INCOMPRESSIBILITY OF SURFACES
AFTER DEHN SURGERY

Jozef H. Przytycki

Introduction. This paper was, at first, motivated by Hatcher and Thurston’s
question [4] of whether each Dehn surgery on a two-bridge knot along the bound-
ary of an incompressible and d-incompressible surface leads to a Haken mani-
fold. However, a deeper motivation was that our investigation was intended as a
first step to approaching the Waldhausen Conjecture that each P2-irreducible
manifold with infinite fundamental group has a finite sheeted covering which is a
Haken manifold [13].
~ First we prove Theorem 1.4, which says that incompressibility of a surface is
preserved after Dehn surgery for an unknotted surface with one boundary com-
ponent and with some extra conditions with two boundary components. Then we
show that the condition that a surface is unknotted cannot be dropped, and the
assumption about the number of the boundary components of the surface is es-
sential too (Example 1.14). We use Theorem 1.4 to answer the Hatcher-Thurston
question. Later we solve the similar problem for punctured torus bundles over
S!. This allows us to construct a large class of non-Haken, non-Seifert but
almost Haken manifolds (Propositions 3.1-3.3). We consider also branched
coverings of some non-Haken manifolds (Proposition 3.4).

Finally we show that the assumptions of Theorem 1.4 are often satisfied and
Theorem 1.4 has several applications. Using Jaco’s theorem about hierarchies
[6], we find a condition for 3-manifolds which is sufficient to get unknotted sur-
faces (Proposition 4.3 and Corollary 4.5), and then we give examples of mani-
folds satisfying this condition (some closed 3-braids).

We end the paper by the remark that Theorem 1.4 can be used to prove prop-
erty R for a huge class of knots.

1. Main theorem. We work in the PL-category.

DEFINITION 1.1. (a) Let M be a 3-manifold and F a surface which is either
_ properly embedded in M or contained in dM. We say that F is compressible in M
if one of the following conditions is satisfied:
(i) Fis a 2-sphere which bounds a 3-cell in M, or

(i) F'is a 2-cell and either FC M or there is a 3-cell X C M with 0.XCFUdM, or
(iii) there is a 2-cell DC M with DN F=0D and with dD not contractible in F.
We say that F is incompressible if it is not compressible.

(b) Let F be a submanifold of a manifold M. We say that F'is m-injective in M
if the inclusion-induced homomorphism from m;(F) to 7 (M) is an injection.
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(c) Let F be a surface properly embedded in a compact 3-manifold M. We say
that Fis d-incompressible in M if there is no 2-disk DC M such that DNF=q is
an arc in dD, DNoM =8 is an arc in 9D, with aNB=0a=4983 and «a UB=0D,
and « is not parallel to dF in F.

DEFINITION 1.2. Let M be a 3-manifold and A a simple closed, 2-sided curve
on dM. We define a new 3-manifold M, to be M with a 2-handle glued along A.
That is: Let A, be a regular neighborhood of A in M. Let (D3, A) be a 3-disk
with an annulus on the boundary and ¢ a homeomorphism A4, — A; then M, =
(M,AA)U¢(D3,A). If {A;}f=, is a finite collection of pairwise disjoint, simple
closed, 2-sided curves on dM then Mp\,-ldg'(. .. ((Mx))n,)...)n,. The definition
does not depend on the order of the \;. If 3, M=T? is a boundary component of
M, and N is a nontrivial, simple closed curve on d, M, then by the Dehn surgery
on M along A we mean the manifold, M*, obtained from M, by capping off the
new boundary component of My, which equals S2. If {\;}7_, is a finite collection
of nontrivial, disjoint, parallel, simple closed curves on 8; M =T?, then by M !
we mean M ™. The manifold M is obtained from M by the operation which is in
fact only the second part of the original Dehn surgery (which consists of drilling
and filling) and, perhaps, should be called Dehn filling.

DEFINITION 1.3. Let (F, dF) — (M, dM) be a surface properly embedded in a
3-manifold M. We say that F'is unknotted in M if and only if M —int Vg is a
collection of handlebodies, where Vy is a regular neighborhood of Fin M.

THEOREM 1.4. Let (M,0M) be a compact 3-manifold with OM=T?, and
(F, 0F) a properly embedded, unknotted surface in (M, 0M). Suppose that the
Jollowing two conditions are satisfied:

1. Each component of oF is not trivial in oM.

2. Either (i) F has one boundary component, or (ii) F is two-sided, non-

parallel to the boundary, has two boundary components and disconnects
M.

Let F* be a natural extension of F to M°F. Then: F is incompressible and

m-injective if and only if F" is incompressible and w,-injective.

The assumptions of Theorem 1.4 allow many classes of 3-manifolds and sur-
faces. For example:

PROPOSITION 1.5. Let (M, dM) be a compact 3-manifold with M =T?, and
(F, 0F) a properly embedded surface in (M, oM). Then:

(a) If M does not contain any closed, 2-sided, non-boundary parallel, incom-
pressible surface, and F is incompressible, w,-injective and not parallel to the
boundary, then F is unknotted.

(b) If the image of the inclusion-induced homomorphism

iv: H\(0M,Z) — H,(M, Z)/Tor (H,(M, Z))

is of finite, odd index in H\(M, Z)/Tor(H,(M, Z)) (in particular if M is orient-
able and H (M, Z)=17Z), then each two-sided surface F with an even number of
nontrivial boundary components disconnects M.
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REMARK 1.6. The assumptions of (b) are satisfied, for example, by com-
plements of knots in S or once-punctured surface-bundles over S'!, with
H; (M, Q)=Q. However, this last condition alone is not sufficient as shown by a

manifold obtained from the torus-bundle over S' with monodromy map [f :],

by cutting out the interior of a regular neighborhood of a curve which cuts each
fiber twice.

Proof of Proposition 1.5. (a) Will be seen to follow from Corollary 4.5, which
will be proved in the fourth part of the paper.

(b) Assume that F does not disconnect M. Then there exists a curve A\CM
transverse to F such that AN F=one point. Therefore, by the assumption
of (b), there exists an odd number, 2k+1, such that (2k+1)A is homologous
(mod Tor (H,; (M, Z))) to a curve in dM, or its power. However each curve in dM
cuts dF an even number of times algebraically, and each cycle representing a
torsion element in A, (M, Z) has crossing index with F equal to 0, so we have a
contradiction.

If H(M,Z)=Z, consider ker(i,: H,(dM,Z) - H,(M, Z)). Some element of
ker i, is realized by a simple, closed curve, Ay, in dM. Ag bounds a 2-chain C in
M. Let \; be a simple closed curve in aM which cuts Ay once. Obviously A; gen-
erates an element of infinite order in H, (M, Z), since M is orientable. In fact, \;
generates H,(M, Z), as it cuts C once algebraically. So i, is onto. a

We start the proof of Theorem 1.4 with the following lemma, in fact the main
lemma of the proof.

LEMMA 1.7. Let H,, (n>0) be a handlebody (orientable or not) of genus n,
and N\C3H,, be a 2-sided, simple closed curve which has a regular neighborhood,
A, in 0H,. Then a((H,),) is w-injective in (H,), if and only if dH, —int A, is
w-injective in H, , with the exception of the case n=1 and \ is a meridian of 0H,.

To prove Lemma 1.7, we have to describe some algebraic properties of incom-
pressible surfaces. The results of Lyon [7] and Shenitzer [11] are crucial in the
proof. First we use the technique of Lyon [7].

Let W CF be a set of words (or cyclic words) in the basis X of a free group F.
The incidence graph J(W) is the graph whose vertices are in 1-1 correspondence
with the non-trivial words in W with an edge joining vertices w, and w, if there
exists x € X such that x or x ! lies in w, and x or x ! lies in w,. W is connected
with respect to the basis X if J(W) is connected, and is connected if it is con-
nected with respect to each basis of F. If the set W of elements (or cyclic ele-
ments) is not contained in any proper free factor of F and if W is connected, we
say W binds F. Now, we can formulate Lyon’s result:

LEMMA 1.8. [7] Let {v;}i=, be a collection of pairwise disjoint, 2-sided, simple
closed curves in 0H,. Then 0H, — { v, }i=| is incompressible if and only if {[vi1}i=\
binds F,,=,(H,) and no v; is contractible in 0H,.

Lemma 1.8 is proved in {7] for an orientable handlebody, but the proof can be
extended to a nonorientable handlebody as well (using the fact that each auto-
morphism of a free group (H,) is induced by a homeomorphism of H,). O
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Figure 1.1.

Shenitzer [11] noticed that the following is an immediate consequence of the
Grushko Theorem and the Freiheitssatz.

PROPOSITION 1.9. [11]1 If G={F,,: r} and n> 1, then the following conditions
are equivalent:
1. G can be decomposed into a free product or n=2 and r is a free generator
of F, (i.e., G=1). ‘
2. rdoes not bind F,,.

Now, we can prove Lemma 1.7. If n=1, the proof consists in verification of
several easy cases, and we omit it. Assume n>1.

(=) Assume that dH,, — int A, is not 7-injective. Let D? be a compressing disk
of dH, —int A, in H,, (existing by the Loop Theorem). Then 8D? is not con-
tractible in dH,, — int A, but it is contractible in d(H,),. Therefore either (i) aD?
is parallel to v in dH,,, or (ii) 8D? and 0A, bound a pair of pants in dH,, so D?
cuts off from H, a genus one handlebody which contains . In both cases we use
the assumption #»>1 in order to find a compressing disk of dH, —int A, in H,
which does not satisfy (i) and (ii). This disk will also be a compressing disk of
d((H,),) in (H,),, which contradicts the 7 ,-injectivity of d((H,),).

(=) 0H,—int A, is m-injective so, by Lemma 1.8, [y] binds F,=m,(H,).
Then, by Proposition 1.9, the group {F},: [y]} cannot be decomposed into a free
product and, for n=2, [vy] is not a free generator of F, (i.e., {F>: [v]} #Z).
Therefore we conclude, using the Loop Theorem, that d((H,),) is m-injective
in (H,),- O

REMARK 1.10. Proposition 1.9 (resp. Lemma 1.7) is not true for more than one
relator (resp. curve). The simplest example is: G={x,, X2: xix3,x?} =Z,*Z, but
{x£x%,x%) binds F, (see [7]).
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Figure 1.2.

Now we give some geometric examples which illustrate Remark 1.10.

EXAMPLE 1.11. Consider a genus 2, orientable handlebody, H,, with two
systems of curves: v;, v, (Figure 1.1) and i1, v5 (Figure 1.2).

In the natural presentation of w;(H,), when H, is embedded in R’ as on the
picture we have: [y,]1=x2, [v,]=x% and 0H,— int Ay, —int A, is compressible
in H,, where A, is a tubular neighborhood of v; in dH, (i=1, 2).

In m(H,), curves v; and <5 can be written: [+i] = x2x?, [v5] = x# and
dH,—int Ay;—int Ay is incompressible (compare [7]; xtx? and x# are minimal
cyclic words which bind Fz) But (HZ){'YI-’YZ’ = (HZ)HM'Z,:L(Z; 1)#L(2; 1)#D3
with m ((Hz)h,l’,),z;) =Z2 * ZZ'

EXAMPLE 1.12. Consider a genus 4, orientable handlebody with two curves
Y1, 772 (Figure 1.3).

In the natural presentation of m(H,), we have: [v,] = x¥x2xix?, [1,] =
x2x}. We have in this example that dH, — int A, —int Ay, is incompressible (see
[71) but 6((H4)y,,4,)) is @ compressible genus 2 surface in (Hy)(y,,,}-

EXAMPLE 1.13. Let F=P2#P?#--. # P? be a nonorientable surface of genus
n (n=3). Let F’'=F#D? (surface with one hole). Consider the I-bundle over F’
such that the bundle space is orientable. In fact it is a genus n orientable handle-
body, H,, because its fundamental group is free of rank n. Now (H,),, where
v1=0F", is a natural extension of the /-bundle over F’ to an I-bundle over F. Of
course, d(H,),, is incompressible in (H,)y,. Now, let 3 be any nontrivial (in F)
simple, closed curve in 7’ which does not change orientation on F”’, so the restric-
tion of the bundle to v is a product bundle. Assume additionally that the bound-
ary components, vy, and v5, of this bundle are not parallel in d(H,)y,. Then
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Figure 1.3.

0(H, )y, —int Ay, is incompressible in (H,),, but d((H},),)y, is compressible in
((H,)y,)7,- In order to show the compressibility, let the annulus A,; be the
restriction of our /-bundle to the curve v3. v,, which is one of the boundary com-
ponents of A3, bounds a disk, Dy,, in ((H,)y,)y,. So Ay;U Dy, forms a properly
embedded disk in (H,),)y, With boundary v3 and it follows from our assump-
tions that 3 is not trivial in ((H}),)y,. So A4~U D,, is the compressing disk of

a((Hn )‘Y] )'Yz iIl ((Hn)'n)‘)’z-

Proof of Theorem 1.4.

(=) If F=D? it is trivial. If F is a Mobius band and F is not m-injective, we
conclude that M=M, # (genus one handlebody) and we can choose a meridian
disk of the handlebody disjoint from F (F is one- or two-sided). If we cut M open
along this meridian disk we obtain a contradiction with the assumption that F is
unknotted (compare (b) below). Let FD? and Mébius band. Assume F is not
m-injective (it includes the case of F compressible). First consider the case of
two-sided F. So F is compressible. Let y CF be the boundary of a compressing
disk. We have three possibilities for +y:

(a) v is not parallel to dF, and vy does not cut out from F a pair of pants In this
case vy is not trivial in /'~ so '~ is not w-injective.

(b) v is parallel to dF. Then oF bounds a disk in M, so M =M, # (genus one
handlebody) and 9F is parallel to the meridian of the handlebody, but this
contradicts the assumption that F is unknotted and F~ incompressible (we cut M
along a meridian disk of the handlebody which is disjoint from F. F should still
be unknotted but this contradicts the incompressibility of 7).

(c) v cuts out from F a pair of pants. This contradicts the assumption that Fis
unknotted and F~ incompressible.

If F is not two-sided, let F denote the boundary of the tubular neighborhood
of Fin M. Since F#Mobius band, F* is incompressible. In fact F satisfies all
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assumptions of Theorem 1.4, so F is incompressible, m-injective, so F is -
injective (in particular incompressible).

(=) We assume F'is incompressible and = ;-injective. If F' is an incompressible
disk then F* is a nonseparating sphere, so incompressible. If F'=Mobius band,
F~ is a projective space, thus incompressible, 7;-injective. If F is an annulus, ¥~
is a 2-sphere which cuts M into a nontrivial connected sum (each factor has a
genus one Heegaard splitting and is different than S* because F is not parallel to
oM), so F~ is incompressible. Let F #D? Mobius band or annulus. Now it is
enough to prove the theorem for two-sided F (if F is one-sided, consider the
boundary of a tubular neighborhood of F'). Let Vg be a tubular neighborhood of
Fin M. M —int Vg is a handlebody, H,, (or a pair of handlebodies, H, and H,),
n>1. Let A=H,NoM (resp. A=H,NoM and A'=H,NoM). dH,—int A is
w-injective in H,. Now we use Lemma 1.7 to get 3((Hp)core of 4) Fi-injective,
so incompressible (resp. d((Hy)eore of 4) and d((H})core of a-) T-injective). M
is obtained by gluing together either two components of the boundary of
(Hn)core of 4 O the boundaries of (Hn)core of A and (Hr’r)core of A’ SO F~is -
injective, incompressible in M °F. O

Theorem 1.4 is not valid if we drop the assumption that the surface is un-
knotted or the assumption about the number of the boundary components of the
surface.

EXAMPLE 1.14. We use the notation of Example 1.13.

(a) Consider two copies of the manifold (H,),,, say M; and M,. Let F| and F,
denote the incompressible surfaces 3M, — int A,, and dM, — int A,,, respectively.
Now glue together M, and M, along F; and F,. As the result we have a
3-manifold, M, with dM =torus and F) is m,-injective, incompressible in M. F; is
not unknotted in M and has two boundary components. Since d(M)y, is com-
pressible, Fy" is compressible in M %11, F, (and F,") is connected if v, does not dis-
connect dM,; and has two components if v, disconnects dM,.

(b) Let us assume that v, does not disconnect d(H,),, so ;U v, does not dis-
connect dH,. Consider two copies of H,, H, and H), with the appropriate
curves vi,v3 and «{,v3. Let the boundary of A,; be denoted by 3% (Ay;) and
0~ (Ay;), similarly the boundary components of A4,,, A,; and Ay;. Let F'=
0H, —int Ay;—int Ay, and F"=0Hy;—int A,;—int A,;. F’ and F” are homeo-
morphic to an orientable surface of genus n—2, with four holes. We can find a
homeomorphism f: F’'— F” such that

J@ (A =037 (Ay), S(37(Ay)) =07 (A),
F(3T(Ap)) =07 (Ay) and f(37(Ay)) =087 (Ay).

If we glue together H,, and H,, along F’and F”, using f, we get a manifold, say N,
with F’ incompressible, m-injective, unknotted, two-sided in N. Furthermore
dN=T?2. However, F’" is compressible in N°F. F’has four boundary components.

2. Corollaries of Theorem 1.4 and related topics.

COROLLARY 2.1. (Answer to a question of Hatcher and Thurston [4]). Let
K,,; be the 2-bridge knot of type p/q. Let My,;;(K,,;) denote the manifold
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obtained from Dehn surgery on K,,,, where a tubular nelghborhood of Ky/q is
cut out and reglued so as to make a meridian disk kill a curve in S° —K,,,, wrap-
ping l times around Kp,,, longitudinally and m times meridianally. Let F be an in-
compressible, 9- mcompress:ble surface in S° — int VKpgs where Vi o1 is a tubular
neighborhood of K4 in S3. Let the boundary components of F have slope m/l.
Then M,,,1(K,,,) is a Haken manifold or a connected sum of lens spaces.

This gives an affirmative answer to the question posed in [4; after Theorem 2].

Proof. 1t follows from [4] that if m// is the slope of the boundary of some in-
compressible, d-incompressible surface in S3—int VKpas then there exists an in-
compressible, d-incompressible surface F (orientable or not) with one boundary
component and the slope of dF equal to m//. Furthermore, each incompressible,
d-incompressible surface in S* —int Vk,, is m-injective and unknotted. So F~ in
M,,,1(K,,q) is either projective space (this case leads us to a connected sum of
lens spaces and we deal with a torus knot), or x(#")<0 and it follows from
Theorem 1.4 that F~ is incompressible and 7 ;-injective. So /'~ or the boundary of
a regular neighborhood of F~ (if F" is not orientable) gives us a 2-sided, incom-
pressible surface. Therefore M,,,;(Ky,,) is a Haken manifold. It is irreducible
when we are not in a case of a connected sum of lens spaces. O

COROLLARY 2.2. Let M be a punctured-torus bundle over S' with a hyper-
bolic monodromy map. If F is an incompressible, d-incompressible and m,-
injective surface in M, then F~ is incompressible, w-injective in M oF

Corollary 2.2 was proved independently by Culler et al. [1, Remark 2.5.2].

Proof. 1t follows from Theorem 1.4 in the case of one boundary component of
F. Generally we use Proposition 1.9. We use the terminology of [2]. Each incom-
pressible, d-incompressible, w-injective surface, F, with boundary on dM has
one, two or four boundary components. If F=Mo0bius band, F~ is a projective
space and we are done. Now we can assume that F is orientable, because for non-
orientable F it is enough to deal with the boundary of a tubular neighborhood of
F in M. Consider the sequence of groups

(IO)* ‘ 7I’|(F) (11)*

713, F) T (M) =2 1y (S)

where iy and /, are embeddings, p is the projection of the fibration, and 8, F is a
single component of dF. With the exception of F=fiber of the fibration (in
which case Corollary 2.2 is obvious), we have (pi, i)« (m1(dF)) #0. Let M be a
coverlng of M associated with the subgroup P (i io)« (m(9F)) of m(M).
M is a one-, two- or four-sheeted covering. F, the (connected) lift of F associated
with the covering M — M, has four boundary components.

FACT 2.3. Consider the dlagram

«<2Z

S o
1
Sq

®Z

where N is a finite sheeting covering of a 3-manifold N and S is a lifting of a
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I (SIXI)*I — — (i+l)-level

(IxT)xI  — ' — i - level

()

— (i~1)-level

P i ST,
)
)
/
1
/

Figure 2.1

surface SCN. S and § satisfy: S is 7-injective if and only if S is 7 -injective.
Furthermore, if S is compressible, then S is compressible. Therefore, in order to
prove Corollary 2.2, it is enough to study the case of F with exactly four
boundary components.. ' .

F is unknotted in M, and in the case of four boundary components, M cut
open along F is a disjoint union of two handle-bodies. If F is associated with a
minimal edge-path of k edges (in our case & is even), then each handlebody is of
genus (k/2)+1 and topologically is depicted in Figure 2.1.
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< 1™ critical
level

caselcﬂ:z

< (i-1) " cvitical
level

Figure 2.2

Now, it remains to find how the ‘‘trace’’ of dF (i.e., d(a handlebody NdM))
looks on each handlebody. Recall (cf. [2]) that if an invariant edge-path is
defined by vertices ...a_;/b_,, ay/by, ay/by,... and ¢; are defined to satisfy
a;/bi=(a;_y+c;a;_)/(bi—,+c;b;_), then the edge-path is minimal and the
associated surface is mj-injective if and only if, for each i, |c;|=2.

‘“‘Geometrically’’, one piece of our handlebody is deplcted in Figure 2 2. We
can see that the ‘‘trace’’ of dF on the boundaries of handlebodies H ;)4 may
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~\
W

Figure 3.0

be written, in an appropriately chosen base of F/2)+1=m(Hx/2)+1), as
follows:
(a) First handlebody. The trace of dF is represented by words:

WI=Wy=Xg; W3=Wa=XoX{1X33x55. .. Xkl
(b) Second handlebody. The trace of dF is represented by words:
WI=Wy=Xg; W3=Ws=XgX32X4%. .. XEk.

In both cases the group G={F(k/7_)+1:wl,wz,w3,w4]={Fk,2:wl_'w3} is inde-
composable under free product and G#Z (w;"w3 binds Fy ;) (see [11] or [7]).
Therefore, we can end the proof of Corollary 2.2 similarly as the proof of
Lemma 1.7. In the case of k = 2, one gets that H )+ = H,, T (M) =
Zic,| *Zjc,) and M° is a connected sum of lens spaces with £~ the sphere which
defines the connected sum. O

The method of the proof of Corollary 2.2 may also be used to show that a sur-
face F is mj-injective if and only if, for all i, |¢;{>2. This method of the proof
seems to be shorter than that of [2] or [1].

3. Almost Haken manifolds. A 3-manifold is said to be almost Haken if it
allows a finite sheeted covering which is a Haken manifold. Now we construct

some examples of almost Haken manifolds. Let &= [(') :] and 8= [: ?] Consider

M, - punctured-torus bundle over S! with hyperbolic monodromy map ¢.
H, (0My) has a natural system of coordinates. The first génerator, a longitude, is
determined by the boundary of a fiber with the clockwise orientation (see Figure
3.0). To define the second generator, a meridian, we have to consider two cases:

(@) ¢: F— F is given by matrix A € SL(2, Z) with tr A>0; so A has two posi-
tive eigenvalues. Then the restriction of A to dF (8F is understood to be the set of
angles, to omit technical problems) has four fixed points, say *«; and *a«, (see
Figure 3.0). Now, under projection /X R — M,,, the image of the straight line in
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dF x R which joins («y,0) and (e, 1) is a circle which determines the second
generator of H,(dM,).

(b) ¢: F— F is given by matrix A with tr A <0; so A has two negative eigen-
values. Then the restriction of —A to dF has four fixed points, say +«; and a5,
so A(o;)=—oy and A(—a;) =y. Let vy be the curve in F X R given by the equa-
tion z=e™" where z €dF and ¢ €R (so v joins (a;, 0) and (—«;, 1) with negative
half twist with respect to the chosen orientation of dF). The image of vy under
projection F X R — M, determines the second generator of H,(dM,). Each non-
contractible curve y € dM,, is defined, up to isotopy, by a pair (e, b) (or a slope
a/b). Let My(a,b) denote the manifold obtained from M, by Dehn surgery
along the curve of slope a/b (Definition 1.2).

PROPOSITION 3.1. Consider Mk, where ¢ =af (if k=1, My« is the comple-
ment of the figure-eight knot). If (a,b)=1 and either 0<|a|<(|blk—5)/4 or
la|=(|blk—3)/4 or |a|=(|b|k)/4, then the manifold My«(a,b) is almost suf-
ficiently large (i.e., almost Haken).

In particular:

PROPOSITION 3.2. Let My (¢=aB) be the complement of the figure-eight
knot. Let I, m be co-prime numbers satisfying either 0<|l|< (|m|—5)/4 or |l|=
(|m|—3)/4 or I/m==%x1/4 or /m=1/0 or I/m==%1/1 or I/m=%x1/2 or [/m=
+1/3. Then My(l,m) is almost Haken. Furthermore, if [/m=*x1/1, £1/2, or
+1/3, then My(l, m) is a Seifert fibered manifold; if [/m=x1/4 or 1/0, then
My(l,m) is a Haken manifold; and in other cases (considered in Proposition
3.2) My (I, m) is neither Haken nor a Seifert fibered manifold but almost Haken
and a hyperbolic manifold.

The almost Haken manifold M, (1, 16) was independently discovered by Culler
et al. [1].
To prove Proposition 3.1 we first establish:

PROPOSITION 3.3. Consider all incompressible, boundary incompressible,
orientable surfaces in Myx (¢ =ap). Then a/b is a slope of the boundary of such
a surface if and only if a/b=1/0 or a/b=M/4, where either 0<|M|<k—5 or
|M|=k-3 or |M|=k.

- We prove Proposition 3.3 using the main theorem of [2] and computing from
the diagram (Figure 3.1) the slopes of the boundaries of surfaces associated with
¢-invariant minimal edge-paths (see [2, Table 1]).

Proof of Proposition 3.1. Consider the b-sheeted covering of My« (a, b) asso-
ciated with the cyclic, b-sheeted covering of My« (projection My« — S I'gives a
natural epimorphism m; (Myx) = Z). Now we use Proposition 3.3 (for My«») and
Corollary 2.2. O

To prove Proposition 3.2 we use additionally Theorem 4.7 of [12].
We can ask whether M, (a, b) allows a branched covering, of a given specific
type, which is a Haken manifold. We solve this problem for ‘‘cyclic’’, branched
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Figure 3.2

coverings. By ‘‘cyclic’’ coverings of My (a, b) we understand the coverings asso-
ciated with cyclic coverings of My (these last are determined by the fiber projec-
tion My — S1).

PROPOSITION 3.4. Let My be a punctured torus bundle over S Y with a hyper-
bolic monodromy map ¢=xa“B%...a%-18%  where ay,a,,...,a_,, 0,
r>0. Let the slope a/b satisfy:

a 1/
(a) —_Eazz Z Zg 2i~1

if ¢ has positive eigenvalues; or

o (g ()

if ¢ has negative eigenvalues. Then M,(a, b) allows a finite sheeted, ‘‘cyclic’,
branched covering which is a Haken manifold. Furthermore, if a/b does not
satisfy (a) or (b) and a/b#1/0, then My(a, b) does not allow a finite, “‘cyclic”’,
branched covering which is a Haken manifold.

The case of ¢ =& and a/b=0/1 (so My(a, b) =5?) was described in [1].

Proof. Consider the diagram of ¢ (i.e., the infinite strip associated with ¢
(Figure 3.2)); see [2]. By the slope of a minimal, ¢-invariant edge-path in the
strip, we mean the slope of the boundary of the associated incompressible, -
incompressible surface in M. That is: Let y=v,U - - Uy, where v; is the ith
edge of v (we consider one period of ¢). Then
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Figure 3.3
Sl(y) = % Y5 g if eigenvalues of ¢ are positive,
%((E{-‘zl g;)+2) if eigenvalues of ¢ are negative,

where

_ 1 if v; has the beginning on the bottom of the strip,
%= —1 if y; has the beginning on the top of the strip.

First we prove Proposition 3.4 for ¢ with positive eigenvalues and > 1.

Step 1. Consider the diagram of ¢*. There exists a k such that in the diagram of
é* there is a minimal, ¢ *-invariant edge-path of slope 0/1. To prove this, first we
show the following fact.

FACT 3.5. Let ¢ = a“13%2a%...a%r-13% where r > 1, A, = Yi_, as;_;, and
A,=Y'_, ay;. Then there exists a minimal ¢*-invariant edge-path vy of slope
1 Go(A1—a) + (g +j1) A1 — g (Ay—az,) — (Jo+i1)Az), where iy, j1 20, ip, jo>1
and 2iy+2j,+1i,+Jj;=k, which starts from (goes through) the vertex 1/0. The
same is true for the vertex 0/1.

Proof of Fact 3.5 follows from the ‘‘combinatorics”’ of the strip for ¢*; see
Figure 3.3 for iy,=/,=0, iy=jo=1, k=4 and start from 1/0.

To prove Step 1, it is enough to put

iv=A|—ay, jo=Ay—ay, ii=AA}—(Ar—ay),
J1=A 1 A3—(Aj—ay) and k=A,A}+A,—a), +A A5+ A, —a,.

Step 2. Let N, be a number such that the diagram of ¢V0 has ¢V0-invariant, mini-
mal edge-paths of slope 0/1 (one going through the vertex 1/0 and the second
through 0/1). Assume that 0 <a/b<A,/4 (for a negative a/b the proof is sim-
ilar). Let N=NyA,; b. Consider M,~, the N-sheeted, cyclic covering of M. One
period of the diagram of ¢” contains N=N, A4, b segments, which are equivalent
to periods of the diagram of ¢. Let us construct a ¢V-invariant, minimal edge-
path, v, in a period of the diagram of oV, as follows: v starts at 0/1 and is the
bottom curve through the first 4 Nya segments (we call this part ;). We have
still left NgA;b—4Nya=Ny(A, b—4a) segments (this number is not negative
because of the assumption a/b < A,;/4). However, we know that N, segments
contain a curve of slope 0/1, so Ny(A, b—4a) segments also contain a curve of
slope 0/1. We can assume that this curve starts from the bottom of the strip,
which allows us to extend +y, to ;£ has the slope (4NyaA,;)/4=A,Nya=Na/b
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(see Figure 3.4). Hence M ,~(Na/b) is a Haken manifold. For this we use Corol-
lary 2.2 (N>2 guarantees that M,~(Na/b) is irreducible). So M, satisfies the
conclusion of Proposition 3.4.
Now let r=1 or the eigenvalues of ¢ be negative. We have two possibilities:
(i) Let ¢=a“132. Let « be a simple, closed curve in dM,, of slope a/b. Then a
lift of ¢ to M¢z has the slope 2a/b. For M2 Proposition 3.4 is proven Condition

(a) for d) 4a2 <a/b< 4a1, is equivalent to Condition (a) for ¢2, — (az +a,) <
2a/b<; I(a;+a,), so Proposition 3.4 in the case (i) is proved.
(i) Let ¢ = —x“15%. .. @“r-13%r 50 that the eigenvalues of ¢ are negative. Let

a be a simple, closed curve in M of slope a/b. Then a lift of o to M2 has slope
(2a/b) —1. For M2 Proposition 3.4 is proven. Condition (b) for ¢,

()i (B

is equivalent to Condition (a) for ¢2,

(B ()51t (o) (o)

so Proposition 3.4 is proved in the case (ii).
The last statement of Proposition 3.4 follows immediately from considera-
tions of diagrams of ¢* (cf. [2]). This ends the proof of Proposition 3.4. O

4. Unknotted surfaces. In this part we establish some conditions which guar-
antee that a surface in a 3-manifold is unknotted.

We will use the results of Jaco concerning hierarchies [6]. First, start from
Jaco’s modification of the existence of a hierarchy (‘‘I prove that any Haken-
manifold has a hierarchy of length no more than four—a result that I never been
able to use’’ [6]).

THEOREM 4.1 [6]. Let M be a Haken-manifold. If the 2-manifolds
in a hierarchy are not required to be connected, then M has a hierarchy
(M, 1), (M3, Fy), (M3, F3), (M, Fy) of length four.

The results which follow (Propositions 4.2 and 4.3) relate to the proof of
Theorem 4.1 (sketched in [6]) and we formulate them here without proof.
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Figure 4.1

PROPOSITION 4.2. Let M be a compact 3-manifold such that each closed,
2-sided, incompressible surface in M is parallel to the boundary of M. Then
either (i) OM is incompressible in M (or dM # @), or (ii) if (i) is not the case and
d. M is a compressible boundary component of M, then all other boundary com-
ponents of M (say, 0, M,d, M, ...,3d; M) are incompressible, and

M=H,[0,1]x3,M*...2[0,1]1X 3 M,

where H, is an appropriate handlebody (n is the rank of the free factor of
m1(M)) and the disk sum is formed as in Figure 4.1.

PROPOSITION 4.3. Let M be a compact 3-manifold with incompressible
boundary such that each closed, 2-sided, incompressible surface in M is parallel
to the boundary. Let F be a properly embedded, 2-sided, incompressible surface
in M, not parallel to 0M. Then M cut open along F can be described as follows:

1. Let F disconnect M (into M, and M,). Let 8, M, 04, M, .., 0q, M be a col-
lection of boundary components of M which are disjoint from F and lie in M,,
and let dp, M, 0p, M, ..., 0s,.M be a collection of boundary components of M
which are disjoint from F and lie in M,. Then

M=H,"[0,11X 3 M*...%[0,11X 3, M and
M, =H,”[0,1]1 X3y, M*...%[0,1] X 3y, M.

2. Let F not disconnect M (M cut open along F gives Mi) and WM, 0, M,...,0; M
be a collection of boundary components of M which are disjoint from F. Then
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M=H,A[0,1]x3,M*...%[0,1]1x d; M.

DEFINITION 4.4. Let L be a link in a compact 3-manifold M. We shall say that
(M, L) is sufficiently large if M —L is irreducible and M —int V; contains a
closed, two-sided, incompressible surface of genus greater than 0 which is not
parallel to the boundary (V, is a regular neighborhood of L in M).

COROLLARY 4.5. Let L be a link in a closed 3-manifold M, where M—int V,
is irreducible and (M, L) is not sufficiently large. In addition, let F be a 2-sided,
incompressible surface which is not parallel to the boundary in M—int V;. Then
the following conditions are equivalent:

1. Fis unknotted.

2. F meets each component of L.

Proof. M — int V satisfies assumptions of Proposition 4.3 or L is a trivial knot
in S3. O

5. Non sufficiently large links. The Gordon and Litherland result [3] can
sometimes be used to recognize whether the assumptions of Corollary 4.5 are
satisfied.

THEOREM 5.1 [3]. Let L be a prime, sufficiently large link in a closed 3-
manifold M, and let M be a reg~ular branched covering of (M, L). Then either M
is sufficiently large or M and M both contain a non-separating 2-sphere.

COROLLARY 5.2 [3]. The complement of a 2-bridge link contains no closed,
non-parallel to the boundary, 2-sided, incompressible surface.

This is also proved in [4] without the assumption that a surface is 2-sided.
Now we use results of [2] and the notation and terminology of [9] to prove:

COROLLARY 5.3. Let v €B; be a 3-braid of type Qg [9, p. 7] (w(v) is hyper-
bolic, where w: B3 = PSL,(Z)) so, up to conjugacy,

y= Ao PrgligP2gd2. . o Prodr,
where p; and q; are positive integers and r>0. Let Figure 5.1 represent the dia-
gram of w(vy) (see [2]).

If the diagram does not contain any invariant, minimal edge-path such that
L — R=2n, then the link ¥, defined by the braid v, is prime, irreducible (i.e., the
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complement of v in §3 is irreducible), and not sufficiently large. L is the number
of vertices of the edge path in one period, at which it turns left on the PSL,(Z)-
diagram (i.e., it starts on the bottom of Figure 5.1), and R is the corresponding
number of right turns.

REMARK 5.3.1. If we use the terminology of the proof of Proposition 3.2
then, for a given minimal, invariant edge-path A\, L —R=4sl(\).

Proof of Corollary 5.3. We will show that in our case M —the 2-sheeted
covering of S* branched over 7 is an irreducible, non-Haken manifold. Then
Corollary 5.3 follows from Theorem 5.1 and the irreducibility of M (cf. [3]).

It is not difficult to see that M is obtained by a Dehn surgery on a punctured
torus bundle over S! with monodromy defined by +x(y) (+ if and only if 7 is
even). To find the slope of the surgery, we have to recognize the significance of
the coefficient A% in y. We can compute that the slope of the surgery is equal to
(2n+¢€)/4, where e=0if nis even and e=2 if n is odd (for an appropriate system
of coordinates in the d(bundle), see the definition before Proposition 3.1). Now,
M can be sufficiently large or not irreducible if and only if L —R =2n for some
invariant, minimal edge-path (see Corollary 2.2 and [2]). O

EXAMPLE 5.4. Consider y=A?"0;"'0,0, '0,. Figure 5.2 represents the
diagram of = (). We have two possibilities for L—R: L—R=2 or —2. So for
n# 1, 4 is a prime, irreducible, not sufficiently large knot. If #=0, we deal
with the figure-eight knot.

EXAMPLE 5.5. Consider 'y=A2”(a;_laz)4. Figure 5.3 represents the diagram
of w(vy). We have four possibilities for L —R: L—R=*1or 4. So forn= 2,
¥ is a prime, irreducible, not sufficiently large knot. If n=0, we deal with the 8,3
knot [10].

2

EXAMPLE 5.6. Consider y=A0;*0,0; '¢%. Figure 5.4 represents the
diagram of w(vy). We have four possibilities for L—-R: L —-R==*1, —3 or 5.
Thus 4 is a prime, irreducible, not sufficiently large knot. If n=0 we deal with
the 8; knot, and if n=1 with the 1043 knot [10].

6. Property R. A knot in S? has property R if every surgery along this knot
yields a manifold other than S'xS2. Jaco has pointed out that property R
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follows from Theorem 1.4 for nontrivial knots which possess an unknotted, in-
compressible Seifert surface (e.g., nontrivial knots which are not sufficiently
large). Birman has informed me that: ‘“‘Prof. Jaco has generalized it and is writ-
ing a short paper on the subject’’ (Adding a 2-handle to a 3-manifold: an appli-
cation to property R).
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