C_0 -FREDHOLM OPERATORS. III

Hari Bercovici

An operator T, acting on a Hilbert space, is said to be of class C_0 (cf. [6]) if T is a completely nonunitary contraction and u(T)=0 for some nonzero function u in H^{∞} . An operator T is said to have property (P) (cf. [1, part II]) if the equalities $\ker X = \{0\}$ and $\ker X^* = \{0\}$ are equivalent for every operator X in the commutant $\{T\}'$ of T. In the two preceding papers ([1]) we studied the multiplicative semigroup $\Phi(T',T)$ of C_0 -Fredholm operators, associated with a given pair (T',T) of operators of class C_0 . We recall that $\Phi(T',T)$ consists of those operators X intertwining T' and T (T'X = XT) with the following properties:

- (A) $T \mid \ker X$ and $T_{\ker X^*} (= (T^* \mid \ker X^*)^*)$ have property (P); and
- (B) the mapping $X_*: \mathfrak{M} \mapsto (X\mathfrak{M})^-$, $\mathfrak{M} \in \operatorname{Lat}(T_{(\ker X)^{\perp}})$ is an isomorphism of $\operatorname{Lat}(T_{(\ker X)^{\perp}})$ onto $\operatorname{Lat}(T \mid (\operatorname{ran} X)^-)$.

Here, as usual, $(\mathfrak{M})^-$ stands for the closure of the set \mathfrak{M} . When T'=T, we use the notation $\Phi(T)$ for $\Phi(T',T)$ and note that $\Phi(T)$ is contained in $\{T\}'$. If T is the zero operator on \mathfrak{IC} , then $\Phi(T)$ coincides with the familiar class of Fredholm operators on \mathfrak{IC} .

In [1, part I, Lemma 3.3] we proved that the operators $T \mid \ker X$ and $T_{\ker X^*}$ are quasisimilar provided that T is of class C_0 and X belongs to the bicommutant $\{T\}''$ of T (cf. also [9]). We also know from [1, part II] that property (P) is a quasisimilarity invariant in the class C_0 . Therefore, in order to verify that an operator X in $\{T\}''$ is C_0 -Fredholm, it suffices to verify (B) and half of (A). In this paper we prove that condition (B) is a consequence of (A) for X in $\{T\}''$, thus establishing the following result.

THEOREM 1. Let T be an operator of class C_0 and let $X \in \{T\}''$. Then X is C_0 -Fredholm if and only if $T \mid \ker X$ has property (P).

We had previously noted (cf. [1, part I, Proposition 3.5]) that Theorem 1 is true in case ker $X = \{0\}$. Observe that property (B) is not satisfied for every X in $\{T\}''$ even in the case of nilpotent operators T; this follows from the discussion given below of C_0 -Fredholm operators in the case when T is an algebraic operator (cf. Example 9 below).

Let T be an arbitrary operator of class C_0 , and let m denote the minimal function of T. It follows from results of [3] and [2] that for every X in $\{T\}''$ there exist functions u, v in H^{∞} such that v and m are relatively prime $(v \land m = 1)$ and

$$v(T)X = u(T)$$

or, using the notation of [6], X = (u/v)(T). It follows from the proof of the main theorem in [8] that v can be chosen independently of X.

Received April 14, 1983.

The author was supported in part by a grant from the National Science Foundation. Michigan Math. J. 30 (1983).

LEMMA 2. If T is an operator of class C_0 acting on \Re and X = (u/v)(T) is in $\{T\}''$ $(v \land m = 1)$ then X is in $\Phi(T)$ if and only if u(T) is in $\Phi(T)$.

Proof. We certainly have $v(T) \in \{T\}^n$ and it follows from [6, Chapter III] that v(T) is one-to-one. Therefore, by [1, part I, (3.9)], $(v(T)\mathfrak{M})^- = \mathfrak{M}$ for every \mathfrak{M} in Lat(T). The relation v(T)X = u(T) shows then that $\ker X = \ker u(T)$ and

(1)
$$(u(T)\mathfrak{M})^{-} = (v(T)X\mathfrak{M})^{-} = (v(T)(X\mathfrak{M})^{-})^{-} = (X\mathfrak{M})^{-}$$

for every \mathfrak{M} in Lat(T). In particular $(u(T)\mathfrak{F})^- = (X\mathfrak{F})^-$ so that $\ker X^* = \ker u(T)^*$. We can already see that X has property (A) if and only if u(T) has property (A). As for property (B), relation (1) is easily seen to imply that $X_* = u(T)_*$. Indeed, if \mathfrak{M} is in Lat($T_{(\ker X)^{\perp}}$) = Lat($T_{(\ker u(T))^{\perp}}$), we have

$$\mathfrak{M} + \ker X \in \operatorname{Lat} T$$

and therefore

$$X_*(\mathfrak{M}) = (X\mathfrak{M})^- = (X(\mathfrak{M} + \ker X))^-$$

$$= (u(T)(\mathfrak{M} + \ker X))^-$$

$$= (u(T)(\mathfrak{M} + \ker u(T)))^-$$

$$= (u(T)\mathfrak{M})^- = u(T)_*(\mathfrak{M}).$$

The lemma is proved.

Lemma 2 shows that we only have to consider operators X of the form u(T) in the proof of Theorem 1.

We will need the characterization given in [1, part II] of operators of class C_0 with the property (P). Recall that, by results of [3] and [2], every operator T of class C_0 is quasisimilar with a unique operator S (called the Jordan model of T) of the form $S = \bigoplus_{\alpha} S(\theta_{\alpha})$, where $\{\theta_{\alpha}\}_{\alpha}$ is a family of inner functions, indexed by the ordinal numbers, satisfying the following conditions:

- (i) θ_{α} divides θ_{β} whenever $\alpha \geqslant \beta$;
- (ii) $\theta_{\alpha} = \theta_{\beta}$ whenever card(α) = card(β); and
- (iii) $\theta_{\alpha_0} = 1$ for some α_0 (and therefore $\theta_{\alpha} = 1$ for all $\alpha \ge \alpha_0$).

Then we have the following result from [1].

THEOREM 3. Let T be an operator of class C_0 , and let $S = \bigoplus_{\alpha} S(\theta_{\alpha})$ be its Jordan model. Then T has property (P) if and only if $\bigwedge_{\alpha < \omega} \theta_{\alpha} = 1$.

Here, as usual, ω denotes the first transfinite ordinal.

We also recall the fact that, if T and S are quasisimilar operators of class C_0 and $u \in H^{\infty}$, then $T \mid [\operatorname{ran} u(T)]^{-}$ [resp. $T \mid \ker u(T)$] and $S \mid [\operatorname{ran} u(S)]^{-}$ [resp. $S \mid \ker u(S)$] are quasisimilar (cf., e.g., [1]).

In the following lemma we will use an arithmetic property of H^{∞} . A function u in H^{∞} is absolutely continuous with respect to $v \in H^{\infty}$ if $u \wedge w \neq 1$ implies $v \wedge w \neq 1$ for every w in H^{∞} . Given a function u in H^{∞} and an inner function m, there exists a decomposition $m = m_{ac} m_s$ such that m_{ac} and m_s are inner functions, m_{ac} is absolutely continuous with respect to u (in symbols, $m_{ac} \prec u$), and $m_s \wedge u = 1$ (cf. [4]).

LEMMA 4. Let T be an operator of class C_0 with minimal function m and assume that $T \mid \ker u(T)$ has property (P) for some u in H^{∞} . If we write $m = m_{ac} m_s$, with $m_{ac} \prec u$ and $m_s \wedge u = 1$, then the operator $T \mid \ker m_{ac}(T)$ also has property (P).

Proof. It follows from the remarks above that we may assume that $T = \bigoplus_{\alpha} S(\theta_{\alpha})$ is a Jordan operator; of course we have $\theta_0 = m$ in this case. Observe that

(2)
$$T \mid \ker u(T) = \bigoplus_{\alpha} S(\theta_{\alpha}) \mid \ker u(S(\theta_{\alpha}))$$

and $S(\theta_{\alpha}) \mid \ker u(S(\theta_{\alpha}))$ is unitarily equivalent to $S(u \land \theta_{\alpha})$. Consequently $T \mid \ker u(T)$ is unitarily equivalent to the Jordan operator $\bigoplus_{\alpha} S(u \land \theta_{\alpha})$. By Theorem 3, the condition that $T \mid \ker u(T)$ have property (P) can be translated into

$$\bigwedge_{\alpha < \omega} (u \land \theta_{\alpha}) = u \land \left(\bigwedge_{\alpha < \omega} \theta_{\alpha}\right) = 1$$

and this implies, by the definition of absolute continuity, that

$$\bigwedge_{\alpha < \omega} (m_{ac} \wedge \theta_{\alpha}) = m_{ac} \wedge \left(\bigwedge_{\alpha < \omega} \theta_{\alpha}\right) = 1.$$

Relation (2) applied to $u = m_{ac}$ shows now that $T \mid \ker m_{ac}(T)$ must have property (P). The lemma is proved.

COROLLARY 5. Under the conditions of Lemma 4, $T \mid [\operatorname{ran} m_s(T)]^-$ and $T_{[\ker m_s(T)]^{\perp}}$ also have property (P).

Proof. Since $m_{ac}(T) m_s(T) = m(T) = 0$ it follows that

$$[\operatorname{ran} m_s(T)]^- \subset \ker m_{ac}(T)$$
.

Thus $T \mid [\operatorname{ran} m_s(T)]^-$ is a restriction of $T \mid \ker m_{ac}(T)$, and therefore Theorem 3 combined with Corollary 2.9 of [2, part II] imply the desired condition about $T \mid [\operatorname{ran} m_s(T)]^-$. A similar argument shows that $T_{[\ker m_s(T)]^{\perp}}$ is a compression of $T_{\ker m_{ac}(T)^*}$ and we know that $T_{\ker m_{ac}(T)^*}$ is quasisimilar to $T \mid \ker m_{ac}(T)$. Again the conclusion is that $T_{[\ker m_s(T)]^{\perp}}$ has property (P).

We are now ready to prove our main result.

Proof of Theorem 1. Assume that T is acting on the Hilbert space $3\mathbb{C}$. By Lemma 2 we have to prove only that u(T) is in $\Phi(T)$ whenever u is a function in H^{∞} such that $T \mid \ker u(T)$ has property (P). Write the minimal function m of T as $m = m_{ac} \cdot m_s$ with $m_{ac} < u$ and $m_s \wedge u = 1$. Let us set $3\mathbb{C}' = \ker m_s(T)$ and $3\mathbb{C}'' = \ker m_{ac}(T)$; obviously then $3\mathbb{C}' \in \operatorname{Lat}(T)$ and $3\mathbb{C}'' \in \operatorname{Lat}(T^*)$. If $J: 3\mathbb{C}' \to 3\mathbb{C}$ denotes the inclusion operator and $P: 3\mathbb{C} \to 3\mathbb{C}''$ the orthogonal projection, we have

(3)
$$TJ = J(T \mid \Im C') \quad \text{and} \quad T_{\Im C''}P = PT.$$

Note moreover that J and P are C_0 -Fredholm operators. Indeed, they have closed ranges so condition (B) is verified trivially,

$$\ker J = \{0\}, \quad \ker J^* = [\ker m_s(T)]^{\perp}, \quad \ker P^* = \{0\}, \quad \ker P = \ker m_{ac}(T)$$

so that property (A) is verified by Lemma 4 and Corollary 5. Relations (3) also imply

(4)
$$u(T)J = Ju(T \mid \mathfrak{IC}')$$
 and $u(T_{\mathfrak{IC}''})P = Pu(T)$.

The minimal functions of $T \mid 3C'$ and $T_{3C''}$ both obviously divide m_s (in fact they equal m_s by [6, Chapter III]) and then the relation $u \land m_s = 1$ implies that $u(T \mid 3C')$ and $u(T_{3C''})$ are C_0 -Fredholm operators (cf. the remark following the statement of Theorem 1). Therefore, Theorem 8.5 of [1, part II] and (4) imply that u(T)J and Pu(T) are C_0 -Fredholm operators. Finally, an application of Proposition 8.8 of [1, part II] (with A = u(T), B = J, and C = P) shows that u(T) is a C_0 -Fredholm operator. The theorem is proved.

We will discuss now a few facts about the class $\Phi(T)$ in case T is an algebraic operator. Note that an algebraic operator, that is, an operator T that satisfies the relation p(T)=0 for some nonzero polynomial p, is also an operator of class C_0 if ||T||<1. In this case the minimal function of T is a Blaschke product with the same zeros as the minimal polynomial of T. If T is an algebraic operator but $||T|| \ge 1$, then T/2 ||T|| is a C_0 -operator. Therefore all results concerning quasisimilarity classifications and C_0 -Fredholm operators will apply to arbitrary algebraic operators, provided that we consistently replace minimal functions by minimal polynomials.

Let us use the notation $\mathfrak{F}(\mathfrak{K})$ for the set of all Fredholm operators acting on the Hilbert space \mathfrak{K} .

PROPOSITION 6. For every algebraic operator T on 3C we have

$$\Phi(T) = \{T\}' \cap \mathfrak{F}(\mathfrak{K}).$$

Proof. The inclusion $\{T\}' \cap \mathfrak{F}(\mathfrak{K}) \subset \Phi(T)$ is obvious. Indeed, if $X \in \mathfrak{F}(\mathfrak{K})$, the range of X is closed so that condition (B) is trivially satisfied. As for (A), $T \mid \ker X$ and $T_{\ker X^*}$ are operators on finite dimensional spaces, and every operator acting on a finite dimensional space has property (P).

Conversely, assume that $X \in \mathfrak{F}(T)$ so that X commutes with T. For every h in $(X\mathfrak{F})^-$ the cyclic space $\mathfrak{F}_h = \bigvee_{n \geq 0} T^n h$ is finite dimensional (because T is algebraic) and $\mathfrak{F}_h \subset (X\mathfrak{F})^-$. Property (B) implies the existence of a subspace \mathfrak{M} of \mathfrak{F}_h such that $(X\mathfrak{M})^- = \mathfrak{F}_h$. Since \mathfrak{F}_h is finite dimensional, $X\mathfrak{M}$ is finite dimensional so that $X\mathfrak{M} = (X\mathfrak{M})^- = \mathfrak{F}_h$. In particular, $h \in X\mathfrak{F}$ for every h in $(X\mathfrak{F})^-$ and it follows that X has closed range. We have to prove only that X and X are finite dimensional, and this will follow from condition (A) once we prove that every algebraic operator X having property (P) necessarily acts on a finite dimensional space. To prove this last statement there is no loss of generality in assuming that ||T|| < 1 so that X is of class X. Let $X = \bigoplus_{n \in X} X(\theta_n)$ be the Jordan model of X. Thus X0 is a finite Blaschke product and the condition X1 having property (P) is equivalent to X2 is a finite sum

$$S = S(\theta_0) \oplus S(\theta_1) \oplus \cdots \oplus S(\theta_{n-1})$$

where $\theta_0, \theta_1, \dots, \theta_{n-1}$ are finite Blaschke products. To finish the proof it suffices to remark that the operator $S(\theta)$ is acting on a space of finite dimension k if and only if θ is a Blaschke product with k factors.

REMARK 7. The proof given above of the fact that X has closed range if $X \in \Phi(T)$ used only property (B) and the fact that the cyclic subspaces of an algebraic operator are finite dimensional. It is interesting to note that, by a result of Sherman [5], any operator whose cyclic spaces are finite dimensional is algebraic. The fact that T is algebraic is essential to Proposition 6, as shown by the following example.

EXAMPLE 8. If T is a nonalgebraic operator of class C_0 , there exists X in $\Phi(T) \cap \{T\}$ " such that X does not have closed range.

Proof. As noted before Lemma 2, there exists a function v in H^{∞} such that $v \wedge m = 1$ (m = the minimal function of T) and every operator X in $\{T\}''$ can be represented as X = (u/v)(T) for some u in H^{∞} . Since T is not algebraic, m is not a finite Blaschke product and therefore we can find an inner function p such that $p \wedge m = 1$ but

(5)
$$\inf\{|p(\lambda)| + |m(\lambda)| : |\lambda| < 1\} = 0.$$

Indeed, it suffices to define p as a Blaschke product whose zeros $\{\alpha_n\}_{n\geq 0}$ satisfy the condition $m(\alpha_n)\neq 0$ and $\lim_{n\to\infty}|m(\alpha_n)|=0$. We now set X=(pv)(T); obviously $X\in\{T\}$ " and, since $pv\wedge m=1$, X is a quasiaffinity. By Theorem 1 we have $X\in\Phi(T)$. If x would have closed range, it would follow that X^{-1} is a bounded operator in $\{T\}$ ", so that $X^{-1}=(u/v)(T)$ for some u in H^{∞} . Equivalently, (pv)(T)u(T)=v(T) or v(T)((pu)(T)-I)=0, which implies (pu-1)(T)=0 because v(T) is a quasiaffinity. Therefore m must divide pu-1, say pu-1=mg, $g\in H^{\infty}$ so that pu-gm=1 in contradiction with (5). This contradiction shows that X cannot have closed range.

Finally we give the example promised after the statement of Theorem 1.

EXAMPLE 9. There exists an operator T of class C_0 and X in $\{T\}''$ such that X does not satisfy condition (B).

Proof. Let A on \mathcal{K} be a noninvertible quasiaffinity such that ||A|| < 1 (e.g., A = diag(1/(n+1)) on l^2), and denote by T the operator on $\mathcal{K} \oplus \mathcal{K}$ whose matrix is given by

$$T = \left[\begin{array}{cc} 0 & A \\ 0 & 0 \end{array} \right].$$

Clearly $T^2 = 0$ and T does not have closed range. Set X = T and note that X cannot have property (B) by Remark 7.

REFERENCES

1. H. Bercovici, C_0 -Fredholm operators. I., Acta Sci. Math. (Szeged) 41 (1977), 15–27; II. ibid. 42 (1980), 3–42.

- 2. —, On the Jordan model of C_0 operators (I), Studia Math. 60 (1977), 267-284; II. Acta Sci. Math. (Szeged) 42 (1980), 43-56.
- 3. H. Bercovici, C. Foiaş and B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_0 . III., Acta Sci. Math. (Szeged) 37 (1975), 313-322.
- 4. E. A. Nordgren, On quasiequivalence of matrices over H^{∞} , Acta Sci. Math. (Szeged) 34 (1973), 301-310.
- 5. M. J. Sherman, *Invariant subspaces containing all analytic directions*, J. Funct. Anal. 3 (1969), 164-172.
- 6. B. Sz.-Nagy and C. Foiaş, *Harmonic analysis of operators on Hilbert space*, North-Holland, Amsterdam, 1970.
- 7. ——, Local characterization of operators of class C_0 , J. Funct. Anal. 8 (1971), 76–81.
- 8. ——, Commutants and bicommutants of operators of class C_0 , Acta Sci. Math. (Szeged) 38 (1976), 311–315.
- 9. M. Uchiyama, Quasisimilarity of restricted C_0 contractions, Acta Sci. Math. (Szeged) 41 (1979), 429-433.

Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139