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An operator 7, acting on a Hilbert space, is said to be of class C (cf. [6]) if T’
is a completely nonunitary contraction and u(7") =0 for some nonzero function
u in H®. An operator T is said to have property (P) (cf. [1, part I1]) if the equal-
ities ker X={0} and ker X*={0)} are equivalent for every operator X in the
commutant {7}’ of 7. In the two preceding papers ([1]) we studied the multipli-
cative semigroup ®(7”,T) of Cy-Fredholm operators, associated with a given
pair (T, T) of operators of class Cy. We recall that ®(77, T') consists of those
operators X intertwining 7 and T (7'X=XT) with the following properties:

(A) T|ker X and Tye x+(=(T* | ker X*)*) have property (P); and

(B) the mapping X, : M~ (XM)~, MELat(T(ker xy+) is an isomorphism of

Lat(7(ker x)+) onto Lat(7 | (ran X) 7).

Here, as usual, (M)~ stands for the closure of the set M. When T'=T, we use
the notation ®(7°) for ®(7’, T) and note that ®(7) is contained in {T}. If T is
the zero operator on JC, then ®(7T) coincides with the familiar class of Fredholm
operators on JC.

In [1, part I, Lemma 3.3] we proved that the operators 7'| ker X and Ty, x+ are
quasisimilar provided that T is of class Cy and X belongs to the bicommutant
(T} of T (cf. also [9]). We also know from [1, part II] that property (P) is a
quasisimilarity invariant in the class Cy. Therefore, in order to verify that an
operator X in {T}” is Cy-Fredholm, it suffices to verify (B) and half of (A). In
this paper we prove that condition (B) is a consequence of (A) for X in {T}", thus
establishing the following result. '

THEOREM 1. Let T be an operator of class Cy and let X€{T}". Then X is Cy-
Fredholm if and only if T | ker X has property (P).

We had previously noted (cf. [1, part I, Proposition 3.5]) that Theorem 1 is
true in case ker X={0]. Observe that property (B) is not satisfied for every X in
(T)” even in the case of nilpotent operators T; this follows from the discussion
given below of Cy-Fredholm operators in the case when 7 is an algebraic oper-
ator (cf. Example 9 below).

Let T be an arbitrary operator of class Cy, and let m denote the minimal func-
tion of 7. It follows from results of [3] and [2] that for every X in { T'}” there exist
functions u, v in H” such that v and m are relatively prime (vAm=1) and

v(TYX=u(T)

or, using the notation of [6], X = (u/v)(T). It follows from the proof of the
main theorem in [8] that v can be chosen independently of X.
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LEMMA 2. If T is an operator of class Cy acting on 3C and X= (u/v)(T) is in
{T} (vAm=1) then X is in ®(T) if and only if u(T) is in ®(T).

Proof. We certainly have v(7T) € {T'}” and it follows from [6, Chapter I1I] that
v(T) is one-to-one. Therefore, by [1, part I, (3.9)], (v(T)IM) ™ =N for every M
in Lat(7"). The relation v(7)X =u(T) shows then that ker X=ker u(7T) and

(D (u(T)M) ™ = (v(T)XM)™ = (v(T)(XM) ™)™ =(XM)~

for every M in Lat(7). In particular (#(7)3C)” =(X3C)~ so that ker X*=
ker u(T)*. We can already see that X has property (A) if and only if #(T) has
property (A). As for property (B), relation (1) is easily seen to imply that X, =
u(T).. Indeed, if M is in Lat(Tker xy+ ) = Lat (Tiker u(ry)L ), We have

M+kerXeELatT
and therefore

Xe(M)=(XM) " =(X(M+ker X))~
=(u(T)(IM+ ker X))~
=(u(T)(M+keru(T)))~
=(u(T)IM)" =u(T). ().

The lemma is proved. O

Lemma 2 shows that we only have to consider operators X of the form #(7) in
the proof of Theorem 1.

We will need the characterization given in [1, part II] of operators of class C,
with the property (P). Recall that, by results of [3] and [2], every operator T of
class Cy is quasisimilar with a unique operator S (called the Jordan model of 7°)
of the form S= @), S(6,), where {0, ]}, is a family of inner functions, indexed by
the ordinal numbers, satisfying the following conditions:

(i) 0, divides 0g whenever a 283;

(if) 04 =0s whenever card(a) =card(f3); and

(iii) 0,=1 for some g (and therefore 6, =1 for all o 2 «).
Then we have the following result from [1].

THEOREM 3. Let T be an operator of class C,, and let S=@®, S(0,) be its
Jordan model. Then T has property (P) if and only if Ay<, 0,=1.

Here, as usual, w denotes the first transfinite ordinal.

We also recall the fact that, if 7 and S are quasisimilar operators of class C
and u€ H®”, then T'| [ran (7))~ [resp. T | ker u(T)] and S| [ran u(S)]~ [resp.
S| ker u(S)] are quasisimilar (cf., e.g., [1]).

In the following lemma we will use an arithmetic property of H*. A function
u in H” is absolutely continuous with respect to v€H™ if uAw#1 implies
vAw##1 for every win H*. Given a function « in H* and an inner function m,
there exists a decomposition m =m,.m, such that m,. and m, are inner func-
tions, m,. is absolutely continuous with respect to « (in symbols, m,.<u), and
mgAu=1(cf. [4]).
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LEMMA 4. Let T be an operator of class Cy with minimal function m and
assume that T |ker u(T) has property (P) for some u in H*. If we write m=
Mge Mg, With mg,.<u and mgAu=1, then the operator T |ker m,.(T) also has
property (P).

Proof. 1t follows from the remarks above that we may assume that 7=
@, S(8,) is a Jordan operator; of course we have 6,=m in this case. Observe
that

(2) T | ker u(T);@S(aa) | ker u(S(0,))

and S(6,) | ker u(S(6,)) is unitarily equivalent to S(u# A68,). Consequently
T | ker u(T) is unitarily equivalent to the Jordan operator @, S(uA6,). By
Theorem 3, the condition that 7' | ker u(7") have property (P) can be translated
into

JAN (uAOa)=u/\< N\ 60,):1

a<w a<w

and this implies, by the definition of absolute continuity, that

N (mac/\ea)=mac/\< N\ 90:):1-

a<w a<w
Relation (2) applied to u =m,. shows now that T | ker m,.(7) must have property
(P). The lemma is proved. O

COROLLARY 5. Under the conditions of Lemma 4, T|[ran ms(T)]™ and
T{xer mg(1)1+ also have property (P).

Proof. Since my.(T)Ym,(T) = m(T) = 0 it follows that
[ran mg(T)]~ C ker m,.(T).

Thus 7| [ran m(T)]~ is a restriction of T | ker m,.(T), and therefore Theorem
3 combined with Corollary 2.9 of [2, part II] imply the desired condition about
T | [ran ms(T)]". A similar argument shows that Tker m (7)) is @ compression of
Txer mye(1y* and we know that Tier m,.(7)* is quasisimilar to T | ker m,.(T'). Again
the conclusion is that Tker m (1) has property (P). O

We are now ready to prove our main result.

Proof of Theorem 1. Assume that 7 is acting on the Hilbert space JC. By
Lemma 2 we have to prove only that u(7T) is in ®(7) whenever u is a function in
H* such that T | ker u(T) has property (P). Write the minimal function m of T
as m=mg.-m; with m,.<u and my;Au=1. Let us set 3C'=ker m,(T) and "=
[ker m,.(T)]*; obviously then 3C’€ Lat(7T) and JC"€Lat(7T*). If J: 3¢’ — JC de-
notes the inclusion operator and P: JC — JC” the orthogonal projection, we have

3) TJ=J(T|3’) and Ts-P=PT.

Note moreover that J and P are Cy-Fredholm operators. Indeed, they have
closed ranges so condition (B) is verified trivially,
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ker J={0}, kerJ*=[ker my(T)]*, ker P*={0}, ker P=ker m,.(T)

so that property (A) is verified by Lemma 4 and Corollary 5. Relations (3) also
imply

4 u(T)J=Ju(T|3¥’) and u(Ts-)P=Pu(T).

The minimal functions of 7"| 3¢’ and T3c- both obviously divide m; (in fact they
equal my; by [6, Chapter III]) and then the relation uAm,=1 implies that
u(T |3’y and u(Tje-) are Cy-Fredholm operators (cf. the remark following the
statement of Theorem 1). Therefore, Theorem 8.5 of [1, part II] and (4) imply
that u(7)J and Pu(T) are Cy-Fredholm operators. Finally, an application of
Proposition 8.8 of [1, part II] (with A=u(T), B=J, and C=P) shows that u(T)
is a Cy-Fredholm operator. The theorem is proved. O

We will discuss now a few facts about the class (7°) in case 7 is an algebraic
operator. Note that an algebraic operator, that is, an operator 7T that satisfies the
relation p(7T') =0 for some nonzero polynomial p, is also an operator of class C
if | T'||<1. In this case the minimal function of T is a Blaschke product with the
same zeros as the minimal polynomial of 7. If T is an algebraic operator but
IT||=1, then T/2||T| is a Cy-operator. Therefore all results concerning quasi-
similarity classifications and Cy-Fredholm operators will apply to arbitrary alge-
braic operators, provided that we consistently replace minimal functions by min-
imal polynomials.

Let us use the notation F (JC) for the set of all Fredholm operators acting on
the Hilbert space JC.

PROPOSITION 6. For every algebraic operator T on 3C we have
S(T)Y={TyYNF(I]}.

Proof. The inclusion {T}NF(IC)C®(T) is obvious. Indeed, if X € TF(3C),
the range of X is closed so that condition (B) is trivially satisfied. As for (A),
T | ker X and T, x» are operators on finite dimensional spaces, and every opera-
tor acting on a finite dimensional space has property (P).

Conversely, assume that X € F(7T') so that X commutes with 7. For every A in
(X3C)~ the cyclic space 3¢, = V,»0 T"h is finite dimensional (because T is alge-
braic) and 3C, C (X 3C)~. Property (B) implies the existence of a subspace M of
JC such that (X9N)™ =3C,,. Since 3C, is finite dimensional, X 9 is finite dimen-
sional so that XM = (XM )™ =IC,. In particular, h€ X IC for every #in (X I)™
and it follows that X has closed range. We have to prove only that ker X and
ker X* are finite dimensional, and this will follow from condition (A) once we
prove that every algebraic operator 7 having property (P) necessarily acts on a
finite dimensional space. To prove this last statement there is no loss of gen-
erality in assuming that || 7]|<1 so that T is of class C,. Let S= @, S(0,) be the
Jordan model of 7. Thus 6, is a finite Blaschke product and the condition
NAa<w 0, =1 (which is equivalent to 7 having property (P)) is equivalent to §,, =1
for some n<w. Thus, if T has property (P), S is a finite sum

S=5(0))DS0,)D---DS(0,-1)
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where 0,,0,,...,0,_; are finite Blaschke products. To finish the proof it suffices
to remark that the operator S(8) is acting on a space of finite dimension k if and
only if @ is a Blaschke product with k factors. ]

REMARK 7. The proof given above of the fact that X has closed range if
X €®(T) used only property (B) and the fact that the cyclic subspaces of an alge-
braic operator are finite dimensional. It is interesting to note that, by a result of
Sherman [5], any operator whose cyclic spaces are finite dimensional is alge-
braic. The fact that 7 is algebraic is essential to Proposition 6, as shown by the
following example.

EXAMPLE 8. If T is a nonalgebraic operator of class Cy, there exists X in
S(T)YN{T}" such that X does not have closed range.

Proof. As noted before Lemma 2, there exists a function v in H* such that
vAm=1 (m=the minimal function of T') and every operator X in {7T}” can be
represented as X = (u/v)(T) for some u in H*. Since T is not algebraic, m is not
a finite Blaschke product and therefore we can find an inner function p such that
pAm=1but

5) inf{| p(N)]+|m V)] |\ <1} =0.

Indeed, it suffices to define p as a Blaschke product whose zeros {«,, }, ¢ satisfy
the condition m(«,) #0 and lim, - « | (a,)|=0. We now set X = (pv)(T); obvi-
ously X €{T}” and, since pvAm=1, X is a quasiaffinity. By Theorem 1 we have
X €®(T). If x would have closed range, it would follow that X ~! is a bounded
operator in {T}", so that X ~'=(u/v)(T) for some u in H*. Equivalently,
(p)(T)u(T)Y=v(T) or v(T)((pu)(T)—1)=0, which implies (pu—1)(T)=0
because v(T) is a quasiaffinity. Therefore m must divide pu—1, say pu—1=mg,
gE€H™ so that pu—gm=1 in contradiction with (5). This contradiction shows
that X cannot have closed range.
Finally we give the example promised after the statement of Theorem 1.

EXAMPLE 9. There exists an operator T of class Cyand X in {T}" such that X
does not satisfy condition (B).

Proof. Let A on JC be a noninvertible quasiaffinity such that |A||<1 (e.g.,
A=diag(1/(n+1)) on/?), and denote by T the operator on JC@ JC whose matrix

is given by
T= 0 A .
0 O
Clearly T7?=0 and T does not have closed range. Set X =7 and note that X can-
not have property (B) by Remark 7. O
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