AN EXTENSION OF A THEOREM OF KUROSH
AND APPLICATIONS TO FUCHSIAN GROUPS

Ravi S. Kulkarni

1. Introduction. A well known theorem of Kurosh (cf. [10, §34], [13, ch. 7],
or [12] and the references there) elucidates the structure of a subgroup of a free
product as a free product of factors of certain specified types. If the Euler
characteristics (cf. [3], [4]) of the groups in question can be defined, then the
generalized Riemann-Hurwitz formula imposes a further limitation for sub-
groups of finite index on the frequency of occurrence of factors of these various
types. In the special case of noncocompact Fuchsian groups there is a further
limitation coming from the consideration of ‘‘genus and cusps’’. However, these
obvious necessary conditions do not ensure the existence of a subgroup of a
specified type. From the covering space interpretation of Kurosh’s theorem we
derive a further necessary Diophantine condition and show that this condition,
in conjunction with the previously noted conditions, is necessary and sufficient
for the existence of a subgroup of a given type.

Throughout the paper F, denotes a free group of rank r and JI* denotes a free
product of groups.

The extension of Kurosh’s theorem referred to in the title is the following.

THEOREM 1. Let T'; be groups and ®;; be subgroups of T'; of indices d;; where
I<ign, 1<j<r. Let T=11}T; and ®=F, *[1}; ®;;. Then ® occurs as a sub-
group of finite index d if and only if

(1) (the degree condition), d=YX}.,d;;, i=1,2,...,n, and

(2) (the connectedness condition), d(n—1)—Yi_ri+1=r.

The implication for Fuchsian groups is the following.

THEOREM 2. LetT'=F, %11} Z,;, 1<i<k and ®=F;*I1; Z,,,, l<u<L. As-
sume that my,...,m; is a maximal set of distinct m,’s and each m, occurs b,
times, 1<q<l. Let d be a positive integer. Then & can be embedded in T" as a
subgroup of index d if and only if

(a) (the torsion condition), each m, divides some n;,

(8) (the R.H. condition),

)»

u u

1
—L—s+1=d12 ——k—t+1},
i i
(v) (the end condition), t<s, and
(6) (the Diophantine condition), let my=1 and set
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then the system
(i) X €igxig=bg, 1<i<k, 1<g</,
(i) Xg0igxig=d, 1<i<k, 0<g<l.
has a solution for x;,’s in nonnegative integers.

The R.H. condition can be stated more succinctly as x(®)=dx(I'), where x
denotes the Euler characteristic of a group (cf. [3], [4] and the references there).
Note also that if =0 the end condition is vacuous. The use of the Diophantine
condition is illustrated in §5 where I have classified subgroups of finite index in
ZxZ, or Z,*Z, where p, q are primes. In particular, for the modular group
(p=2,q=3) the result is that every finite free product of a free group, Z,’s and
Z,’s different from Z, Z,, Z; or Z,*Z, occurs as a subgroup of finite index.
This follows from [16] but, curiously, to the best of my knowledge this result
does not appear in the classical treatises of this vast subject. More general results
of this type will appear in [8].

The Diophantine condition is really a formalization of the diagrams intro-
duced in §4. These diagrams provide an alternative to the use of fundamental
domains (cf. [11], [14]) or the permutation method (cf. [15], [16], [18], [19]) or
the coset graphs (cf. [2, p. 15] or [21]). In Appendix 1, I bring the diagrams
closer to their 2-dimensional aspects and discuss congruence subgroups and
Petersson’s cycloidal groups in terms of the ‘‘thickened’’ diagrams.

In general it is difficult to describe the precise set of solutions of the Diophan-
tine system (6). In Appendix 2 I have given a generating function and a sys-
tematic method of obtaining solutions in nonnegative integers of a linear Dio-
phantine system with nonnegative coefficients. The generating function turns
out to be a rational function. It may be remarked that certain types of generating
functions available in the literature are readily deduced from the general algo-
rithm of Appendix 2.

A final remark: Theorem 2 completely leaves aside the question of recognizing
a normal subgroup of finite index. This problem has an additional arithmetic
aspect which goes considerably deeper. Secondly, the analogue of Theorem 2 for
cocompact Fuchsian groups is false. It is valid for forsion-free subgroups (cf. [6],
[7]). In these papers (and in [8], [9]), further algebraic and geometric methods
are developed to deal with not necessarily torsion-free subgroups and normal
subgroups of finite index in cocompact Fuchsian groups.

ACKNOWLEDGMENT. I am grateful to R. Lyndon for guiding me to the exist-
ing literature, for detailed comments on the first draft of this paper and for
simplifying some proofs.

2. Proof of Theorem 1. Let X; be a connected CW-complex with I, (X;, x;) =
I';. Let e;, 1 <i<n, be n copies of the unit interval [0, 1]. Construct a complex A
from U; e; by identifying the initial endpoints to a single point called 0, and
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construct X from AUX;U .- UX, by identifying the final endpoint of ¢; with the
basepoint x; of X;. Clearly I, (X, 0)=II*I;. We are going to show the existence
of a subgroup =~® by constructing an appropriate connected covering X of X.
Let pjj: X~fj — X; be the covering corresponding to the subgroup ®;; of I';. Then
p,-j_-l(x,-) consists of d;; points {X;;}. Let By be the union of d disjoint copies
Ay, Ay, ..., Az of A. So By has d components and d edges with index i, 1<i<n.
Out of the d edges with index 1 choose any subset of d); edges and attach their
final endpoints to X; j» at X7, j=1,2,...,r. The resulting complex B; now has
d—¥; (d;;—1) components. Now attach d,; edges indexed 2 to X;; at X,; choos-
ing the edges from different components of B, as far as possible. The resulting
complex B, has

4 2
2.1 max(l,d—.El(d,,-—l)—_z)l (dzj—1)>
J:

J=

components. Continuing this way we obtain a complex B, =X with

(2.2) max(l,d— Y (d,-,-—l))

i
components. The second term in the above bracket is —d(n—1)+ L7-, r; since
by assumption X; d;;=d for i=1,2,...,n. Now condition (2) in the theorem
ensures that —d(n—1)+ /-, r; <1. So X is connected.

Now there is an obvious d-fold covering map p: X—X and [],(X)=
[1}; ®;j % F, where s is determined as follows. Let ¥ be the complex obtained
from X by collapsing each Xj; to a point. Then II; (Y)=F,. Now Y may be
considered as obtained from By by identifying the endpoints of d,; edges with
index 1, j=1,2,...,r, then identifying the endpoints of d,; edges with index 2,
Jj=1,2,...,r, choosing the edges from different components as far as possible,
and so on. In this process each identification of endpoints initially reduces the
number of components by one, and until one obtains precisely one component
the resulting complexes are unions of trees. After one has obtained precisely one
component, any further identification introduces a loop and s is precisely the
number of these latter identifications. So

(2.3) 1——[d— Y (d,-j—l)z=s
ij

or s=d(n—1)— X7-, r;+1 which equals r from condition (2).

Conversely, given the groups I'; and subgroups ®;; of I'; of index dj; and a sub-
group ®=F. x]]; ; ®;; of index d in I = [[* I';, construct a complex X as above
with II; (X) =T and take the cover X © X, corresponding to &. Then p~'(e;)
consists of d edges, and their distribution among the subspaces of X which
are covering spaces of X; corresponding to &;;’s gives the condition (1). Col-
lapse X to Y as above. Y is a graph with dr edges. The argument in the last
paragraph shows that d+ Y7, r; — 1 edges form a maximal tree so the difference
dn—{d+ X7-, r;—1} is simply the rank of the free part. a
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3. Proof of Theorem 2.

(3.1) Necessity of (o), (B), (), (6): For definiteness consider F; as a free
product of Z(i)=Z, i=k+1,...,k+t and thus T is a free product of k+¢
groups. Form the complex X as in the proof of Theorem 1 so that I, (X)=T.
For i=k+1,...,k+t we take X; to be a circle. Let p: X = X be the covering
corresponding to ®.

The necessity of the torsion condition («) is clear. The necessity of the R.H.
condition and the end condition are also clear from the Riemann surface theory.
(Strictly from the ‘‘1-dimensional’’ viewpoint the R.H. condition may be proved
along the lines of [4]. As for the end condition note that each component of
p~UX;), i=k+1,...,k+t, is a circle which contributes at least one factor to the
free part Fy; of ®. So f<s.) Finally let x;;, be the number of components of
pNX), i=1,2,...,k, which have fundamental group isomorphic to Zpy,, 9=
0,1,...,1. (Forg=0, my=1and Z,, = (0).) Condition (i) of (8) follows since by
assumption m,, g >0 occurs b, times. Now condition (ii) of (8) is simply condi-
tion (1) of Theorem 1.

(3.2) Sufficiency of the conditions: It suffices to reduce to the situation of
Theorem 1. Let x,-q=x,% be a nonnegative integral solution of the Diophantine
system. Let n=k+¢, r;= Ef;:o e,-qx,% fori=1,2,...,k. Fori=k+1,...,k+¢let
r; be any positive integers <d such that r=s— X¥X/., ;0. This is possible by
condition (vy), with at worst r;=1. For i=1,2,...,k, j=1,2,...,r; d;’s are
taken to be 0;,’s repeating x,% times. For i=k+1,...,k+¢t, j=1,2,...,r,
d= E;izl d,.j are taken to be any partition of d with r; positive terms. With these
definitions of n, d, d;;, r;, condition (1) of Theorem 1 is a consequence of con-
dition (ii) of (d) and the definitions of r; and d;;’s for i > k. It remains to show
condition (2) of Theorem 1 for which, as is expected, condition (3) must play a
crucial role. Notice first that by (ii) of ()

k . ko ! . ko I k .
L xh= % - {d— 6,-qx,-q}=d{ > ——~}— y —— { > e,-qx,-q}
i=1 i=1 N g=1 i=1 N g=1 Mg (i=1

k 1 f bq )
d{.E ”—}— L~ by()of (5)
q

SEneS

=1 My

=d(k+t—1)—(L+s—1) by (B).

So the left-hand side of condition (2) of Theorem 1 is
k+t k ! k+t

dik+t—1)— ), ri+1=d(k+t—1)— Ex:%— E Eiqxlpq_ E ri+1
i=1 i=1 g=1 i=k+1
k /
(3.2.2) =d(k+t—1)— L xjp— L bg+ (r—s)+1
i=l1 qg=1
k

=d(k+t—1)= Y xp—(L+s—1)+r=r. 0

i=1
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(ii)

d,'j edges

(iv)

4. Diagrams. (4.1) Let I'=]1*Z,,, 1<i<k where if n;=0 then Z, stands for
Z. Let X; be a space with fundamental group Z,,, symbolically represented as in
Figure (i). Let X; be X; with an edge attached as in Figure (ii). The complex X in
the proof of Theorem 1 may then be represented as in Figure (iii). If m; divides #;
then the covering of X; with fundamental group Z,,; has degree d;; =n;/m; and is
represented as in Figure (iv). A covering of X corresponding to a subgroup ® of
I' is then built out of the spaces of type (iv).

(4.2) EXAMPLE. Let T" be the infinite dihedral group. So
I'=(a,bla*=b>=1)={(c,ala’*=(ca)*=1), c=ab.
It has three index 2 subgroups, namely,
(cY=Z, (b,abay=(b,c*)=T, <(a,bab)={a,c*y=T.

This information is readily read from the diagrams

X,:@_~_ )22:—@
- O—O
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The three degree 2 coverings of X are

O @
Q 2/2

2/2 2/2

(4.3) The independence of condition () from («), (8), (7v) in general can be
easily seen from the diagrams. As an example take '=Z,*Z,, ®=Z 4 *Zs*Z,.
Then x(®)=—5/4=5x(I"). But & does not embed as a subgroup of finite index
in I'. Indeed, if it does the index has to be 5. But in any 5-fold connected cover of

O—©

at least one @— must occur which would contribute a factor Z, to the
subgroup.

(4.4) REMARK. The reader may find it useful to work out the special cases of
the theorems in the next section by means of these diagrams. While it will be dif-
ficult to give a satisfactorily complete proof based on diagrams alone, the special
cases which can be treated easily by means of the diagrams lead to the heart of
the matter.

In Appendix 1 we shall explain the 2-dimensional aspects of the diagrams.

5. Examples.

(5.1) THEOREM. Let p, q be distinct primes, I' =Z,*Z, and ® a free product
of s copies of Z, a copies of L, and b copies of Z,. Then ® embeds in T as a sub-
group of finite index if and only if x(®)/x(T') is a positive integer.

Proof. Note that since p, g are distinct primes x(I') <0. We have

@) x(T)=/p)+(1/q)—1.

(i) x(®)=(a/p)+(b/g)—(a+b+s5s—1).
Let x(®)/x(I') =d which is a positive integer by hypothesis. The Diophantine
system (6) of Theorem 2 in this case has the following form:
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Xnu=4a, Xp=b
(5.1.1)
DXo+Xx=d=qgxy+ X.

So the problem amounts to whether (d—a)/p, (d—b)/q are nonnegative inte-
gers. By symmetry we show this for (d—a)/p only. Now

d—-a={g+2—(a+b+s—l)}/{i+i—l]—
P q P q

=pla+qs+qgb—b—q}/pg—p—q
from which the assertion follows. The result follows by Theorem 2. a

(5.2) COROLLARY. (Classification of subgroups of finite index in the non-
homogeneous modular group). Let I'=PSL,(Z)=Z,%Zy, and $=®; , ;, the
Jree product of a free group of rank s, a copies of Z, and b copies of Z;. Then ®
is a subgroup of U of finite index if and only if Y+ Z,Z,, 25,2, *Z,, i.e. if and
only if 6s+3a+4b—6>0.

Proof. Here x(I')=-1/6, x(®)=—(6s+3a+4b—-6)/6. So x(®)/x(T') is
always an integer. The excluded cases are precisely the ones where this integer
<0. O

(5.3) COROLLARY. (Classification of subgroups of finite index in the homo-
geneous modular group). Let I'=SL,(Z) and = @S,a, p be the unique Z,-central
extension of ®s 4 » appearing in (5.2) which restricts to the nontrivial extension
on each Z,-factor (if any) in ®; , . Every subgroup of finite index in T is iso-
morphic to ®; 4 p,65+3a+4b—6>0 or to & ¢ p, 65+4b—6>0.

Proof. SL,(Z) has a unique element of order 2 which is central. Let
p:SL,(Z) — PSL,(Z) be the canonical projection. If ¢ is a subgroup of finite
index in T' then ¢ has index <2 in p~!(p(¥)). If p(l,b) &5 .., then p~i(y) =
<I>s e,b- If @>0 the extension does not split so Yy =& , ;. If =0 the extension
splits so Y = s,o,b_'bs,o,bxzz or y=&; ¢ 5. ]

(5.4) THEOREM. Let I'=2Z%Z,, m,,..., m; distinct divisors of n different
Jromlandds=n/my, q=1,2,...,1. Let ® be a free product of s copies of Z and
ag copies of Lm,, q=1,2,...,1. Then ® can be embedded as a subgroup of T of
Jfinite index if and only if

(1) x(®)/x(I')=d is a positive integer, and

() s=Xloi(d;—1)a;+1.

Proof. Condition (i) is clear. The Diophantine system (§) of Theorem 2 in
this case has the form |

1) xlq—aq, q=1,2,...,1,

(2) nxp o+ Eq ]d a,= d
So a necessary and sufficient condition for ® to be a subgroup of I' of finite
index is just x,0 20, i.e.
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(£, 8- o2 B

/ / !
={n<s+Zaq—l>—2dq00}/(’1_l) — L dq4q
g=1 7=1

g=1

n—1

!
= — {S— E (dq—l)aq—lz.
qg=1
Hence condition (ii) holds. O

(5.5) COROLLARY. Let I'=7Zx*Z, where p is a prime. Let ®=%&; , denote a
Jree product of s (resp. a) copies of Z (resp. L,). Then ® can be realized as a
subgroup of finite index inT' if and only if (s,a)# (1,0), s 21 and (p—1) divides
(s—1).

Proof. Condition (ii) of (5.4) reduces to s =21. Condition (i) becomes:

{E —(a+s—1)1/{l ——1}= plats—l)-a =a+s—1+i_—1—
p p p-1 p—1

is a positive integer. Since s 21, this is clearly equivalent to (s,a)## (1,0) and
(p—1) divides (s—1). O

(5.6) THEOREM. Let I'=Z,%Z,, where p is a prime 23, and ®=%®; , a free
product of s (resp. a) copies of Z (resp. Z,). Then ® can be realized as a sub-
group of finite index in T' if and only if

i) (s,a)#(1,0)or (0,1), and p—2 divides a+2s—2, and

(ii) a is not an odd integer less than p.

Proof. We have x(®)=(a/p)—(a+s—1) and x(I') = (2/p) — 1. Condition (i)
is equivalent to: x(®)/x(I') =d is a positive integer. This condition can also be
written as (2d—a)(1—(1/p))=d+s—1. So a<2d, a=2d(p). Set a=2d—ep,
e 20. System (6) becomes, writing x; =X, X2 =X»1, Y1 =X10, Y2 =X20,

X1+x,=a
(5.6.1) pyi+x=d
DVr+x,=d.

Case 1. a<p: A solution of (5.6.1) in nonnegative integers requires 0 <X; <
a<p, x;=x,(p) so x;=x, and a is even. If a=2b then 2b=2d—ep, p divides
(d—b), sod—b=py, where y is a positive integer. Then x,=x,=5b, y,=y,=y is
a solution.

Case2.azp: Letd=dy(p), 0<dy<p, d=dy+gp, £20. Then a=2d—ep=
2dy+ fp where f=2g—e20,s0 f<2g. Let f=f1+ /3, 0< U/, fr<g, xi=dy+ fiD,
Yi=g—/i; then
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X1+Xx,=2do+p(fi+ ) =2dy+ fp=a,
yip+xi=(g—=fi)p+dy+fip=dy+gp=d, i=1,2.

So (5.6.1) has a solution.
This finishes the proof. a

Appendix 1: More on diagrams.

(Al1.1) 2-DIMENSIONAL ASPECTS. Let I'=F, * [1¥_, Z,,. If T" is realized as a
Fuchsian group, it acts topologically as a properly discontinuous group on R2
Let 5: RZ—>T\R?>=N be the canonical projection which is a branched covering.
Let N have genus g and e (necessarily >1) ends. Then t=2g+¢—1. Moreover N
has a set B of precisely k branch points, X, . ..,Xx; of branching indices #n,, ..., n.
The invariants {g;n,,..., ng; e} are invariants of the topological action of T.
If & is a subgroup of finite index in I', ® \R?>=M, then the canonical projection
p: M — N is a branched covering which may be regarded as a subcovering of the
universal branched covering p. The invariants of p: M — N regarded as such a
sub-branched covering include, in addition to those of N: the genus of M; the
branch data, i.e., local degrees of p at the points in p ~'(B); and the endsplits,
i.e., the local degrees of p at the ends of M which all must lie over ends of N. (For
I' =the modular group there is only one end—which is geometrically a cusp—so
one talks about a ‘‘cusp split’’ of a subgroup of the modular group. I am thank-
ful to Raghavan and Rangachari for patiently explaining to me parts of the clas-
sical theory of the modular group.)

These 2-dimensional aspects can also be read from the diagrams provided we
thicken them in an appropriate way. Indeed, for definiteness let I' = F, * [T%_, V8
be realized as a Fuchsian group with genus 0, and ¢ a subgroup of finite index
in I'. Thicken each subcomplex described in §4 as shown:

% if n#0,
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We then get compact surfaces with boundary which we denote by Xr and X,
respectively. Corresponding to I' we have a sphere with # + 1 open disks removed.
If we remove the boundaries in p: X — Xr this is just the branched covering
p: M — N considered above.

The number of ‘“‘cusps’’ of a subgroup @ is evidently the number of boundary
components of Xg. The ‘‘cusp split’’ can be determined by counting the number
of times a boundary component of Xy wraps around a boundary component
of Xr' .

(Al1.2) EXAMPLE. '=Z,*Z;~ PSL,(Z). Then

XF=M.

A look at the diagrams shows that all subgroups of index <5 have genus 0.
Among the 8 distinct conjugacy classes of subgroups of index 6 all but one have
genus 0. The exception occurs for the diagram which has genus 1. It corresponds
to the commutator subgroup:

2/2 2/2} 2/2\

Its thickening clearly shows ‘‘the handle’’.

(A1.3) CONGRUENCE SUBGROUPS OF PSL,(Z). A subgroup & of I'=
PSL,(Z) is called a congruence subgroup if it contains the kernel of the canoni-
cal map p,, : PSL,(Z) = PSL,(Z,) for some n. A theorem of Wohlfahrt [23] says
that ® is a congruence subgroup if and only if ® 2 ker p,, where n=1.c.m. (cusp
split).

Given a diagram for a subgroup & of finite index it is possible to determine
whether @ is a congruence subgroup. Indeed one has only (i) to compute n=
l.c.m. (cusp split), and (ii) to check whether all the lifts of the loops in the dia-
gram for I" defined by the relations in the known presentations for PSL,(Z,) are
again loops (cf. [5], and the references there for such presentations).

Here is a simple argument for the existence of noncongruence subgroups.
Indeed, one may check from the diagrams using the above procedure that all
subgroups of index <6 are congruence subgroups. Now consider any subgroup
of index 7 with 2 cusps (in all there are four conjugacy classes of such
subgroups); e.g., one defined by
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~ { 3/3
2/2 \
2/2
’ |

2/2

(5)-

Here the cusp split is (1,6). So n=1.c.m.(1,6)=6. If this corresponded to a
congruence subgroup, PSL,(Zs) would contain a subgroup of index 7. But
7 X |PSL,(Z¢)|, a contradiction.

(Al.4) CYCLOIDAL GROUPS. A subgroup of the modular group is called
cycloidal if it has only one cusp. Petersson [17] proved that there are infinitely
many cycloidal subgroups of genus 0. Without going into further refinements
(cf. Millington [15]), let us prove Petersson’s statement. Consider the infinite set
of diagrams of which one is shown in the figure below. That is, construct dia-
grams without intertwining edges (as in the diagram in (A.2), for example) and
without introducing internal loops. Clearly X4 has genus 0 and one boundary
component, i.e., ¥ is a cycloidal subgroup of genus 0.

. 2/2/ |
O @\/ j@.

I should remark that the diagrams can rarely be used to prove a general state-
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ment about subgroups. But they are a useful visual aid for generating data and
formulating guesses.

The diagrams in this paper deal only with free products. But similar techniques
may be used for amalgamated products, HNN and similar constructions in com-
binatorial group theory.

Appendix 2. A generating function for solutions of Diophantine systems in
nonnegative integers. It is difficult to describe the precise set of solutions of the
Diophantine system (6) encountered in Theorem 2. The problem is not unlike
that of enumerating all partitions of a positive integer which is indeed a special
case of the problem considered below. Euler constructed generating functions
for various types of partitions (cf. [1]). Here, briefly, we indicate that the same
philosophy may be applied to our problem. The recursive relations derived below
from the generating functions may be used to tabulate systematically the solu-
tions of (6) as well as (more easily) to decide the existence of solutions of (6}, at
least with the aid of a computer.

Consider
n

(*) Ea,-jxj=b,-, i=1,2,...,m,
J=1
where a;; and b; are nonnegative integers, and the problem is to investigate the
solutions of (*) in nonnegative integers.
Write

xz(xl"-',xn)’ 'S=(S])"'5Sn)s b:'(bls"',bm), tz(tl:"'!tm)a
n m b
s*=T11s7, t*=T1¢",
Jj=1 i=1

“x20’ or “b 20"’ means that the respective components are nonnegative.
Assume that each column in [¢;;] has a nonzero entry. This assumption
ensures that (*) has at most finitely many solutions.
For x =20, b 20 set
e . .
Nx(b)={(l) if x is £-i solution of (*),
otherwise,

N(b) =the number of solutions of (*),

a(s,1)= ¥ N (b)s*t®, 7(t)= ¥ N(b)t’.
x20 b=0
bz20

Here o and 7 are considered as formal power series, and are called the solution
generating function and the solution counting function respectively.

(A.2.1) MAIN ASSERTION. ¢ and 7 are rational functions. In fact,

" 1
1 s. )=
( ) U( ’ ) Jl;]i{l‘_s‘jtlalj,..-,tf:imj }s
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" 1
2 )= .
@ HO=T1{ = |
Proof. Expand the right-hand sides as products of geometric series. Observe
also that o(1,¢)=7(?). O

(A.2.2) RECURSIVE FORMULAS FOR N, (b) AND N(b).
(1) The N,(b)’s are recursively determined as follows.

NO ..... 0(0$"'10)=1’ NXI

......

if some x; <0 or b;<0, and for x>0, >0,

le x,,(blso--abm)"l'

.....

k k
) (_l)kle,...xu ~heexy =l x (D= Y Ay e By — Y @, |=0.
lSuy<---<upsn 1 k /=1 ! =1 !

(2) The N(b)’s are determined recursively as follows. N(0,...,0)=1,
N(by,...,b,;)=0if some b; <0, and for b=0

k k
N(by,...,by)+ Y (—l)kN(bl—Igldlul,...b,,,—[;la”m!>=0,

1<u1<-~<uk<n

Proof. (1) We have

m
IT (1=s;t{Y, ..., tomiy< ¥ Ne(b)s™t? p =1.
ji=1 xz0
b0
Now equate the coefficients of s*¢% on both sides.
(2) Similar to (1). a

REMARKS. (1) We also know that N,(b)=0 or 1. Hence one only needs to
know the parity of N,(b) in applying the recursion formulas.
(2) By the Cauchy integral formula one has

1 7(t)
NOY= iy S AL ar
where the integral is taken over the boundary of a polydisk in C"” of polyradius
(rlw"srm)s H?lzl T # 1.

(3) Certain types of generating functions available in the literature sometimes
can be derived quickly from the above algorithm. For example, the generating
function of Gaussian polynomials (cf. [1, p. 36]) is the solution counting func-
tion of the system

(*) Xo+x+ e + x,,=b1
X +2x4 -+ +nx,,=b2.
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