DILATION THEORY
AND SYSTEMS OF SIMULTANEOUS EQUATIONS
IN THE PREDUAL OF AN OPERATOR ALGEBRA. I

H. Bercovici, C. Foias, and C. Pearcy

1. Introduction. Let JC be a separable, infinite dimensional, complex Hilbert
space, and let £ (JC) denote the algebra of all bounded linear operators on JC. If
Te L£(3C), let @(T) denote the smallest subalgebra of £(JC) that contains 7 and
15 and is closed in the ultraweak operator topology. (For a discussion of this
topology, cf. [8, Chapter I].) Moreover, let Q(T) denote the quotient space
(7¢)/ *@(T), where (7c) is the trace-class ideal in £(JC) under the trace norm,
and *@(T) denotes the preannihilator of @(T’) in (7¢). One knows (cf. [5]) that
Q@ (T) is the dual space of Q(T') and that the duality is given by

(D (A, [LD=tr(AL), A€Q(T), [L]1€Q(T),

where [L] is the image in Q(7T) of the operator L in (7c). Furthermore the
weak* topology that accrues to @(7') by virtue of this duality coincides with the
ultraweak operator topology on @(7T’). If x and y are vectors in JC and we write,
as usual, x®y for the rank-one operator in (7¢) defined by (x®y)(u)=(u,y)x,
ueJl, then [ x®y]l€Q(T) and an easy calculation shows that for any A in
Q@(T) we have

2 A, [x@yD=tr(A(x®Yy)) = (Ax, »).

Suppose now that # is any cardinal number less than or equal to 8, and let N,
be an initial segment of the positive integers whose cardinality is #n. The purpose
of this paper is to study some classes of operators for which arbitrary systems of
simuitaneous equations in Q(7’) of the form

(3) [Lij]=[xi®y;], ,JENy,

can be solved for the unknown vectors x; and y;, i,/ €N,, where the [L;;] are
any given elements of Q(7'). (This project is of interest because it was shown in
[3] that all operators in the classes (BCP)y, 0 <0<, to be defined in §2, have the
property that systems of the form (3) can always be solved, even when n=R,.) In
§3 we concentrate on operators for which finite systems (3) are solvable, and §4
is devoted to studying operators for which Xy X X, systems are solvable. Our
results in this latter case constitute a rather extensive dilation theory that may
have other applications.

2. Preliminaries. In this section we establish some preliminary notation and
terminology, and we define precisely the classes of operators in which we will be
interested. Let D={AN€C: |\|<1} be the open unit disc in the complex plane,
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and write T=0D. If we denote by L~ =L"(T) the Banach algebra of essentially
bounded (Lebesgue) measurable functions on T, then we recall that L* is the
dual space of L'=L'(T) under the usual pairing, and that H*=H®(T) is a
weak* closed subspace of L® whose preannihilator in L' is the space H} of those
functions f in H'=H'(T) whose analytic extension f to D satisfies f(0)=0.
Thus H* is the dual space of L'/H] under the pairing

2

1 " . .
@ Sy leh=5—| Siete(e™)dr.
™

0

We begin by noting that any study of classes of operators in £(J3C) for which
systems of the form (3) can be solved loses no generality if the operators are all
assumed to be contractions. Furthermore recall that any contraction 7" can be
written as a direct sum 7=7,@®7,, where 7, is a completely nonunitary contrac-
tion (i.e., 7; has no nontrivial invariant subspace on which it acts as a unitary
operator) and 75 is a unitary operator. (Of course, either summand may act on
the trivial space (0).) If 7; is absolutely continuous (or acts on the space (0)), T
will be called an absolutely continuous contraction. For such T (and certainly for
completely nonunitary contractions, even if acting on a finite dimensional Hil-
bert space), one knows (cf. [16, Theorem I11.2.1]) that there is a functional cal-
culus &: H* — Q(T) defined by ®(f)=/(T) for every f in H*. The mapping
¢ =&+ is a norm-decreasing, weak* continuous algebra homomorphism, and the
range of ® is weak™ dense in @(T') (cf. [5, Theorem 3.2] for the completely non-
unitary case; for absolutely continuous unitary operators, the weak *-continuity
is an easy consequence of the spectral theorem). It therefore follows from
general principles (cf. [5, Proposition 2.5]) that there exists a bounded, linear,
one-to-one map ¢ =¢7 of Q(T) into L'/H{, such that & =&*:

—_— *
H® —q—)"—‘p_—— Q(T)

(5)
L'yH} ¢

Q).

One could study arbitrary absolutely continuous contractions 7" for which sys-
tems of the form (3) are solvable, and, in fact, Olin and Thompson [13] proved
that if 7 is subnormal, then every one-by-one system '

(6) [L]=[x®¥],

where [L] is an arbitrary element of Q(7T'), can be solved with vectors x, y in JC.
But since, without making additional assumptions on 7, the range of ¢ may not
be all of L!/HY, there is not necessarily a good supply of interesting elements [L ]
of Q(T') for which to solve (3) or (6), as the following discussion shows.
For any A in D, let p) denote the Poisson kernel function
me)y=0—=[N\H[1=Re” |72, e"€eT,
in L!. Then, from (4) and the well known properties of these functions, we obtain

(7) I =F(N), feH™.
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If a completely nonunitary contraction 7 of norm one has the property that the
range of the mapping ¢ in (5) contains some [p,], let us write

®) ¢ ([p])=[C].
Then, from (1), (7), and (8), it follows that the element [C)] of Q(T) satisfies
©) ST, (D=2, [ =L Iy =f(N), fEH™.

Writing o(T), as usual, for the spectrum of an operator 7', we have the follow-
ing proposition.

PROPOSITION 2.1. If a completely nonunitary contraction T in £(3C)
belongs to the class Cy (in the terminology of [16]) and the minimal function mr
of T does not vanish on D, then the range of the mapping ¢: Q(T) — L'/H{ does
not contain any of the [p,\], N€D. Furthermore there exist such T satisfying
o(T)=T.

Proof. Suppose, for some such 7 and A, the range of ¢ contains [p)]. Then
0= <{mp(T), [C\])=mr(N)#0

from the hypothesis and (9), a manifest contradiction. The fact that there exist
such T in C, satisfying ¢(7") =T is the content of [16, Corollary III1.5.3]. g

In view of this proposition, we choose to limit our attention to those abso-
lutely continuous contractions for which this unpleasantness does not occur.

DEFINITION 2.2. Let A denote the class of all absolutely continuous contrac-
tions T in £ (3C) for which the functional calculus @ in (5) is an isometry of H*
onto @(T).

Some remarks concerning this definition are in order. First, it follows from [5,
Theorem 2.7] and [6, Prop. 16.9 and Prob. 16K] that if T€ A, then & is also a
weak* homeomorphism and ¢ is an isometry of Q(T) onto L'/H{. Thus, in this
case, Q(T) contains all of the elements [C)], A €D, defined by (8). Secondly,
Scott Brown in [4] showed that (6) can always be solved for certain subnormal
operators in A, and thus originated the entire idea of considering systems of
equations of the form (3). Thirdly, C. Apostol showed [1, Theorem 2.2] that if T
is a completely nonunitary contraction in £ (J3C) such that ¢(7') DT and 7 has no
nontrivial hyperinvariant subspace, then 7€ A. (It is elementary that if T€ A,
then o(7) DT.) Finally, the definition of the class A could be weakened some-
what by allowing ® to be an invertible operator mapping H~ onto Q(T); how-
ever this weaker hypothesis also implies that ® is an isometry.

We say that a subset S of D is dominating for T if almost every point of T is a
nontangential limit point of S. The following elementary proposition, whose
proof is contained in that of [5, Theorem 3.2], gives a sufficient condition that
an operator belong to A.

PROPOSITION 2.3. If T is an absolutely continuous contraction in £(3C) and
o(T)YND is dominating for T, then T € A.
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We turn now to the classes of operators to be studied in this paper.

DEFINITION 2.4. For any nonzero cardinal number # less than or equal to R,
we denote by A, = A, (3C) the set of all operators 7' in A such that if ([L;1}i, jen,
is an arbitrary n X n indexed family of elements from Q(T), then the n X n system
of simultaneous equations (3) in Q(7) can be solved with vectors {x;};en, and
{¥j})jen, from 3C.

It is obvious from the definition that
(10) ADA,D-nDA,,D---:)AgO.

Moreover, if T€ A, and one solves the equation [Cy]=[x&®y] for x and y in JC
(where [Cy] is defined by (8)), then it is easy to see that x is nonzero and is not a
cyclic vector for T (cf. [5]), so T has a nontrivial invariant subspace. Thus the
question of whether A=A, is intimately related to the invariant subspace prob-
lem. (In this connection, see [10].) Furthermore, we show in §3 that if » is any
positive integer, then certain subnormal operators in A, do not belong to A, .,
so A, #A, . Itis also important to know at the outset that we are not working
in a vacuum, i.e., that Ax,# @. Indeed, for any completely nonunitary contrac-
tion 7' in £(JC) and for any y in D, let us write 7, for the M6bius transform

(1) T,=(T—pl)(I-pT)"".

Then, for each 0 <0< 1, we define the class (BCP)y= (BCP),(3C) to consist of
all completely nonunitary contractions 7 in £(JC) for which the set

{peD:info,((T;T,)*)<6 or info.((T,T7)"*)<0)

is dominating for T, where, as usual, we are writing ¢,(A) for the essential
spectrum of an operator 4 in £(3C). It is easy to see that the nested family
{(BCP)gJo<g<1 is increasing and that (BCP) = (BCP), consists exactly of those
completely nonunitary contractions 7 in £(JC) for which ¢,(7)ND is dom-
inating for T. The following result is proved in [3] (cf. also [15]).

THEOREM 2.5. For every 0, 0<0<1, (BCP)yCAx,.

3. The classes A, for n finite. In this section we will mostly be interested in
obtaining results for operators 7 belonging to A, for some positive integer n.
We begin, however, with an equivalent formulation of the system (3). If /€ L',
we will write the sequence of Fourier coefficients of / as {cx(/)}f= —. Note
that if [/1€L'/H{ and /,,1, € [1], then [, =1, €H{, so c_x(I)) =c_x(I,) for k=
0,1,2,.... We denote by {c_,([/])}i=0 this sequence of negative Fourier coeffi-
cients.

LEMMA 3.1. Suppose T is an absolutely continuous contraction acting on
a Hilbert space X of dimension less than or equal to Ry, and n is some non-
zero cardinal number less than or equal to R,. Then sequences {X;}ien, and
{yiljen, in X solve the system (3) if and only if

(12) C._k((,bT([L,‘j])):(Tkx,',yj), i:jENn, k=0:1921""
where ¢r is the linear transformation of Q(T) into L'/H{ in (5).
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Proof. Since the polynomials p(T) are weak* dense in @(7T), vectors x and y
in JC solve [L]=[x®y] if and only if
(13) (T*, [L1y=(T*, [x®y1), k=0,1,2,....

But by (2), the right-hand side of (13) equals (T*x, ), and for the left-hand side,
we have

(T*, [L]y=(®(e'*), [L]y =™, ¢r([L])Y =c_i (¢7[L]). O

In the remainder of the paper, the following notation will be quite useful. If T
is an operator and X is a semi-invariant subspace for T, we shall write Ty for the
compression of 7 to X, i.e., for the operator Px T | 3, where Px is the orthogo-
nal projection whose range is X. The next proposition shows that the property of
belonging to A, is inherited by certain dilations.

PROPOSITION 3.2. If T is an absolutely continuous contraction in £(3C),
and n is a cardinal number such that 1 <n< Ry, then T€ A, if and only if the

compression of T to some infinite dimensional semi-invariant subspace X
belongs to A, (X).

Proof. If T€ A, then we may take X =3CS(0). Thus it suffi~ces to show that
if X=MO N, where M DI are invariant subspaces for 7, and T=Tx €A, (X),
then T€ A,,(3C). Since, for any function f in H*, we have

1f o Z 1A Z P S D) K[ = AD =]/,

it follows easily that 7€ A. Now suppose that (3) is a given system of equations,
where the [{J,‘j] are arbitrary elements of Q(T). For each pair i, j €N,, choose
[L{;] in Q(T) such that

(14) ér([Lij]) =7 ([L]]).

Since T€ A,, by Lemma 3.1 there exist sequences {Xi}ien, and {J;}jen, in K
that solve the system

(15) c_ik(or([LL) = (T %, 5)), i,jEN,, k=0,1,2,....

We write =T @K DM*, and define the vectors x;, y;j in J3C by
X;=00x®0, Yi=0®y,®D0, i,jEN,.

Then, since X is semi-invariant for 7, we deduce easily from (14) and (15) that

(16) ek (brlLy)) = (T*x;, 3)), §,JEN,, k=0,1,2,...,

and the result follows from Lemma 3.1. O

Our next result relates the classes A; and A,,.

PROPOSITION 3.3. Let n be a fixed cardinal number, 1 < n<R,, and for every
T in A, let T denote the direct sum of n® copies of T, acting on the Hilbert
space 3C which is the direct sum of n* copies of 3C. Then T€ A, (3C) when-
ever T€ A(3C).
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Proof. 1t is obvious that T € A, so let (3) be an arbitrary n X n system of equa-
tions in Q(T), and choose elements [L{] in Q(T) such that (14) holds for all
i, J €EN,. Then, in case T € A, for each fixed pair i, j in N,,, we may choose vec-
tors x;; and y;; in JC such that

(17) i (SFILEN =(T*x;, yi), k=0,1,2,....

Remembering that vectors in 3C may be regarded as column vectors of length n?>
with entries from JC, and that a column vector of length 72 may be regarded as n
vectors of length »n laid end to end, we now define, for i, j €N, the vectors X;
and J; in 3C by

0 ] 0
(:) y:lj
: 0
o 0
Xi1 :
X .
X~1= ? ’ .)7]_ yézj )
’ 0
i o
0 .
: Y3j
0 0

where the nonzero entries in %; are in the (in+ 1)th through the (in+ n)th posi-
tions, and the nonzero entries in J; occur at the jth position, (74 ,)th position,
(2n+j)th position, etc. An easy calculation using (14), (17), and the definition
of the X; and y; shows that (15) is valid, so the proposition is proved. a

Our next result shows that if 7€ A,, then many different operators can be real-
ized as compressions of T to finite-dimensional semi-invariant subspaces. Recall
that a set {e;};en, of vectors in a Hilbert space X is an n-cyclic set for an opera-
tor A € £L(X) if the smallest invariant subspace for A4 containing all of the ¢; is I
itself.

THEOREM 3.4. Suppose T € A,, for some positive integer n, and let A be any
completely nonunitary contraction possessing an n-cyclic set of vectors and act-
ing on a finite-dimensional Hilbert space X. Then there exist invariant sub-
spaces M D I for T such that Ty is similar to A.

Proof. Since X is finite-dimensional and A4 has an n-cyclic set of vectors
{eilien,, it is easy to see (via consideration of the Jordan canonical form of A4)
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that there is a set {f;};en, Of vectors in X that is an n-cyclic set for 4*. For
each pair 1<, j<n, let [L;;] be the element in Q(T') such that ¢4([e;®f;]) =
é7([Li;]). Choose sequences {x;);en, and {y;)jen, from JC that solve the n X n
system (3). Then, by Lemma 3.1, we have

(18) (A%e;, [)=(T"x;,3), §,JEN,, k=0,1,2,....

We define

(19) M={p(T)x1+ - +pu(T)Xy: Py, ..., Dy any polynomials}~,
M, =g (T*)n+--+g,(T*)ys: qi,...,q, any polynomials}~,

and N=MNN;. It is obvious from these definitions that M and I are in-
variant subspaces of 7T"and that 91 C 9. For each 1 <i < n, write x; =z; +w; where
Z €MON and w; €. Since T*y; €M, for all j and k, we have (T*w;, y;)=
(w;, T**y;) =0 for all i, j, k, from which it results that

(Akei’.f:f):(Tkzisyj), i’jEan k:031’2""’

or, equivalently, that [x;®y;]=[z;®y;] for all i and j. Let us write T for the
compression Torgea - Then, of course, we may write, for any nonnegative integer
k, T*z;=T*z;+ v, where v, €9U. Furthermore, since the y; are orthogonal to
I, we have

(20) (Akei’j})z(Tkziayj)z(szi’yj)s i,jENna k=031’23""
We assert that the correspondence
(21) X:pi(A)ey+ - +p,(A)e, = pi (T zi+ -+ - 4+ pu(T)zy,

where the p;(\) are any polynomials, is a one-to-one linear mapping from X
onto MO N. To prove that X is a mapping and that X is one-to-one, we observe
that Y;en, pi(A)e;=0 if and only if, for every family of polynomials g; (M),
J €EN,, we have

( X pi(Aye, ¥ qi(A*)f)=0,

iEN, JEN,
which is equivalent to
( ¥ gGA)pi(Ae, [;)=0, g\ =g;(N);
i,jEN,
this, by virtue of (20), is equivalent to
(22) ( X q(Tpi(T)z, yj)=0.
i,jEN,
On the other hand, (22) is equivalent to
( Y pi(Mzi, X qi(T*)y;)=0
i€EN, J€EN,

for all families of polynomials g;(\), j€N,, and this is clearly equivalent
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to saying that X; p;(T)z; belongs to 91, or, what is the same thing, that
EieN,, pi(T)z;=0. Thus X, given by (21), is a one-to-one mapping of X into
M S I. The linearity of X is clear from its definition (and the boundedness of X
follows from the fact that X is finite dimensional). It follows immediately from
the definition of M and the equation

Poyyox ( E pi(T)z;)= E pi(T)z;

that the range of X is dense in MO I, and hence, since this range has the same
dimension as ¥, we have range(X)=MON. Finally, it is clear from (21) that
XA=TX, so T is similar to A as desired. ]

COROLLARY 3.5. Suppose T € A, for some positive integer n, and let A be
any completely nonunitary contraction acting on a Hilbert space X of dimension
n. Then there exist invariant subspaces DO N for T such that dim(MON)=n
and Tanoo is similar to A.

Proof. Any basis for X is an n-cyclic set for a, and the result follows from
Theorem 3.4. O

COROLLARY 3.6. Suppose T€ A, for some positive integer n, and A €D.
Then there exist invariant subspaces M DI for T such that Aim(MOSOIN)=n
and Tsm@m=)\'lcm@m.

Proof. This is immediate from the preceding corollary and the fact that an
operator similar to a scalar A must be equal to A. O

It may be that Corollary 3.5 can be strengthened by replacing the relation of
similarity by that of unitary equivalence. The following theorem lends evidence
to this conjecture, and also shows that there exist subnormal operators in A, that
do not belong to A, ;. The last part of the proof is patterned after an argument
of Hadwin and Nordgren [11].

THEOREM 3.7. Let n be any fixed positive integer, and let U be a unilateral
shift operator in £(3C) of multiplicity n. Then UEA,, and U€A, |, so the
nested sequence of sets (A, }n=, is strictly decreasing. Furthermore, if A is any
completely nonunitary contraction acting on a Hilbert space of dimension n,
then there exist invariant subspaces DN for U such that Uy oo is unitarily
equivalent to A.

Proof. Suppose first that U€ A, ;. Then, by Corollary 3.6 (with A=0), there
exist invariant subspaces U DV of U such that dim(U©V)=n+1 and the com-
pression of U to WOV is 0. But it is well-known (cf. [16, Theorem VI.2.3]) that
U|U must be a unilateral shift V€ £(U) of multiplicity m <n, and from above
we have VU CV. But this implies that WOV C kernel V*, which is impossible,
since m = dim (kernel ¥*) < n. This proves that U A, ;.

Now suppose that A4 is any completely nonunitary contraction acting on a
Hilbert space X of dimension n. Then o(A) lies in the open unit disc, and con-
sequently 4 € Cy in the terminology of [16]. Hence, by [16, Theorem VI.2.3],
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A is unitarily equivalent to the compression to a semi-invariant subspace of a
unilateral shift operator of multiplicity m=dim({(1x—A4A4*)"?X}<n, from
which the stated result easily follows.

Finally, we show that U € A,,. For this purpose, consider the system (3), where
the [L;;] are arbitrary elements of Q(U). Let W be a unilateral shift of multi-
plicity Ry in £(JC), and choose elements [L/;] in Q(W) that satisfy ¢y ([L;;]) =
ow([L{;]), i, EN,. Since 6, (W)=D", W€ (BCP), and, as mentioned earlier,
we know from Theorem 2.5 that (BCP)CAg,. Thus there exist sequences
{xi}ien, and {y;}jen, that satisfy the system

(23) c_w(ou([Li )= (W¥xi,¥)), i,JENy, k=0,1,2,....

Let O be the smallest invariant subspace for W containing the vectors xy, ..., X,,
so I is as in (19) with W replacing T Then, as we have noted earlier, W |9 must
be a unilateral shift Y in £(9) of multiplicity m <n. For each j €N, write
Yi=yj+yj, where y/ €M and y/€ M *L. It is trivial to verify that the sequences
{xi}ien, and {¥/};en, in M satisfy

c_i(du([Li N =Y x;, y)), i,jEN,, k=0,1,2,....

Since Y is unitarily equivalent to the restriction of U to some reducing subspace
for U, it follows immediately from Lemma 3.1 and Proposition 3.2 that the
system (3) is solvable, so the proof is complete. O

REMARK. The counterpart of Theorem 3.7 for n= R, is also true. Indeed, if U is
a unilateral shift of infinite multiplicity, then o.(U)=D", so U€ (BCP)C Ag,.
If W is a bilateral shift of infinite multiplicity, then clearly W € A, and since W
restricted to an invariant subspace is U, it follows from Proposition 3.2 that W
also belongs to Ax,-

If 3C, is an n-dimensional Hilbert space, we write Lat(JC,) for the lattice of all
subspaces of 3C,. The next result relates the invariant subspace lattice Lat(7") of
an operator 7" in A, to Lat(3C,).

THEOREM 3.8. Suppose T € A, for some positive integer n 22. Then there is a
one-to-one mapping n: Lat(3C,) = Lat(T) that is increasing, preserves closed
spans, and has the property that if { X;};e; is any family of nontrivial subspaces
of 3C,, such that N;er X;=(0), then Nie; (X)) =Nier (Tn(X;))".

Proof. As before, it follows from Corollary 3.6 that there exist I DI in
Lat(7T) such that JC, =9GN has dimension n and such that 79T C 9 (or,
equivalently, 73 =0). For any subspace ¥ of JC,, define () to be the
smallest invariant subspace for 7" that contains ¥ (so, in particular, n(3) C ).
It is obvious from this definition that n is an increasing mapping that preserves
closed spans, and the fact that 73C,, C 9T C 3C;; implies that X =5(X)N3JC,, so g
is one-to-one. We prove the last statement of the theorem in the case in which
card I=2; the proof in the general case is almost exactly the same. Thus let X,
and X, be nonzero subspaces of JC, with X;NX,=(0), and note that TX; is
orthogonal to X; for 1<i,j<2. Since obviously (T9(J,))”" N(Ty(X,))" C
7(3;) Ny(XK,), it suffices to prove the reverse inclusion. Thus, let x be a nonzero
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vector in n(X;)N7n(X3), and let {ey,..., e} and {f,...,f,} be orthonormal
bases for X; and X, respectively. Then there exist sequences {p, ;(N)ir=1,
1<i<ky, and {g, ;(N)}r=1, 1 <j<k,, of polynomials such that

lim (pn,1(T)e+ - + P i, (T)ey)=x, and
24) n— e

lim (gn 1 (T) N1+ -+ +Gn, 1, (T) Si,) =x.

n—» o
From the first equation in (24), we deduce easily that x is orthogonal to
3C,©X,, and from the second that x is orthogonal to JC,, © X,. But then, since

(3¢, 0KV (I,0X;)=3,0 (X, NXK,) =3,

x is orthogonal to JC, and hence to all of the ¢; and f;. Thus, again from (24) we
see that p, ;(0) = 0 and g, ;(0) — 0 for all / and j. Thus if we define sequences
of polynomials {r, ;(N)} and {s, ;(\)} by setting p,, ;(N)—pn,i(0)=Ar, ;(\) and
Gn,j(N) =G, (0)=Nsy, ;(N), then

lim (T[ry, (T)ey+ - +ry 4 (T)e)=x, and

n—> oo

lim (T[sp, ((T) it -+ +8p,1,(T) frr, ) =X,

n—c
from which the result follows. O

COROLLARY 3.9. Suppose T is an invertible operator in A,, for some positive
integer n 22, and, in the notation of Theorem 3.8, suppose { X;} is any family of
nontrivial subspaces of 3C, such that (\ X;=(0). Then we have T((N; n(X;)) =
N; 7(K;), so that either T ! has a nontrivial invariant subspace, or N; 7(X;) =

(0).

Proof. This follows immediately from Theorem 3.8 and the fact that if 7 is
invertible, then 74 (X;) is closed and N; T9(X;)=T(N; n(X;)). O

The question of whether the inverse of every operator in A, has a nontrivial
invariant subspace is important. For example, we have the following.

COROLLARY 3.10. If the inverse of every invertible operator in Ay, has a
nontrivial invariant subspace, then every operator in £(3C) whose norm is equal
to its spectral radius has a nontrivial invariant subspace.

Proof. As noted above, (BCP) CAx, and it follows from [10, Corollary 5.2}
that if the inverse of every invertible operator in (BCP) has a nontrivial in-
variant subspace, then so does every operator in £(JC) whose norm is equal to
its spectral radius. O

4. The space Ay, of universal dilations. In this section we establish some dila-
tion theorems for operators in the class Ag . These theorems are sufficiently
strong that operators in Ay, have the right to be called “universal dilations”.
Recall from Sections 2 and 3 that the class Ay, contains many operators. In par-
ticular, for 0<0<1, we have(BCP)y C Ag,; moreover, as we shall see shortly
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(Prop. 4.5), if TE A, then T® 15 € Ag,. If X is a closed, densely defined, linear
transformation, we write D (X) for the domain of X.

THEOREM 4.1. Suppose T€ Ay, and let A€ £(3C) be any absolutely con-
tinuous contraction. If L is any countable subset of 3C, then there exist in-
variant subspaces M DI for T and a closed one-to-one linear transformation
X:D(X) > MO such that

(@) the linear manifold (X)) is dense in IC and contains L,

(b) the range of X is dense in MO N, and

(©) TonomXz=XAz forall z in D(X).

Proof. The argument is similar to that given to prove Theorem 3.4, and we
content ourselves with a sketch. Let [e;};=; be a sequence that is dense in JC and
contains all of the elements of L, and choose elements L;; in Q(T), 1<i, j<oo,
such that

da(lei®eil)=dr([L;j]), 1<i,j<oo.

Then, by hypothesis, there exist sequences {x;};=; and { y;};=,in JC that solve the
system (3) (with »=X;). Thus, by Lemma 3.1, we have

(A%e; ) =(T*x;,y;), 1<i,j<oo, k=0,1,2,....

We define M=V {T*x;:i=1, k20}, M, =V{T**y;: j=1, k>0}, and N =
MNM; . Clearly M and I are invariant subspaces for T with M DN, and if we
write x; =z; +w; where z; EM O N and w; € I, then, as before, we deduce easily
that

(25) (A¥e;, €)= (T*z,y;), 1<i,j<oo, k=0,1,2,....

Furthermore, writing T for the compression of 7 to MO N, we have Tkz,:
T*z; +vir, where vy €91, so we conclude, as before, that

(Akei’ej)z(Tkzhyj)a 1<l,_]<°°, k=0’1’2a""
Now, just as in the proof of Theorem 3.4, the correspondence
(26) XO:pl (A)el +oe +pm(A)em —> D (T)Z] +oee +pm(f)zma

where m is any positive integer and the p; (\), 1<i <m, are any polynomials, is a
one-to-one linear mapping of a dense linear manifold in JC containing L onto a
dense linear manifold in SIS IN. Furthermore, it turns out that Xj is closable,
and that its closure X is one-to-one. To prove these assertions, it suffices to show
that if p{™(\) are polynomials such that

pi"(A)e+ - +pi(Ae, —>e’, and
p"(Dyz+ -+ (T)zm, — 2,

then e’=0 if and only if z’=0. But e’=0 if and only if, for every positive integer
p and every sequence of polynomials g, (M), ...,q,(N), we have

(27) (e, q(A")e;+--- +q,(A%)e,) =0,
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since the sequence {e;]} is dense in JC; furthermore, (27) is equivalent to

Lm(p{"(A)ei+ - +pi(A)en,, g1 (A*) e+ -+ +q,(A*)e,) =0,
n

which, by virtue of (25), is equivalent to

Hm(p("™ (T)zi+ -+ + P (T Zm,, @i (T*) Y1+ - -+, (T*)y,) =0.

n

This is equivalent to

Lm(p{"(T)zy+ -+ + Dy (T) 2, (T IV + -+ + 4, (T*)y,) =0,
n

which is equivalent to
@ (T*In+ - +qp(T*)yp) =0,

which is equivalent to z’=0. Thus X, is closable, and its closure X is one-to-one.
Since the range of Xj is dense in IO N, just as in the proof of Theorem 3.4, the
same is true of X, and since Xy 4 =TX, on the domain of X, by virtue of (26),
conclusion (c) in the statement of theorem follows easily from the fact that X is
the closure of Xj. ' O

Of course the relation between A and the compression Tomon of Tto MO I is
very weak in the above theorem. There are, however, classes of operators A for
which this relation can be dramatically improved.

PROPOSITION 4.2. Suppose T € Ay, and {N\¢}i=1 is any sequence of (not
necessarily distinct) points from D. Then there exists a semi-invariant subspace
X for T such that Ty is unitarily equivalent to a normal operator N in £(3C)
whose matrix relative to some orthonormal basis {e;} ;= for 3C is the diagonal
matrix Diag({ \e}i=1). ' |

Proof. Set A=15 ®N, and note that each \; is an eigenvalue of A of infinite
multiplicity. Define the countable set L so that it contains an infinite number of
linearly independent eigenvectors corresponding to each Ay, 1<k <oo, and let
9, 9N and X be as provided in Theorem 4.1. Then, if we write T=Ty g, it is
easy to see from (c) that each Ay, 1<k <oo, is an eigenvalue of T whose cor-
responding eigenspace is infinite dimensional. Therefore we may choose by
induction an orthonormal sequence { f;}p=; in MO such that Tf =N, fx,
1<k<oo. Setting X=Vi=: {fx], we see that X (regarded as a subspace of
MON) is an invariant subspace for 7, and hence that X (regarded as a sub-
space of JC) is a semi-invariant subspace for 7. Clearly Ty =T|J€ is unitarily
equivalent to N, so the proof is complete. O

COROLLARY 4.3. If T€ Ag,, then there exists an invariant subspace WM for T
such that MO (TIN) ™ is infinite dimensional.

Proof. Define N\;=0 for 1<k <o, and apply Proposition 4.2 to obtain
an infinite dimensional semi-invariant subspace X =MON for T such that
Tonoxn=0. Then (TI)~ C I and the result follows. O
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Another easy corollary of Proposition 4.2 is the following useful characteriza-
tion of the class Ay, .

COROLLARY 4.4. An absolutely continuous contraction T in £(3C) belongs
to Ay, if and only if there exists a semi-invariant subspace X for T such that the
compression Ty belongs to (BCP). Thus Ag, is self-adjoint.

Proof. If TEA Ko then it follows from Proposition 4.2 that 7 has a compres-
sion to a semi-invariant subspace that is a (BCP )-operator. Indeed, the operator
Diag({ A\ }) € (BCP) if the sequence {A;} is taken to be dense in D. On the other
hand, if 7 has such a compression, then it follows immediately from the fact that
(BCP)CAy, and Proposition 3.2 that T€ Ay, . That Ay, is self-adjoint now
follows from the fact that if A4 is the compression to a semi-invariant subspace of
T, then A* is the compression to a semi-invariant subspace of 7*, together with
the fact that (BCP) is self-adjoint. (That Ay, is self-adjoint could also have been
deduced easily from Lemma 3.1.) O

The following consequence of Corollary 4.4 is the counterpart of Proposition
3.3 for n=R,.

PROPOSITION 4.5. If TE A,(3C), IC is the direct sum of Rg copies of 3¢, and
T is the direct sum of R, copies of T acting on 3C, then T € Ax, (30).

‘Proof. Write 3= Y@ 3C,, where each JC, equals 3C, and write T= YL} @T,,,
where each 7, equals 7. If {\,}; =, is any sequence dense in D, then, since
T,,€A,(3C,), there exists a one-dimensional semi-invariant subspace ¥, CJ3C,
for 7, such that (7,,)x, =N, 1x,. Let XC JC be the span of the orthogonal spaces
X,, 1<n<oo, It is easy to see that X is semi-invariant for T and that Tx is uni-
tarily equivalent to the normal operator Diag({\, }), which is a (BCP)-operator.
Thus by Corollary 4.4, T€ Ax (5C). O

REMARK. The preceding argument can be used to give a different proof of the
following stronger result due to Exner [9]: If T,€A,(3C), 1<n<o, and T=
En ]@Tns then TE AKO (SC)

The following theorem, which is of independent interest in its own right (and
may be known), is a stepping-stone to be used to improve Proposition 4.2.

PROPOSITION 4.6. Suppose A is an operator in £(3C) with range 3C and
infinite dimensional kernel such that

inf{]|Ax||: ||x|=1, x€ (ker A)* } 2 a > 0.

Then there exists an invariant subspace MM for A such that A\ is unitarily
equivalent to oU*, where U is a (forward, unweighted) unilateral shift of
infinite multiplicity.

Proof. If we write the polar decomposition of A as A=VP, and define B=
[(P|(ker A)* ) ' @O0y 41V*, then clearly AB=1y and ||B|| < 1/a. Furthermore,
since ker A is infinite dimensional, we can choose an isometry W in £(J3C) such
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that W3CC ker A and ker A© W3 is infinite dimensional. Define now
Z=W(lze—a’B*B)"*+aB.
Since AW =0 and the ranges of B and W are orthogonal, we have
Z*Z=(lze—o’B*B)*W*W(lge—a*B*B)"* + a*B*B =14
and AZ=A(W(lye—a’B*B)"*+aB)=aAB=aly,

so, in particular, Z is also an isometry. Let e, ¢}, =0 be an orthonormal sequence
in the space ker A© WJC. Then all the terms of this sequence are orthogonal to
W3Cv BJ3C, from which it follows that each e, ¢ is orthogonal to the range of Z.
Thus if we define e, j =Z’e, o for all 0< n, j<oo, it follows that e, ( is orthogo-
nal to e, ;4 for 0<j, n, m <oo. Consequently, since Z is an isometry, the entire
family {e, ;}o<n, j<« 1S orthonormal. Since

Ae, 0o=0 and Ae, j.,=AZe, j=we,;, 0<n,j<oo,

it is obvious that if we define 9N to be V, ;{e, ;], then AN CIM and A|MN is
unitarily equivalent to « U*, so the theorem is proved. O

COROLLARY 4.7. Suppose T€ Ay, and 0<a<l. Then there exists a semi-
invariant subspace X for T such that Ty is unitarily equivalent to aU*, where U
is a (forward, unweighted) unilateral shift operator of infinite multiplicity.

Proof. Let {\;] be a sequence of distinct points that is dense in the annulus
{N€C:a<]|A|<1], and let N be a diagonal normal operator whose matrix rela-
tive to some orthonormal basis for JC is Diag({ A\ }). Then, according to Propo-
sition 4.2, there exists a semi-invariant subspace X, for T such that 7= Ty, is
unitarily equivalent to N. Since a semi-invariant subspace X C X, for 7, regarded
as a subspace of JC (the Hilbert space of T), is also a semi-invariant subspace
for T, it suffices to show that N has a semi-invariant subspace @ such that
Np is unitarily equivalent to aU*. Note that o, (N)={AE€C: a<|N <1}, so
N € (BCP)CAy,, and thus we may apply Corollary 4.3 to N to deduce the exist-
ence of an invariant subspace M C 3C for NV such that M SN M is infinite dimen-
sional. If we write X=NM@ (MONM)DM™*, then, relative to this de-
composition of JC, N has a matrix of the form

A B C
(O 0 D).
0 0 E

We define R to be the compression of N to the semi-invariant subspace ® =
JCONIM, so that the corresponding matrix for R is

(o 2 )

It is obvious that the kernel of R is infinite dimensional. Furthermore, since N
(together with N*) is invertible and has lower bound «, and since | N*x|=| R*x||
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for all x in &, it follows easily that the range of R is ® and that R* is bounded
below by «. Consideration of the polar decomposition of R then easily gives the
fact that

inf{||Rx||: ||x|[=1, xEROker R} = a.

Thus we may apply Proposition 4.6 to R to conclude the existence of an invariant
subspace @ for R such that R|® is unitarily equivalent to « U*. Since @, regarded
as a subspace of JC, is semi-invariant for N and Ny =R|®, the result follows. O

The following theorem supports the view that operators in Ay, deserve to be
called universal dilations. Recall that an operator A is called a strict contraction
if |A]|<1.

THEOREM 4.8. Suppose T€ Ay, and let {A; Jj=1 be any sequence of strict
contractions acting on Hilbert spaces of dimension less than or equal to Ry. Then
there exists a semi-invariant subspace X for T such that Tx is unitarily equivalent
to the direct sum ;D A;.

Proof. Choose a sequence of positive numbers {«;} such that ||4;||<«;<1 for
1<j<oo. Then each of the operators «; '4; is a strict contraction, and it is well-
known (cf. [16, Theorem VI.2.3*]) that every strict contraction is unitarily
equivalent to the restriction of a backward unilateral shift operator U* in £ (3C)
of infinite multiplicity to some invariant subspace. Thus A4; is unitarily equiva-
lent to the restriction of «; U* to some invariant subspace 9;, and X;®@A; is
unitarily equivalent to the restriction of ¥;®a; U* to the invariant subspace
L;@M;. Thus it suffices to prove that T has a compression to a semi-invariant
subspace that is unitarily equivalent to X;@®o; U*. For this purpose, we now
choose a sequence {A;} of points that is dense in D and that has the property that
every term is repeated infinitely often. Then, according to Proposition 4.2, there
is a semi-invariant subspace X, for T such that the compression T}, is unitarily
equivalent to a normal operator N whose matrix relative to some orthonormal
basis is Diag({A;}). Thus, it suffices to prove that the compression of N to some
semi-invariant subspace is unitarily equivalent to X @«; U*. By the way the
sequence (A;} was chosen, we may write N as the direct sum N=Y;2,®N,
of countably many normal operators N; each of which satisfies o.(/N;)=D".
(In fact, all of the N; may be taken to be the same operator.) Since each
N; € (BCP)CAy,, we may apply Corollary 4.7 to conclude that, for 1<j <o,
there exists a semi-invariant subspace 9; for /N; such that the compression of N;
to 91, is unitarily equivalent to «; U*. It follows easily that the subspace X @ 9,
is a semi-invariant subspace for N= Y @N;, and, of course, the compression of
N to Y @ N, is unitarily equivalent to ¥ @ «; U*. Thus the proof is complete. O

Theorem 4.8 makes it worthwhile to make the following definition.

DEFINITION 4.9. If A4 is an operator on a Hilbert space of dimension less than
or equal to R,, and every operator T in Ay, has the property that some compres-
sion of T to a semi-invariant subspace is unitarily equivalent to A4, then we call
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A a universal Ay,-compression, and we denote the set of all universal Ay,
compressions by C(Ax,)-

It is obvious that every A in C(Ax,) is a completely nonunitary contraction.
The following proposition sets forth some additional properties of the class
C(Ax,)-

PROPOSITION 4.10. The set C(Ay,) is self-adjoint, contains every (separably
acting) strict contraction, is contained in Cyy (in the terminology of [16}), and is
closed under the formation of countable direct sums. Furthermore, if T€
C(Ax,) and x is any nonzero vector in the Hilbert space of T, then | Tx||<||x||.

Proof. That C(Ax,) contains every (separably acting) strict contraction is
immediate from Theorem 4.8. That C(Ax,) is self-adjoint follows easily from
the fact that A Xq is self-adjoint and the obvious equations

MAON=mMNt =91L@mll,
(Tonoo))* =(T")qrome,

where 9N D I are invariant subspaces of 7. To see that G(Axo) C Cyp, it suffices
to note that (BCP) contains operators in Cy, (for example, the normal operator
N that appeared in the proof of Corollary 4.7) and to observe that the compres-
sion to a semi-invariant subspace of an operator belonging to Cy also belongs to
Coo- A similar argument proves the last statement of the proposition. Finally,
that €(Ax,) is closed under countable direct sums is proved via a construction
that is almost identical to that in the proof of Theorem 4.8, and thus no more
need be said about it. O

The question of exactly which completely nonunitary contractions belong to
C(Ayg,) is interesting and important. The following lemma leads to the construc-
tion of some such operators that are not direct sums of strict contractions.

LEMMA 4.11. If {«a;}j%¢ is any sequence of numbers such that 0<a;<1 for
every j and I1;Z, o; =0, then there exists a square summable sequence { £}~ of
positive numbers such that

(28) ( :;o: g})/(gg})mn, n=0,1,2,....

Jj=n+1 Jj=n
Proof. It suffices to set
£5=1—ay, F=apay...q; 1 (1—q;), j=1,

and to observe that Y%, Ej2=a0a]...oz,,_1 for every n=1,2,..., while
E;ozo EJZZI. O

THEOREM 4.12. Let a=(c;}j2¢ be any sequence of positive numbers as in
Lemma 4.11. If S, is a forward weighted shift operator of multiplicity one with
weight sequence o, then S, € C(Ag,). Conversely, if Sg is a forward weighted
shift operator with positive weight sequence 3 and Sp€C(Ax,), then 3 must
satisfy the hypotheses of Lemma 4.11.
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Proof. We define first a sequence { A, }r—o of strict contractions. Let A, be the
zero operator acting on a 1-dimensional space with orthonormal basis {e ¢},
and for each n>0, let A, be a truncated forward weighted shift acting on an
(n+1)-dimensional Hilbert space whose definition relative to an orthonormal
basis (e, 0,€n,1,--.,€n )} for the space is given by

2 .
Anen,j=ajl/ €n,j+1> 0<j<sn—1,
Apen n=0.

By Proposition 4.10 the operator A=Y - o® A, belongs to C(Ax,), and there-
fore it will suffice to show that S, is unitarily equivalent to the restriction of 4 to
some invariant subspace for A. Observe that the space on which A acts has an
orthonormal basis {e, ;: 0<n<oo, 0<j<n}, and the action of 4 on this basis is
given by

/2

Ae",jzajl €n,ji+1s Aen,nzo, O<n<°°, OSJSH—I.

Let {£;])/20 be the square summable sequence provided by Lemma 4.11, and for
n >0 define x, = X%, &€, ,. Then

[e o] [+ o]
— — 1/2 — 172
Ax,= ), £ Ae; = y Ejan €in+1=Cn Xpnit1
Jj=n Jj=n+1

or, equivalently,

A /%)) = (/X)X 1= (X1 |17 ) 17164411

o 0 1/2
(29) =a,5’2( > z}/ > s,?) Cors1 /11 )

Jj=n+1 Jj=n
zan(xn+l/“xn+]“)-

Thus the orthonormal family {x, /|| xx||3n=0 generates an invariant subspace 9N
for A such that 4|9 is unitarily equivalent to S,, which proves the first part of
the theorem. Conversely, if Sg is a forward weighted shift in C(Ag, ) with posi-
tive weight sequence 3, then 3, <1 for all n because of the last statement of Prop-
osition 4.10, and I1;-¢ 8, =0 because Sz € Cy. a

Of course, it is immediate from Proposition 4.10 that every backward uni-
lateral weighted shift S} with a weight sequence « as in Lemma 4.11 also belongs
to C(Ax,). As for bilateral shifts, we have the following.

THEOREM 4.13. If a=(«;}jZ -« is any sequence of numbers such that 0<
a;<1 for every j and 11~ ;=112 a_;=0, then the bilateral weighted shift
operator W, of multiplicity one with weight sequence a belongs to C(Ay,).

Proof. For each integer n, let {e, ;: 0<j<o} be an orthonormal basis for
a Hilbert space JC,, and let A, be a backward weighted shift operator on 3C,,
defined by

— 172 ;
Anen 0=0, Anen,j—an—jen,j—ly 1<j<eo.
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It is clear that the weight sequence for each A, satisfies the condition of Lemma
4.11, so, by the above remark, we have A, € C(Ag,) for all n. Furthermore, by
Proposition 4.10 the direct sum A= Y- _ @A, actingon L ;- _ @ IC, belongs
to G(Axo), so as before it suffices to construct an invariant subspace 9 for A4
such that 4|9 is unitarily equivalent to W,,. For this purpose, let {£;};2( be the
sequence provided by Lemma 4.11 corresponding to the given sequence {«; 2.
We can define &, inductively for n <0 such that the relation (28) remains valid for
all integers n. Indeed, we set £7= (o, '—1) 2,41 £/, and a one-line computa-
tion shows that (28) is valid. We define next, for —co <n <o, x,= Y/ ¢; € ji—ns
and, as before, the family {x,/||x,||}n= -« is orthonormal and generates an in-
variant subspace 9. To see that 4|9 is unitarily equivalent to W, we compute

+ 00 -+ co
Ax,= Y EAe j_n= Y Eoay?e jono1=ay Xnri,
j=n j=n+l1
and the result now follows from (29), just as before. O

From these last two theorems, we obtain this interesting corollary.

COROLLARY 4.14. Suppose T € Ay, and let V be an operator in £(3C) that is
either a unitary operator or a forward or backward (unweighted) shift of finite
multiplicity. Then T is unitarily equivalent to an operator T’ acting on 3@ JICD I
of the form

A K B
T’= O V+K3 K2
0 0 D

where the K;, 1<i<3, are compact. Consequently T is unitarily equivalent to
(VOT)+K, where 1 € £L(IC) and K is compact.

Proof. We first show that there exists an operator Cin C(A x,) such that K3=
C—V is compact. That this is possible when V is unitary follows from Proposi-
tion 4.2 and the well-known theorem that ¥ may be written as a diagonal unitary
operator plus a compact operator. That this is possible when V is a forward or
backward shift of finite multiplicity follows easily from Theorem 4.12 and Prop-
osition 4.10. Next, using the fact that CeC(Ag,), we deduce the existence of
invariant subspaces 9 DI for T such that Tyygg is unitarily equivalent to C,
and hence 7 is unitarily equivalent to some operator of the form

[y

A K, B
T'={ 0 V+K; K2>
0 0 D

acting on the space JCHICD IC.
The compactness of K; and K, will now follow from that of K3 and the prop-
erties of V. Indeed, in any case V*V=1—F where E is a projection onto some
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finite-dimensional space (perhaps (0)). Since 7’ is a contraction, we have, for
every unit vector x in JC,

K x|+ | (V+ K3)x||* = || K x| 24 (V*Vx, x) + 2 Re(Vx, K3 x) +|| K3 x||* < 1,
which implies that
1Ky x| ? < || Ex|+ 2] K3 x| — | K3 x|,

and the compactness of K, is now immediate from that of E and Kj3. The argu-
ment that K, is compact proceeds similarly by taking adjoints, so the proof is
complete. O

In the terminology of [14], the last conclusion of Corollary 4.14 is that T is
compalent to V®T;. Another version of this result could, alternatively, be
deduced from the fact that ¢,(7) DT and [1].

Added in proof. Since this paper was written the authors (in collaboration with
C. Apostol and B. Chevreau) have proved the following theorems, pertinent to
the above results, that will appear in subsequent papers: 1. Every T in Ay is
reflexive. II. Al N COO= AKO N C()O'
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