)=S(x, g)S(xg;,8,) forxe X, g,,g,€G is called a cocycle for the
action. If X X G is given its natural groupoid structure, such an S is a homomor-
phism of XX G to ‘U, i.e. a representation of X X G [22, 23, 27, 28]. Suppose u
is a finite Borel measure on X, quasi-invariant and ergodic for the action of G,
and v is a finite measure equivalent to Haar measure on G. By an intertwining
between two cocycles S and S’ for the action of G on X, relative to u, we mean an
operator-valued function 4 on X such that A(x)S(x,g)=S"(x,g)A(xg) for
p X v almost all pairs (x, g) in X X G. Two such cocycles S and S’ are equivalent if
there exists a unitary-valued intertwining between them, and a single cocycle S is
called irreducible (relative to p) if the only intertwinings between S and itself are
the scalar operator-valued functions.

The groups of interest to us here are semidirect products G=/NK where N is
normal and abelian. Via inner automorphism, there are actions of both G and K
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on the dual N of N. If p is a finite measure on N, which is ergodic and quasi-
invariant for the action of G (equivalently for the action of K), then there is a
one-one correspondence between the set of equivalence classes of irreducible
cocycles S for the action of K on N relative to p, and the set of equivalence
classes of irreducible unitary representations U of G for which the projection-
valued measure associated by Stone’s theorem to U|y has the same null sets as .
See [21] and [28]. This correspondence can be described in two stages as follows:

1. There exists a ‘‘special’’ one-dimensional cocycle M, for the action of G
on N relative to u, such that the map S>M®& (S+w) (7 the natural map of G
onto K) defines a one-one correspondence between the set of equivalence classes
of irreducible cocycles S for the action of K relative to u, and the set of equiva-
lence classes of irreducible cocycles R for the action of G relative to pu.

2. Let R be a cocycle for the action of G on N relative to u, and suppose that
R takes values in the unitary group on a Hilbert space H(R). Because p is quasi-
invariant for the action of G, there exists a nonnegative function p on N X G such
that the following formula defines a unitary representation U of G on the Hilbert
space L*(u; H(R)):

[Ug f1(x)=p(x, g)[R(x,8)](f(xg)).

This U is called the representation of G induced by R, and it is denoted U=
IND(R). The map R — IND(R) defines a one-one correspondence between the
set of equivalence classes of irreducible cocycles R for the action of G on N rela-
tive to u, and the set of equivalence classes of irreducible unitary representations
U of G for which the projection-valued measure associated to U [ ~ has the same
null sets as u.

The one-one correspondence S— IND[M® (Sew)] is useful in both direc-
tions. From information about cocycles we can deduce facts about representa-
tions, and vice versa.

In this paper we study two groups. In one of them the group K is Z, the
measures u are concentrated on circles and we have irrational rotations. In the
other K=R, the measures u are concentrated on 2-tori and the action is an irra-
tional winding.

In §1 we define the discrete Heisenberg group and use some of its representa-
tions to get formulas for cocycles of an irrational rotation, by means of the one-
one correspondence just described. These cocycles belong to a certain class for
which we can describe the cohomology relation in terms of the parameters
involved, and this is done in §2. There we show how the formulas of §1 fit with
those of Bagchi, Mathew and Nadkarni [1], with those of Ismagilov [13], with
one of I. Brown [5] and some of S. Kawakami [15]. In §3 we use an equivalence
of an irrational rotation with an irrational flow on a 2-torus to transfer cocycles
to the flow. Then we use these to make representations of the Mautner group,
this being a standard example of a group for which such flows arise. Finally, §4
contains some questions related to the material in the earlier sections.

Here is some notation used throughout the paper: Z = the integers, R=the real
numbers, C= the complex numbers, 7= {z€ C: |z|=1]} (called “‘the circle’’).
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1. Construction of irreducible cocycles. Let u be normalized Lebesgue
measure on 7 and choose an element p € T of infinite order. (Then Z can act on T
by the formula aen=ap”", an irrational rotation.) Our version of the discrete
Heisenberg group comes from a 2-cocycle o on Z? defined by o( Di1,415 D2, @) =
p ~P192, We make a group G =(Z?)° from the set 7 X Z? in the standard manner:
(1, P15, 1) (02, P2, @2) = (o 0( Py, G153 P2, G2), P1+ P2, 41+ q2). Then part of
the dual of G is in one-one correspondence with the o-dual of Z2. We are inter-
ested in constituents of a certain direct integral decomposition of the o-regular
representation, regarded as a representation of G, described as follows:

Let d=(d,, d,) be a pair of relatively prime integers, in which we take d, to be
positive to simplify the discussion. For each A € T such that N1=p and each pair
(£,7) € T?, define a representation V=V%"% of G, acting in L*(T, n), by

(Vaopag /) (@) =PI NGPa+1DG0 0 hp+eadfi)\9),

These are the constituents mentioned above, and we study their restrictions to
two particular normal subgroups, namely N o)={(w, p,0): w€T,pEZ) and
N, y={(0,0,9): w€E T,q€Z}. Each of these is abelian and has a dual isomor-
phic to Zx T. The following theorem is a direct consequence of the results of
[24].

THEOREM 1.1. Each V*™9 is an irreducible representation of G. V"9 is
unitarily equivalent to V"% if and only if d=d’ and there is a j € Z such that
EdZn_d1= (E’)dl(n’)_dlpj. Further, the retriction of yEnd po Nq, 0y (respectively
Nqo,1)) has a projection valued measure on the dual, Z X T, which has uniform
multiplicity d, (respectively d,) and whose null sets are those of the product of a
point mass at 1 on Z with ypon T.

REMARK. Of course, A is a parameter which we are holding fixed in this dis-
cussion. We shall see in §2 that A can be absorbed into the parameter 7.

Given (&g, 19, d), choose # € T'so that § = £¢1, and define A: L2(T) — L*(T) by
(Af) () =f(af). Then A is a unitary equivalence of V<0709 onto V"9 where
=0 "%y, We will work with these representations, and delete the superscript 1.

Our first goal is to write ¥=V"9 as an induced representation U®, where R is
a representation of the virtual group 7x G, and where (w, p, g¢) in G acts on « in
Tby o (w, p,q)=ap.

By the Corollary of Lemma 3 of [24], V| N(;,¢) is equivalent to a direct sum of
d, copies of x; L, where x, is the identity character of Tand L is the regular repre-
sentation of Z. Thus we want to find a representation equivalent to V acting in
the Hilbert space 3¢=L?*(T, C%), which is a space on which a representation of
G induced by a cocycle of T'x G is naturally defined.

Now V is defined on L*(7'), and we can define a unitary operator C: L*(T)—>3C
as follows: If f€ L?*(T) then f has a Fourier expansion f(a) = Li- _ cpa. Let
Cf: T— C°% be defined by

(@)= T capria’
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for 1</<d,. For f € 3C, with components fi,..., fq,, (C7)(a)= EJ‘-":l ajjj-(ozdl).
Hence, for (w, p, q) €G,

d
C—lf)(a)=wnt})\d1pq+(1/2)dzq2adlp+dzq El aj)\qjji,-((a)\q)dl)
Jj=1

=wn‘1)\—(1/2)d242 % (a)\q)j+d1p+dij;((a)\Q)dl).
i=1
We need to f1nd a g€ JC, with components g;, so that this function of « is
(C7'g) (@)= XL, a'g/(a). The terms «®? and f;((aN?)?) are functions of
a?, so we need to understand the terms o/ *+ %29,

For each g, choose m,(/j) in Z and /,(j) in (1,...,d,} so that j+d,q=
dymg(j)+1,(j). Then I, (j+1)=1,(j)+1 unless /,(j)=d,, when [,(j+1)=1.
Also mq(j+1) =mg,(j) unless /,(j)=d;, when m,(j+1)=m4(j) +1. Let P, be
the permutation matrix with (i, J) entry equal to §;, 1,0 Let Dy (o) be the (dlag-
onal) matrix with (i, j) entry equal to §;; 7\‘” ™)), Then we have

(V.

w,p,q

(V(Zf,,dp,q) C_lf)(a) =‘.,‘”,,61)\—(1/2)0'2(12 E (a)\q)dl(p+mq(f))+fq(j)‘}3,((a)\4)d1)
Jj=1

d
=\ T olg (ah),
j=1
where
dy
g1(e) = % 811, N (N7 D £ k)

d
— E 5” U ))\q(dlp+1+d2q) p+mq(1)f(a)\d1q)

Thus CV (w p.a)C ~1f=g, where g has components g;, and in matrix terms we
have

g(a)=an}\dIPCI+(1/2)d2q2aquDq(a)f(a)\dlq)-
Thus if R(a, (w, p, q)) =wn")\d1""+“/Z)dzqza”Pqu(a) we have

(CVEE, » CT' ) (@) =R(a, (v, p,q)) f(aN19).
A calculation shows that

R(a, (w1, p1,q1)) R(as (v, p1, q1), (w2, P2, q2)) =R(a, (w1, p1, q1) (w2, P2, G2))-

THEOREM 1.2. Each R is an irreducible d,-dimensional cocycle of the action
of G on T, relative to Lebesgue measure p. Two such cocycles R and R’ are
equivalent if and only if d=d’ and v = (v')*\p’ for some jEZ.

Proof. The calculations preceding the definition of R show that ¥4 is uni-
tarily equivalent to the induced representation U®. The proof then follows from
Theorem 9.1 of [28] and Theorem 1.1. a

We would like to break up each of these cocycles R as a tensor product of
cocycles on T'X G and T X Z. Define
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M(a, (w,p,q)) =wa? X174
S(a, @) =qIND% 4/, q)
where A'(a, q) =P, D, ().

THEOREM 1.3. Mis a oye-dimensional cocycle of TX G. S is an irreducible
d,-dimensional cocycle of TXZ, and R=M®S. Two Such cocycles S and S’ are
equivalent if and only if d\=d|, dy=dj, and n1= (v')%p’ for some jEZ.

Proof. These statements follow from elementary calculations, Theorem 1.2,
and Theorem 9.3 of [28]. ]

Thus, for every positive integer d;, we have exhibited an uncountable family of
inequivalent irreducible d;-dimensional cocycles of 7x Z. Indeed, the fact that
rotation by p is ergodic for Lebesgue measure implies that we have a set of equiv-
alence classes of representations which is not even countably separated, and this
is done for every finite dimension d,.

2. Other cocycle constructions. In this section we mention some other ways of
obtaining specific formulas for cocycles and compare these lists to the one in
Section §1, in the sense of equivalence. These formulas are due to Ismagilov, to
Bagchi, Mathew and Nadkarni, to I. Brown, and to S. Kawakami. B. Brencken
has found formulas of the same type using C*-algebras.

First we recall that a cocycle U for an integer action can be constructed simply
by giving the function U(e,1). The difficulty is in analyzing the equivalences
among cocycles, or rather in giving formulas for which this analysis can be
readily carried out. Ismagilov [13] proposes the following scheme for any space
X and transformation T: Let P be the matrix of a cyclic permutation of the
basis in C”. Let D be the diagonal matrix with entries d,(x),...,d,(x) and let
U(x,1)=PD(x). Then U(x,k) =PD(x)PD(Tx)---PD(T"_1x) for x€X and
k =1, and a similar formula for k <0 follows from U(x, —k)'=U(x-(—k), k).
Since the d; are arbitrary, no generality is lost by taking P to correspond to the
n-cycle (123++en). Then U(x, n) is diagonal with entries v,...,v,, where

vf(x)=dj~—l(x)dj—2(TX)°"d](Tj_zx)dn(Tj“lx)...dj(Tn—-lx)’

denoting the transformation taking x to x«1 by 7. If A: X — £(C") commutes
with U, i.e. A(x)U(x,k)=U(x,k)A(x+k) for x€X and k€Z [27, 28], then
taking k=n gives A;;(x) v;(x) =v;(x) A;j(x-n). Thus if T" is ergodic the entries
A;; must be constant functions. If i#j implies that v; and v; are not equivalent
under T, then A4;;=0 for i#. Taking k=1 in the equation above we see that
A4y, j+11s a multiple of a shift of 4;; (taking subscripts modulo n). Thus, once
we know A;; is a constant and A4,;=0 for i=2,...,n, we know A is a constant
scalar operator. Thus U is irreducible, provided T” is ergodic and that i#1
implies v; and v; are not equivalent relative to T”. The converse is clear.

For an irrational rotation, Ismagilov suggests taking the d;’s to be eigenfunc-
tions. Suppose then that ¢;,...,c, €T and py,..., p, €Z and set co=c,cz**Cp,
Po=p1+ e +p,. If di(a) =cja’iand Ta=ap for some p € T, then the diagonal
entry of U(a, n) is vj(a) =c,pYa’o, where
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qj=Pj-2+2pj 3+ e+ (j=2)p1+ (J—1)pp+see+ (n—-1)p;.

There is a non-zero function f satisfying aa”f(a) =ba” f(T"a) (a.e.) if and
only if a/b is an eigenvalue for 7”. Since we are using Lebesgue measure on 7,
T" is ergodic and its point spectrum consists of the powers of p”. Thus we see
that the cocycle in question is irreducible if and only if none of the integers
a>—4q...,q,—¢q; is a multiple of n. Each g; is a Z-linear combination of
P, - .-, Dn, With coefficients a cyclic permutation of 0,1,...,n—1. Hence g; —q,
is always a Z-linear combination of p,...,p, with coefficients whose sum
is 0. In q, the coefficient of p; is n—1 and in the other g;’s the coefficients
n—2,...,1,0 all occur. Hence the coefficients of p, in ¢,—¢qy,...,q,—q, are
—1,—-2,..., —(n—1) in some order. In particular, if p,=-++*=p, =0, then one
of g,—qi,...,q,—q; is a multiple of » if and only if p, and » have a non-trivial
common factor. In this case po=p,, and we shall see that this cocycle U is equiv-
alent to one with p,=eee=p,=0, so that U is irreducible if and only if
ged(pg,n)=1.

To show this, take A(«) to be a diagonal matrix with entry a’i in the
ith place. Then a cocycle U, equivalent to U is determined by U,(«a,1)=
A(a)PD(a)A(a1) '=P(P 'A(a)P)D(a) A(e*1) "' =PD, («), where D;(c)
is diagonal with ith diagonal entry equal to p ~%ic;a”i**i+1=ki Thus D,(a) has
new powers of o, which can be chosen freely subject to the condition that the
sum of the changes, which is k,— k| + k3 —k,+ ++¢ +k;—k,, be 0. In particular
we can change p; to p, and all the others to 0. Now U is irreducible if and
only if U; is, and U, is irreducible if and only if » does not divide any of
Do, 2Po, - .., (n—1)py, and this happens if and only if gcd(pg, n) =1.

To complete the study of equivalence among the cocycles on Ismagilov’s list,
we first compare two cocycles in which only the first power of « is allowed to be
different from 0. Thus we have constants c¢;,...,c, €T and p,€Z for D, and
cl,...,cieTand p} €Z for D,, and form U, U, by U(a,1)=PD (), Uj(a,1) =
PD|(o). Let co=cicpeeocy, ch=cicieeecl, and take q;, q} as before. Now
U(a, n) and U;(a, n) are diagonal, and we let v; and v/ be these functions of «.
If U and U, are equivalent, there is by definition a matrix-valued Borel
function A4 such that A(a) U(a,1)=U;(a,1)A(x-1) for almost all . Hence
A(a)U(a,n)=U(a,u)A(a+n) for almost all «, and for all i, j we have

Aij(a)coquap‘=C&Pq‘lap‘1Aij(aP")-
Now suppose f is a bounded Borel function and there exists b€ T and k€ Z such
that f(ap™)=ba’f(a) for all o. By comparing coefficients in Fourier series we
find that k=0, b is a power of p*, and f(«) is a power of «. Hence pl=p, if
A#0. Thus g;=q}, which implies that the integers 0,¢,—gq{,...,q,—qi are
in distinct congruence classes modulo ». Hence at most one of the functions
Ay, Ay, ..., Ay, can be non-zero. Of course this is already evident from the fact
that the two cocycles are irreducible. However, it is also true that as long as ¢p/c}
is a power of p there will be one i for which (co/cd)p% 9 is a power of ok, in
which case there will exist a nonzero A4,;. Hence U and Uj are equivalent if and
only if p;=p{ and ¢y/c{ is a power of p. Notice that if we start with two arbitrary
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D and Dy and shift so that p,=e+es=p,=p;=+++=pl=0 we change ¢, and ¢}
only by multiplying by a power of p, and we do not change p, and p}. Thus in
general we can say U= U, if and only if p,=p{ and ¢,/c} is a power of p.

In §1 we derived cocycles S depending on integers d; and d, (relatively prime),
a parameter 7 € T, and a d,-st root of p, A. Since d, is relatively prime to d;, the
permutation matrix which occurs there corresponds to an n-cycle and hence is
conjugate to the one corresponding to (1,2,+++n). Thus each S from §1 has the
form described by Ismagilov. Conversely, n can be chosen to arrange any value
for ¢y within the class of S’s. Furthermore, we will shortly show that the integer
d, is the po of our analysis above, and since d, can be any integer relatively prime
to d, (d;y=n), any cocycle of the form suggested by Ismagilov is equivalent to an
S from §1. To find the value of py for S, notice that the powers of o which
occur are my(1),m(2),...,m(d;), where m; and /, are functions such that
each /j(j)€({1,2,...,d\} and j+dy=dym;(j)+1,(j). By the properties of
these functions as described before Theorem 1.2, if dy=d, k+r (0<r<d,) then
my(j)=k for j=1,2,...,dy—r and m;(j)=k+1 for j=d,—r+1,...,d;. Thus
my(1)+eee+my(d)=k(d,—r)+ (k+1)r=d,, as claimed.

Bagchi, Mathew and Radkarni calculate one particular cocycle from duality
and analytic function theory [1, p. 303]. What they obtain fits into the pattern of
Ismagilov by taking each ¢;=1 and p;=+e¢e=p,_,=0, p,=1. Others may be
computable by their methods.

1. Brown defines a cocycle by taking S(e’?, 1) =e"? for 0 <6 <2=, and shows
by group theoretic methods that it is not equivalent to any given by U(a, 1) =a”
[5, p. 24]. Thus for the one-dimensional case there are more cocycles than we
derived from the discrete Heisenberg group. This class has been extended even
further by S. Kawakami [15].

3. Applications to other groups. Using the result quoted in the introduction
regarding group extensions, the cocycles found in §1 can be used to obtain
explicit formulas for representations of groups besides the discrete Heisenberg
group. There is a general fact, of which we will give an explicit example, which
gives existence results in other cases, namely:

PROPOSITION 3.1. Let H be a separable locally compact group and let H
act on a standard Borel space S. Suppose there is a a-finite measure v which is
invariant and ergodic under H and for which the action is amenable. Then there
is a groupoid homomorphism  of Sx H into T X Z such that Ry is irreducible
relative to v, whenever R is a cocycle of TxZ which is irreducible relative to
Lebesgue measure on T.

Proof. This follows from results in [6, 7, 8, 27, 28, 29]. O

Combining these ideas, we see that whenever the action of G/N on N has a
o-finite invariant measure, we can theoretically make use of irreducible cocycles
of T'x Z to produce irreducible representations of G. As an example, let us carry
out this process explicitly for the Mautner group.
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Recall that the Mautner group G is the semidirect product C*R of two dimen-
sional complex space C? with the real line R. Multiplication in G is given by
(z,w,1)(z, w,t')=(z+ze ", w+we 2™ t+¢'). With C? taken as the normal
subgroup N, we see that G/N, which is isomorphic to R, acts on N with invariant
tori, so we have a virtual group 7> X R where the real number ¢ acts on the pair
(e ) in T2 by (e, B)+1=(cce", g™,

A mapping ¥: T?xR—>TxZ as in Proposition 3.1 can be constructed as
follows. Parameterize 3 as 2™ for 0<0<1. Put (o, 2™, t) = (™, [0+ ¢])
where [y] indicates the greatest integer in y. One checks directly that ¥ is a
groupoid homomorphism, where n€Z acts on «€ T by asn=ce'". In fact, ¢ is a
reduction homomorphism and thus the conclusion of Proposition 3.1 holds for ¢
[27, Theorem 6.17; 28, p. 47; 29, Theorem 6.6 and Theorem 7.17]. This can also
be verified directly in this case.

Now suppose n€ 7, d, is a pair of relatively prime integers with d, >0, and let
A\ be a d,-st root of e'. Taking notation from §1, we can define a cocycle S'=
§’(mAd) of T2 x R of dimension d; by giving the matrix entries

S,(Ol, e21ri0’ t)k,jzso‘l/(a:ez‘”w’ t)k,jzs(ae—ies [0+t])k,_]
oy [0+ £1 2\ (6 +11%d5/2) Jl0+1t) ¢ ,—i0 /)
=T INEHEED MO €)M,

THEOREM 3.2. (i) The cocycle S’m™9 s irreducible.

(ii) The irreducible cocycles '™ and S'™% ) gre equivalent if and only if
d=d’ and ndl)\(l/Z)a’l(dl+d2+l) ((,'I )dl(x)(l/Z)d](d1+d2+l)) 1 s Of the form eln fOI‘
an integer n.

Proof. This follows from §1 and the properties of .

It remains to describe the irreducible unitary representations of the Mautner
Group G corresponding to these cocycles, according to the method outlined in
the introduction.

The tori in C? are parametrized by pairs of positive real numbers, r=(r|, r;),
and we can write r»72 for the torus. If nET d=(d,,d,) is a pair of relatively
prime integers with d; positive, and AN =¢’ define a representation V of G on
L?*(T?, C%) depending on r, 7, A and d by

L dy
. . . Z‘A'9 . . .
((Vauw,e ) (e, €270y =@ @n 0/ 2e™0 1 §2(a, 2770, 1)y flae™, 2™ 0* 1),
J=1

=ei(z,rla)ei(w,r2e°ﬂ'0)n [6+1¢] )\(E/Z)[0+r]2d2
. d . . . .
% )\J[6+1] E 5k / ( .)(e—lﬂa)n7[6+,](j)f(ae:t, eZ‘n’I(0+I)) y
= o+ J

THEOREM 3.3. (i) V is irreducible.

(ii) V and V' (with primed parameters) are equivalent if and only if r=r’,
d=d’ and (ndl)\(l/z)dl(di+d2+”)((n’)dl ()\1)(1/2)d](dl+dz+l))—l is Oftheform einfor
some integer n.
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(iii) V restricts on N, =C2, to be a representation which is supported on rT?,
with respect to Lebesgue measure, and which has multiplicity d,.

Proof. Parts (i) and (ii) follow from Theorem 3.2 together with [28]. Part (iii)
is clear from the formula for the representation. O

REMARK. When d,=1 these representations V coincide, after a simple repara-
meterization, with the ‘‘new’’ representations of the Mautner group given in
[3]. However, for d,> 1, the above formulas are the only ones known to us which
give representations of the Mautner group satisfying (iii).

4. Some related questions and remarks.

A. It would be desirable to have a parametrized family of cocycles of Tx Z
which meets every equivalence class of cocycles at least once and for which the
equivalence between members of the family can be described in terms of the
parameters. Even the part of the space of equivalence classes given by the family
in Sections 1 and 2 is not smooth, but something of that sort for the entire space
would be useful. Perhaps even this cannot be done. In particular, we mention the
lack of explicit formulas for infinite dimensional irreducible cocycles, even
though they are known to exist.

B. According to a result of Dye [7, 8], many measured groupoids are iso-
morphic to Tx Z with Lebesgue measure on 7. One example is obtained as
follows. Let Z,=7Z/2Z, let X be a countable product of copies of Z,, let G be the
subgroup of X consisting of the sequences with only finitely many non-zero com-
ponents, and let G act on X as a subgroup. Golodets has given an extensive
analysis of the cocycles for this groupoid [11] so an explicit isomorphism
between it and T'x Z would be useful, as would other explicit isomorphisms.

C. It may be possible to compute explicitly some (or all) of the cocycles given
by inner functions according to the method of [1]. Some of these are infinite
dimensional, so part of our question in (A) would be answered.

D. There are several papers which establish the existence of measures ergodic
for rotation by 7 but singular relative to Lebesgue measure and atom-free {9, 14,
17, 31]. The formulas in Sections 1 and 2 still define cocycles relative to these
measures, and it is natural to ask when the cocycles are irreducible for such a
measure u. The analysis in §2 makes it clear that for a cocycle of dimension # the
measure p must be ergodic for 7" in order for irreducibility to hold. As explained
to us by B. Weiss, the methods of [14] can be used to construct u’s which are
ergodic for every 7", and also to construct u’s which are ergodic for 7 but not
ergodic for some particular 7*. The question of irreducibility for dimension # is
equivalent to questions about L*-spectrum, i.e. the point spectrum of the
operator T where Tf(a)=f(a7") for f€L®(u). Results of Yoccoz [34] show
that this point spectrum is generically uncountable, and a result of Weiss [33]
shows that any particular countable set can be forced into the point spectrum by
an appropriate choice of u. Thus it appears that the irreducibility question is
non-trivial.
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