THE EULER-LAGRANGE EQUATIONS FOR EXTREMAL
HOLOMORPHIC MAPPINGS OF THE UNIT DISK

E. A. Poletskii

1. Introduction. Extremal problems for holomorphic mappings of the unit
disk were considered by various authors ([3], [5], [6]), but only for the class of
univalent functions. For a class of mappings to a domain D C C" these problems
were studied only when D is the unit disk. One reason for this limitation, I be-
lieve, was an absence of really interesting functionals. However, some years ago,
Royden [4] introduced the functional || f'(0)|| for mappings of the unit disk to a
domain DC C”". The supremum of this functional gives us the infinitesimal norm
for the Kobayashi metric at a point z=_f(0). But extremal mappings in this case
are much more interesting because they are invariant under biholomorphic trans-
formations and, hence, are connected with some invariants. In particular, their
boundary values may coincide with so called Moser chains [1]. But for a proof of
the last conjecture we should know, at least, that boundary values lie on the
boundary of the domain. We prove here this property for large classes of func-
tionals and domains.

The standard tool for the study and computation of extremals in the calculus
of variations are the Euler-Lagrange equations. In our paper, we deduce them in
the case of pseudoconvex domains. In the last section we show how these equa-
tions help to find extremals for some types of domains. The author hopes that
further studies in the complex calculus of variations will give us a clearer under-
standing of biholomorphic invariants. '

_ Similar results were proved by different methods by Lempert [2] for Royden’s
functional and strongly linear convex domains of class C*.

2. Notations and preliminary results. Let A,={{€C: |{| <r} be the disk of
radius r on the complex plane and A=A,. As usual we shall denote by H or H?
the spaces of all holomorphic functions or of those whose boundary values lie in
L?. We define H,, H? L% as a direct sum of n copies of H, H?,L?. If DCC",
then H(A, D) is the set of all holomorphic mappings of A to D. We denote by A
the subspace of H, consisting of functions continuous up to the boundary; A4,
means a direct sum of #n copies of A.

In addition, we shall use the following notations: S, =0d4,, S=275,; if
S=fireean i)y h=(hy, .. k), then (f,1)=T fiky, |fI=E|f]; p(A,B) is

the distance between sets 4 and B; A means the closure of 4 and if u is a func-

tion, then
Au=("’—“, ou )
0z 0% 0z,
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For f€ H} the notation || f||, means the norm f in L% and || f||,,, is the norm of
f1S,in L.

In this paper we shall consider real-valued functionals ¢ on H,, satisfying the
following conditions:

(A) @ is differentiable at each point f€ H,, i.e., there is a unique linear contin-
uous functional ®'(f, g): H, = R such that ®(f+g)=®(f)+P'(f,g)+r(f,g),
where |r(f, h)|||A|l;; = O when ||4]|;,, = 0 and r is greater than some ro<1.

(B) ®'(f,h)=Re L7, |s w; h; df where w; are holomorphic on C\A,, r<l.

Evidently these functionals are continuous on H,,.

Now we can formulate our variational problem (P): Suppose we are given a
bounded domain DC C”, functionals ®; on H,, 0<j <N, and real numbers a;,
1<j<N. We want to find fo€ H(A, D) such that ®y(fy) = $o(f) among all f
satisfying the following restrictions:

(1) @;(f)=a; (I<i<N),

Q) fEH(A,D).

A solution of problem (P) is called an extremal mapping for (P) or, simply, an
extremal. Sometimes this problem has no solution.

EXAMPLE 1. Let & (f)=|f(0)|%. Then the problem has no solution.
The next theorem gives us sufficient conditions for the existence of a solution.

THEOREM 1. Let us suppose that in problem (P), the Sunctionals ®; are con-
tinuous with respect to the convergence of holomorphic functions on compact
sets, and D=D'\P, where D'={z€C": u(z)<0} is plurisubharmonic in a
neighborhood of D’ and P is an analytic subset of D’. If for any f satisfying the
restrictions of problem (P) there is { € KCC A (where K does not depend on f)
such that f({)CD,CCD then a solution of (P) exists.

Proof. If we denote by A the set of all f satisfying the restrictions of problem
(P), and if @=sup ®4(f), fE€A, then we can choose a sequence {f;], fr €A,
such that @ =lim ®,(.f;). We can assume that f; — f; uniformly on compact sets.
Therefore, ®¢(fo) =9, ®;(fo)=a;, 1<j<N, and fo({;) €D, for some {; €K. It
is clear that fy(¢)€D for any ¢{E€A. But if fy({) €AD’, then the function
ui($)=u(fo({)) is a non-positive subharmonic function on A and u; () =0.
Hence, by the maximum principle it follows that u=0 and f,({) €0D’ for any
{€A. But this contradicts the fact that f,({;) €D and, therefore, f,({) €D for

any { € A. The same reasoning shows that f;({) cannot belong to P. O
- If f€Ly, then we define | f|| as max, supges|f;({)| and, if fEL,, as
Is X 1fj| .

The next lemma is well known.

LEMMA 1. Let F(f)=Re |5 (f, w) df be a linear functional on H,® and «w(0) €
L\. Then there is an extension ® of F on Ly such that

e(h)=Re| (f,0+g)d,
S

IFl=||®ll, g€H,, g(0)=0
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and

[otgl<|w+gll
for any g€ H}, £(0)=0.

Later we shall prove that extremals are almost proper mappings, i.e., boundary
values lie on the boundary of the domain for almost all points of S. In Section 5
we prove it for our functionals and domains with C! boundary. But if the func-
tionals are bad, it may not be true, as Example 2 shows.

EXAMPLE 2. If D=A and fj: A = A is a conformal mapping such that | f|=1
on some set ECS and | f|<1 on S\E, then we define

7 0 i0
oy ) Jo(e"), e"€E
wle )_{0, e’ ¢E.
It is clear that the problem (P) for such D and ®,(f)=| fwd# has a solution
Jo, but fo($) €S on S\E.

3. The variational lemma. In this section we shall construct a set of admissible
variations of an extremal mapping.

Let PCS be a measurable set with Lebesgue measure m(P) > 0. We define a
function A(4, €) as follows

1 e’¢p
NG, €)= ’ ;
(6 €) {5_1, elep
for any 6 € [0,27] and e>0. We define a new norm on H,’°
| f]le= ess sup {max (6, e)|fj[(0)z
6e[0,27] Li<jgn

and let B, p(r) be a ball of radius r with respect to this norm in H,"’. It is clear
that the new norm is equivalent to the standard one.

LEMMA 2. Suppose that ®;(f)=Re| (f, w;) db, w; €L), 0<j<N, are linear
Sunctionals on H,®. Then for

| ®oll = sup{|@o ()| : || fllc <1, ®;(f)=0, 1<j<N)

we have

lim || /¢ < 0

e—0

if and only if there are real numbers Ay, 1 <k <N, and g € H), g(0) =0 such that
wo— Lh—1 My wy =g on S\P.

Proof. We introduce the following notations:
HY={f€H:9;(f)=0,1<j<N), B p(r)=B.p(r)NH;.

At first let us prove that our condition is sufficient. If wy— L Ay wx =g on
S\ P, then for any f€ B, p(1),
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N
20(N)=20(/) = L MBu(/)=Re| (f,00= 5 Mew) a0

=Re{ (fg)d0+Re| (fiwo— T hewx—g) df
and, since || f|| <e on P,
I‘I’o(f)ls‘fsp |wo— 2 Mg wi —g| db < Ce.
Hence, ||®(f)| < Ce and our statement is proved.

To prove the necessity of our condition, we introduce the analytic function g
defined by the formula

i0
g(z):—(27r)_ls ¢ T2 .
pe —Z
Then
N e tepP
M e gml—{l, EP.

The last equality is true only almost everywhere, and the left side of (1) must
be considered as a boundary value. In our paper all functions on S are defined
almost everywhere and in the future we shall not recall it specifically.

We define the new functional ®,(f)=Re s (f, wg)e*® df on the space H=
(fEH: fe**e€ H;"}). Let us extend &, on H,”, conserving its standard norm. It
is clear that

N
bu(1)=Re [ (00— T Moo et db

furnishes such an extension.
By Lemma 1 it follows that an extension ®) of &, on L{’, conserving its norm,
can be given by the formula

2USI=Re | (/=L Moaen—ga)e™ df

where g, €H,}, g,(0)=0.

Since lim . || ®ol|c - ~' <o, there is a sequence {¢;}, ¢; = 0, such that || ®,||,; <
Ke;. But, if ||@4)|=1imy > o|DE(fux)|, where fox €B) p(1)NH, then e*8f €
B, p(1) for e=e™*, and hence, |®q,| <[Pl <Ke; for oj=—Ing;. Therefore
le%®q,]| < K. But

fesel = 1o D] foo— £ Moy~ oy
(2)

=S |w0— E )\k,ajwk—gaj] d9+e°‘fS |w0—- E )\k,ajwk_gajl do
P S\P
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and we see that
3 | Joo— Do —gld0 >0 as j— .
S\P

We can assume that the functionals ®;, j>1, are linearly independent on H,;°
and that |\, o;| 2| Nk, o] for some subsequence of {«;}. Under the last assumption
we can choose a new subsequence of {«;) such that

-1
Hk,aj=}\k,aj'}\l,aj = Uk

If Ny, «; = oo for this subsequence, then by (2)
J 100Ny = X ko= 8o Al | A0 <K
and therefore
SS | E Px Wk _gaj')\ilajl db — 0.

Since H, is closed in L}, ¥ pgwy € H,, and the functionals &;, j 21, are linearly
dependent, which contradicts our assumption.

‘ Therefore, | Ak, aj| <M <o, and we can choose some subsequence of {c«;} for
which Ak, o; = Ag. If h=0p— X Mg wg, then by (2)

S Ih—gadeOSK+S IE(}\k,aj-—)\k)wkldBSZK
S S
for sufficiently large j, and we see that
@ S |8y d0<21<+5 |80l < K.
S S

This means that g,; — A, uniformly on compact subsets of A for some subse-
quence of {a;}. But, by (3), fs\p|g&—gq| d0 —0 and it follows by Khinchin-
Ostrovsky’s theorem that 2= A, on S\ P, which proves our lemma. 0O

REMARK. It would be interesting to change the inequality

lim ||~ < o0

e—0

in Lemma 2 to

lim || ®ollc- exp(—(27) ' mes P-1n €) < co.
e—>0

For example, if ®,(f)= Re f(0), the second inequality follows by the two con-
stants theorem, and obvious calculations show that it is sharp.

We shall call linear functionals F; (f) = Re | (f, wx) df linearly independent on
PCSif ¥ N\wy=g on P, g € H}! when and only when g=0 and \; =0 for all k.

A VARIATIONAL LEMMA. Suppose that the linear functionals Fy(f)=
Re | (f, wi) d8, 0<k <N, are linearly independent on PC S and let Cy (€), 1 <k <
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N be functions on R*, |Cy (¢)| < K. Then for sufficiently small e >0 there are func-
tions f, € B, p(l) such that Fy(f) =Cy(€)-¢, k=1, and lim . - o| Fy(f.)|-e " '=oo.

Proof. Since Fy, 0<k <N are linearly independent on P, by Lemma 2, it fol-
lows that for any k£ >1 and sufficiently small >0 there are functions f; €
B, p(1) such that

(1) Fi(fi,)=(N+1) Cr(e)e;

(2) Fi(fx,e)=0for j#k, j20.

For k=0 we can find, by the same Lemma, functions fy . € B, p(1) such that

(1) Lim—o|Fo(fo,0)|-€ " =00;

(2) Fi(fo,e)=0for k=1.

Let us take f,=(N+1)"' £2_¢ fx... Then

(1) Fr(f)=Cr(e)-€efor k=1,

(2) lim, - o|Fo(f)|-€ ' =co0; and

3) f.€B. p(1).

The variational lemma is proved. a

4. Extremals of linear functionals for holomorphic mappings in p-pseudo-
convex domains. In this section we shall prove that extremals of linear func-
tionals are almost proper when the domain DC C” is p-pseudoconvex.

A domain DC C" is called p-pseudoconvex if there is a plurisubharmonic func-
tion u € C%(D), such that ”laD =0, u<0on D and for some y>0, p(z,3D) >
v|u(z)|. Besides strongly pseudoconvex domains (which obviously are p-pseudo-
convex) this class contains, e.g., analytic polyhedra, since for an analytic poly-
hedron P={z€C":|f;(z)|<1} we can take u(z)=maxj[]jj~|2—1]. Therefore
this class is sufficiently large.

Condition B of Section 2 suggests considering linear functionals F( f), repre-
sented as Re | (f, w) df, where w=(wy,...,w,), w; are holomorphic on C\A,,
r<l.

We need the following lemmas.

LEMMA 3. If o E H(C\A,), r<land w=f, fEH'(A), on some set ECS with
positive measure then w extends analytically on A.

It follows by this lemma that if functionals
Fe(f)=Re| (o) db, k=1,...,N,

satisfying Condition B of Section 2, are linearly independent on S then they are
linearly independent on each set P with positive measure.
The next lemma is well known.

LEMMA 4. Suppose that u is a negative subharmonic function in A. Then
u(z) < —C(1—|z|), where C>0 does not depend on z.

LEMMA 5. Suppose that f€H,® and o € H(C\A,), r<l1. Then, for 1>t>
(1+r)/2,
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<C(1-1),

| (fwrdo-{ (s, do

where f,(z) = f(tz) and C depends only on || f|«~ and .

Proof. Since (w, f) is holomorphic, when |z|>r, then

SS‘(f,w)dB:SS (f;, ;) d.

Therefore,

|, ey do-| (ﬁ,w)d0‘= |, o= del

.<||f||m-js | — | dd < C(1—1).

Now we can prove

THEOREM 2. Let ®;, 0<k <N, be linear functionals on H,' , satisfying condi-
tions A and B of Section 2. If fy: A = C" is an extremal for the variational prob-
lem (P), where D is p-pseudoconvex, then f, is almost proper.

Proof. Suppose that fy(e’®)eKccD for e®€PcCS, mes P>0. Then, by
Egorov’s theorem, there is a P;C P, mes P;>0 and r; <1 such that fy(re’’)€
K,ccD for e€P, and r>ry. Since u(fy(¢)).<0 on A, then by Lemma 4,
|lu(fo(EN|ZCi(1—|¢]), and, by the definition of p-pseudoconvex domains,
p(fo($), D)2 C(1—=r). If for (§) =/fo(r{) and ay, =4 (fo—for), then by Lem-
ma S |a,|<Cy(1—r).

Let us consider the ball B p,(C3) where e=C(1—r) and C3=p(K;,0D). For
any function /€ B,, p,(C3) the function 2= f,, + f maps A to D, since h(e'’yeD
for almost all e’’€S. By the variational lemma we can choose a function g, €
B, p/(C3), such that

@ (g)=ar, 1<k<N, and  lim|®(g)|(1—r)"'=co.
r—1
Then the functions f, =fy, + g, satisfy the conditions of our variational prob-
lem and, evidently, ®((f;)>®y(f,) for some r. This contradiction proves our
lemma. O

5. The extremal principle and the Euler-Lagrange equations. In this section
we shall study the case of domains with boundaries of class C'. Let us suppose
that D={z€ C": u(z) <0}, where u is plurisubharmonic in D, u€ C'(D) and
Vu#0on dD. If f,is some extremal for our problem (P), then we shall denote by
Fy the first derivative of ®; at f; and by p the real function on L}, defined as
follows

p=| (Re(Vu(fo), m)* do
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where the notation ¢t means the maximum number from ¢ and 0; A4 is the set
of ¢ €S, for which f({)€adD. Evidently p(h) 20, p(ah)=ap(h), 20, and

p(h+g)<p(h)+p(g).
The next lemma is basic for our studies.

LEMMA 6. With notations as above for problem (P) there are j, 0<j <N,
T>0 and 6; equal to 1 or —1, when j 21, 6y=1, such that 6; F;(h) <Tp(h) for
any h€e X;={h€H,: F,(h)=0, [#j}.

Proof. Let us suppose that our lemma is not true. Then for each j, 0<j <N,
and m € Z™ there are hg, € XoNA,, hjy, €X;NA,, j2z1, such that

F}(hﬁ,)?mp(hﬁn ’ _F}'(hj;z)>mp(hj7n)
and
Fj(hjj-n =1, F}(hjjn)':_l
For any g=(q¢ ,q:",qi ,...,q~, qﬁ)e R2V*! we define the function
fqm(z) f0+CIo+h0m+ E (QJ-*'hj_:_n qJ' j"l f0+hqm
and the linear mapping of R2V*! to RN+I A(g)=(q¢ ,q] —q{ . N —qRN).

Let us consider a domain D, DCCD,, such that u € C'(D,) and u is plurisub-
harmonic in D;. If z€D, z+w€E D, then

5) u(z+w)=u(z)+2Re(Vu(z), w)+uv(z, w).
It is easy to see that
v(x)=supf{|v(z, w)|: zE€D, ||w||<x}=0(x).

LEMMA 7. Suppose that u is a non-positive subharmonic function in A and Au
is the Riesz measure of u. If for some compact KCA, Au(K)>a>0 or for some
set PCS, the upper radial limits of u at ¢ € P do not exceed —a <0, then u({) <
—C(1—|¢|), where C>0 depends only on K, a and P.

Proof. Denoting by ¢({) the value of the upper radial limit at { €S, we have
the obvious inequality

Aus»

C+ —¢
u(z) <Re | ?—zm) d§+§A§ —

S
If Au(K)>a>0 for some KCA,, r<l1, then

s*

(5) u(z) s“ In Aug
A

and since, if |{|<r

lz[+r . (1=r)
S l+rlz| 2

then
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z2=¢
1-2Z¢
where C; >0 depends only on r, and, by (5'), u(z) < —Cya(1—|z|) < —C(1—|z]).
If o({) < —a<0on PCS, then

In <—Ci(1-z)),

+z +2
w@<Re| SFEo(yar<—are| 52 ar<—ca-jz)
s §—2z p{—2
where C> 0 depends only on a and P. The lemma is proved. O

In the future we shall denote by P the subset of S where radial limits of u,({) =
u(fo($)) are negative. Obviously, A=S\P.

STATEMENT 1. If mes P=0, then there is KCCA such that for uy({),
Aug(K)>a>0 and for each mE€Z" there is t,,>0 such that for u,,({)=
U(fqm($))s Augm(K)>a/2>0 when |q||<t,.

Proof. The first part of the statement follows by the fact that uy=0 a.e. on S
and |uy| <M. The second part is trivial.

Now we fix some ¢>0 and denote by P, C P the set of all { €S where radial
limits of #, don’t exceed —e. For each m € Z* we can find ¢,,> 0 such that, when
lq|l <tm,

(1) fqm(.{‘)EDl: KEA;

(@) ugm($)<—€/2, {€P,, or, if mesP=0, Au,,(K)<-a<0 for some

KCCA.
Therefore, by Lemma 7, when |{]|>271,

tam(§) S0am()=CInfS|+| ¥, P(5,0) o

where P(¢{, 0) is the Poisson kernel, and

\I/qm(g‘) =2 RC(VU(f()(g')), hqm(()) +U(f0(§'), hqm(g‘))-

Let us introduce some new notations: A,,, ={{€A: v,,({) <0] and

8qm ()= exp {C“ SS\P VS5, 0) dé?}.

Here S(¢{, 0) is the Schwartz kernel.
STATEMENT 2. (a) A,y is connected. (b) g;m maps A,,, conformally onto A.

Proof. (a) Since v, is harmonic outside of 0 and vq,,,(e"’) =0 then any con-
nected component of A, must contain 0.

(b) At first, we prove that g,,, maps A onto A. Actually, if { & Im g,,, we may
take the curve y(¢t)=1t¢{y, t€[0,1], and its lifting y*(¢), i.e., a curve such that
Eam (Y*(£))=v(t). Since |g4, ()| =]|¢|, the curve y*(¢) must lie in the disk of
radius 1—|¢|. Therefore, the lifting exists and {o=g4, (v*(1)). Since vy, ($) =
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In|gg,, ($)| we see that Ay, is the preimage of A and g,,, maps A,, onto A. To
prove that g,,, is one-to-one on 4,4, we may note that any point { € A is assumed
as often as zero and the last point is assumed only once. ]

We define g(,‘,,', : A=Ay, as the inverse function for gg,,. In the future we shall
need the following notations:

Sam(§)=Sam(8gm (§))
A @)= (Fo(Sgm) —Fo(f0), - - -» Fn(Fym) —Fn (/o))
A (@)= (Po(Sgm) —Po(S0)s - - -, N (Sgm) —Pn (S))).
Note that f,,,({) €D for {€A and A,,(0)=A,,(0)=0.
STATEMENT 3. The mappings A,, and A,, are contihuous inq when ||q||<t,.

Proof. If g — q then ¥4, > ¥,,, uniformly on S. Hence, gq;m —->gq,,, um—
formly on compact sets of A. It is evident after the last assertion that qu m = gq,,,
and qum fqm uniformly on compact sets, too. Since ®; and F; are continuous
with respect to this convergence, we obtain our statement. O

STATEMENT 4. For each m€Z" and b> 0 there is q),> 0 such that
|4 (@) — A (@) <blq]
when ||q||<q.,.
Proof. Let us denote by C,, the maximum of ||/, ||. Then
(6) [Agmlle < RN+1)Cillql] and [ Yyl <Knlql

when | gq|| is sufficiently small. Since ®; satisfies condition A, there is 7; <1 such
that

q)j(j;m)_q)j(fo)zﬂ(f;]m)_F}(fo)'*'G(anj;m)
and, for any 6>0
(7) |G(f0’f;]m)]gﬁ”.f:]m_foul,rj

if || fom—Joll1, r,; is sufficiently small.
To prove our statement, we need to estimate the last norm. Since

f;m _fO =f0 (gqm ) + hqm (gqm) fO
then, by (6),

(8) ”f-c}m _folll,r- < (2N+1)Cm”‘]“‘i‘“fo(gqm) f()”] rje

But ngm(g“)|>|§’| and therefore, gq,,,(A )C4,; and, letting &= gq‘,,,(g‘), we
see that it is sufficient to estimate | fo (&) fo(gq,,,(g))| on Ay, Obv1ously, this
modulus does not exceed L,,|§—gym(£)| where L,,=max{|f5({)|: §’€A } and
the second modulus does not exceed
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LHI‘

1— exp{C" S Yo S(E 0) df?}'.
S\P
Using (6), we can easily obtain

(9) lfO(E)_fO(gqm(E))lsHmj”QIL Eearjs

where H,,; depends only on m and r;. Combining (8) and (9), we obtain the
needed estimate

(10) ”ﬂnz"fO”l,gsij”Q”
when ||g|| is sufficiently small. After that, the usual argument gives us the proof
of Statement 4. O

STATEMENT 5. For each b>0 there is m€Z" and q,,>0 such that
|4(q) —An(q)<b|g|| when |q| <qm.

Proof. 1t follows from the definition of A and A,, that it is sufficient to prove
this statement for |F;(fm) — Fi(fym)|- By Condition B, Fj(h) = |s (h, w;) df
where w; are homomorphic in C\A,O, ro<l. Let us fix some 1>r>ry. As in the
proof of Statement 4 we can show that v,,, =g, (S,) CA\A,, and v,,, CA,,
when ||g|| is less than some positive g,,. Then

(wj,if:]m) d§‘=ReS (wj9fqm(gq_n})) ds.

F; ~m =R .
J(fq ) GSS v lf

If £=g;n(¢) then
Fy(Jam) =Re | (@ (8am(£), Jom (£)) 81 (£)

_ RCS (wj(gqm)afqm) d& + ReS (wj(gqnl),fqm)@dg
s, X3 S, i

(11

where
o()=C7'| Wk, 5:(8,0) db.
S\P

Let us estimate the second integral in the expression for Fj( fq,,,). By Fubini’s
theorem, it can be rewritten as

2 i9
- dg]do

—1 N 2ot
C 'Im SS\P \I’qm[SS, (wj(gqm)rfqm) (em—g)

and, since | f;,,|<B, its modulus does not exceed

A

(12) ———_(1——1‘)2

IR0
S\P

Now, let us consider the first integral
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Res (wj(gqm)’fqm) dE

S i£
— (COJ (gqm) fO) d¢ (wj(gqm), hqm) dt
= Re SS IE + Re Ssr IE

=E](f0) +F}'(hqm) + Re SS (Saj, fO) df+ Re SS (‘Pj’ hqm) do

=F}'(fq111) + Re SS (on, fqm) do,

where ¢; (£) =w;(ggm(£)) —w;(£). As in the proof of Statement 4 we can show
that

I‘PJ(E)| nglgqm(S)"‘tﬂ <L,

1—exp [C“ [ wdase0 d@}'
S\P,

<Bu

I ¥ (5. 0) o]

S\P

when ||q|| is less than some positive gj,.
Therefore,

e+Z

B, S
< v/ S
27 Js\p qm[ s, | e”

< Dm
(1-r)

The last estimate together with (11) and (12) gives us that

Re SS (‘Pj, fqm) do

<\ fam dz|]

S v, db.
S\P

G,
|F (fqm) F(fqm)|\7r)g ‘I’c-;;n do

2Gﬂ7
(1—r)2
G’H
=2 | 0o, g (£)) dO
(1=r)" Js\p
2G
< (—m)zp(hqm) +
where oy = ||Agmlw. But, by our assumption,
Phgm) <|lq||- max{p(hjn),0<j<NI<|q|-m™~
and we can choose g, so small that

Gm
(1—r)?

[, (Re(TUC/), hgu)* a0

'_'—)—2 U(aqm)

(1

1

b
v(aqm) < 5 ”q”

If m is so large that
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_ 26, b
(1—=r)?m ~ 2

then |F;( fym) —F; (fym)| < b| q|| and our statement is proved. O

LEMMA 8. Suppose that A: R¥ > R! is a linear mapping and K,C RY K,CR!
are open cones such that A(K,)=K,. Let | be a ray at K,, beginning at the origin.
Then there is b>0 such that for any continuous mapping F: K, — R/ the set
F(K,NB(0,r)) contains some neighborhood of 0 in INK,; if

|F(x)—Ax||<b|x||, x€B(0,r)NK,.

Proof. Since A(K;) =K,, then k 21. If k=1, then let us consider the homotopy
F, of the mapping F defined by the formula F,(x)=(1—¢)F(x)+tA(x). Note
that: (1) Fo=F, Fi=A; (2) A(9K,)=0K,. Therefore, if x€adK;NB(0,r) then
Ax € 0K, and

(1 =) F(x) +tAx — Ax|| < (1) b||x[| < b||x]|
(13)
and p(F,(x),dK;) <b|x|.
If xe K{NS(0,r/2) and a=min{||Ax||, ||x||=1}, then

—b)

(14) IF, Ol Axl— (1= )| Fooy - x> 2,
Let us take b=min(«/2,a/2). Thenif ye/NK,NB(0,ar/4), (13) and (14) give
us that y € F,(8(K,;NB(0,r/2))) and, by the lemma on the homotopical invari-
ance of the degree of mappings, y € F(K,NB(0,r/2)).

If k>1 we denote Ker A by L and let /; be a ray at K such that A(/,)=I. If L,
is a linear subspace orthogonal to L and xy €/}, 0<|xp| <1/2, we define Q=
(x€K : xExy+Ly, ||x||<1} and let A4, be the restriction of 4 on Q. It is clear
that A, is a homeomorphism of Q and A(xy) =y; €/. Hence, there is r;>0,
such that B(y],rl)CAl(Q) If b=p(S(y,,n/2),A,(3Q)), then for any con-
tinuous mapping F;: O — R/ satisfying the inequality || F; (x) — A, x| < b, the ball
B(0,r,/2) lies in F;(Q), and hence Fj(x;) =y, for some x; € Q.

Let us introduce the following notations:

O, ={tx:xeQ}
F (x):Q—R/, F(x)=t""F(tx)
Then Q,CK,NB(0,r/2) for sufficiently small # and
|F(x)—Ax||=|¢t " F(ex) —t "' Aex|| < b| x| < b

for x € Q,. Therefore F,(x,) =y, for some x, € Q and F(tx,) =ty,. Since tx, €Q,,
we proved that ty,€ F(K;NB(0, r/2)) for sufficiently small ¢.

Let us return to our Lemma 6. By Statements 3, 4, and 5 it follows that A,, is
continuous in R?¥*! and for each >0 there is an m € Z™* and g,, >0 such that
14, (q) —A(q)|| < b||q|. It is easy to see that A(RI )= H={xeR"*!: x,>0)
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and, by Lemma 8, if /={{x: x=(1,0,...,0), t>9] then for some m and any ¢ we
can find g,, which is a solution of the equation A4,,(q,) =fx. But, this means that

(14) Do (fgm) =D (Sfo) +1¢
and
(15) & (fom)=a;, Jj=1
Since f:,,,,(g“)eD, when (€A (14) and (15) contradict the extremality of f,
which proves Lemma 6. O

Now we can formulate the extremal principle.

THEOREM 3. If fy is an extremal for problem (P) and F; =®/( fy, -), then there
are

() N, €R, 0<j<N, and the \; are not equal to zero simultaneously;

(2) g€H,’, g(0)=0;

(3) NEL™, 0<\ such that for any he L},

N
Re | (E )\jwj+g,h)d9=ReS NVu(Sfo), h) db
S \j=0 A

where A is the set of points { €S such that the radial limits at { belong to dD.
If F; are linearly independent then mes A =2.

Proof. By Lemma 6 it follows that there is 7>0 and j, 0<j <N, such that
(16) 8F;(h) <Tp(h)

where 6==*1,6=1if j=0, h€X].

Using the Hahn-Banach theorem we can extend 6F; on L}, conserving the
inequality (16). If we denote the extension by F then F(h)<Tp(h). But p(h) <
c||h|l;, and hence F is continuous on L. By Riesz’s theorem, F can be repre-
sented as F(h)=Re |s (h, w) d8, where w €L, .

It is clear that there are Ny, 0 <k <XV, which are not equal to zero simultane-
ously such that F(h)= Eszo M« Fx(h) when h € H). If we denote by G, the linear
functional on L., defined by the formula

N
G,(h)=Re SS (kgokak,h>da

then
N
Gz(h)=F(h)—Gl(h)=S (w— ¥ )\kwk,h>d0
S k=0

and, since G, (/) =0 on H,, by a theorem of F. and M. Riesz it follows that

N
w—kE()}\kwk=g’ geH';’O, g(0)=0

Therefore
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F(h)=Re SS (X Newx+g, k) dﬁsTSA (Re(Vu, h))* db

and
N
Re( )\kwk+g>-h<0 if Re(Vu(fO),h)SO.
k=0
Hence
N
(17) kEOka-Fg:)\Vu(fo), As\a=0

where 0 < A< 7, and we have proved the first part of the theorem.
If the F;’s are linearly independent and mes P>0, P=S\A, then by (17)

N
(E 7\kwk+g) =0
k=0

P

and therefore ©§—o Ax wx = —g. This means that the F;’s are not linearly inde-
pendent and we obtain a contradiction. Our theorem is proved. O

The system of equations

Ti=0 Moy +g=Avu( fp)
u(fy)=0 a.e.
we shall call the Euler-Lagrange equations for the extremal problem (P).
6. The computation of extremals. Let D,={z€C": L/_,|z;|*<1} be a do-
main in C" and a>1. Then
du _a |zl

BZj B 2 Zj

and D, is of class C'. We want to find extremals for the Royden problem, i.e.,
for given a=(ay,...,a,) €D, and v=(v,...,0,) EC", v#0, to define the map-
ping fy: A — D, such that f(0)=a, f3(0)=Av, A>0 and A has a maximal pos-
sible value.

Let us introduce new vectors vg = (Vyk, - . -, Unx), 1<k <n—1, such that z=puv,
p €C, if and only if (z, v;) =0 for all k. Then our problem can be formulated in
the following canonical way:

1 |
([ - XSJ}(G)aw:aj

| x 20 =g
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We see that our functionals are linearly independent and that extremals satisfy
the Euler-Lagrange equations:

By o - o
17) ?f+g, NG wEeC, geH

(18) _El |f;|*=1 on S.
i=

Multiplying each of (17) by f; and adding them together we have

: (1es)o

j=1 {
and therefore \=pu¢ '+g, g€H™. Since 0 A< T,
(19) M) =(CofP+bgs+Co)- ¢!

where by € R, by >2|Cy).
It follows by (17) that fj(u;{~ '+g/)=M|f;|*=20, and, as before, A|f;|*=
(C; &2 +b; §'+C) ¢~ Using (19) we get that

(20) [fi]%=(Ci 2 +b; $+C)(Co {2+ by ¢+ Cp) ™!
1) Si=(C;i 2 +bi ¢+ Ci)(w+g) ™"

STATEMENT 6. If |f| = (C¢{*+b¢+ C)g““, on S, and C{*+bi+C =
C(¢—a)(§=Db), f(§)#0 on A, then a=F""and f($)=Ca~'(1-a¢)?, |a|<1.

This statement can be easily verified by a direct calculation.
Combining this statement with (20) and (21) we see that

P 1—&: 2/a
o el

Now we can solve the following algebraic problem instead of the variational
one: To find A, «}, o and e; as solutions of the following system of equations:

(23) _}}(O):—ejaj=aj
-2
4) f1(0)=¢;(1—v|aj| >+ 20~ a; &) =v;, ~,=O‘T
1-5]?
Z fi|%= E *.—J=—1 on S.
|j| |J| Il_a0§-|2
The last equation can be rewritten as follows:
hn
(25) .EI |ej|°‘-aj=ao
j:
n
(26) Y e *(1+[ey]?) =1+
j=1

If =2 then y=0, aj=a;/(qya;—A\v;) and, putting the last formula in (25),
we have
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n

n
(07)) E |aj|2—)\ E a; 5j=010.
Jj=1 Jj=1
Hence
e XCRY
I—|a]

and, by (26), it follows that

lal|>-N2-|(a, 5)|*> = 2N*|(a, D)|?
(1—[la]?)? 1-|la|?

N|(a, 9)|?
(1—la]?)?

FN o] +al=1+

and
2_ (1—]al)?
[oll>(1—|a||*) +|(a, B)|*"

Using this formula, we can easily define o and «;. In the case «#2, it is more
difficult to find solutions of our algebraic system, but (22) allows us to describe
the set of extremals as depending on a finite number of parameters.
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