SURFACE SYMMETRY II

Allan L. Edmonds

Introduction. In Part I of this work [2] we presented a classification of the
actions of a finite abelian group on a closed, orientable surface in terms of
cobordism class and fixed point data. Here we extend those results to actions of
certain nonabelian finite groups. In Section 1 we examine free actions of a split
metacyclic group G, i.e., a semidirect product of two cyclic groups. The main
result of Section 1 is as follows.

THEOREM. Let G be a finite nonabelian split metacyclic group which acts
freely on a closed, oriented surface M, preserving orientation. Then the set of
orientation-preserving equivariant homeomorphism classes of free actions of G
on M is in bijective correspondence with the second homology group H,(G; Z).

Although this result is certainly of a rather specialized nature, we view it as
somewhat remarkable that the free actions of a nonabelian group can be classi-
fied up to equivariant homeomorphism by the abelian group H,(G; Z).

Since H,(G; Z) can be identified with the free equivariant cobordism group
Of¢(G), we have the following consequence.

COROLLARY. Two free orientation-preserving actions of a split metacyclic
group on a closed oriented surface are equivalent, by an orientation-preserving
equivariant homeomorphism, if and only if they are freely cobordant.

The analogous statement for finite abelian groups G was the main result from
[2].
PROBLEM. Find invariants other than 05¢(G) for free G actions on surfaces.

In Section 2 we take a different tack and examine ‘‘indecomposable’’ actions
which preserve no nontrivial family of disjoint simple closed curves. These ac-
tions have exactly three singular orbits and have orbit space the sphere. By fixed
point data for an action we mean a description of the equivariant homeomor-
phism class of the restriction of the action to a neighborhood of the singular
orbits. This can be described as an unordered set of conjugacy classes in G, with
multiplicities allowed, one for each singular orbit. (See Section 2.) Recall that
two G actions are weakly equivalent if they are equivalent modulo automor-
phisms of G. Similarly we say that two sets of fixed point data are weakly equiv-
alent if there is an automorphism of G taking one onto the other.

THEOREM. Two indecomposable actions of a split metacyclic group G on a
surface M are weakly equivalent if and only if they have weakly equivalent fixed
point data.
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A similar result is also given for the 2 X 2 matrix groups SL, (F;). On the other
hand, we construct an example of two inequivalent, cobordant, indecomposable
actions of the symmetric group 87 with identical fixed point data.

1. Free actions of metacyclic groups. We begin by recalling some terminology
and basic facts from [2; §2]. We denote by FQ(G, M)* the set of orientation-
preserving, equivariant homeomorphism classes of free actions of the finite group
G on the surface M. All free G actions on M have the same orbit surface, say N,
and we can identify FQ (G, M )* with the set Cov (G, N)* of equivalence classes of
connected G-coverings of N. Covering space theory and basic facts from the to-
pology of surfaces allow one to identify Cov (G, N)* with the set Epi(7(N), G)*
of epimorphisms 7, (/N) = G modulo the natural action of Aut 7;(N).

Now we have the bordism invariant

B: Q@ (G, M)* - 05¢(G),
where 0f¢(G) = Q,(BG) = H,(G). If [¢] €EFR(G, M)* corresponds to
é: N—- BG,

then B{¢] corresponds to qS*[N] € H,(G) where [N]€ H,(N) is the funda-
mental class induced from that of the oriented manifold M. Henceforth we view
B as a homomorphism from Epi(m(N), G)* to H,(G).

Our aim in this section then is to show that B: Epi(7;(N), G)* = H,(G) is
bijective when G is a metacyclic group and Epi(7(N), G) # @.

By definition a split metacyclic group G has a presentation, which we fix once
and for all, of the form

1.1 (x,y:xM=y"=1, yxy 1=x")

“where m, n, and r are nonnegative integers such that r”=1mod m. To avoid the
abelian case already covered by [2] we assume throughout that m>1, n>1, and
1<r<m. (The present techniques can be easily applied to the abelian case as
well, however.) We view G as an extension of Z,,= (x) by Z,=G/{x), the latter
generated by the image jy of y.

(1.2) LEMMA. H,(G)=1Z,, where d=(m,r—1)(m, L'=d r'y/m.

Proof sketch. In the E? term of the Lyndon-Hochschild-Serre spectral se-
quence for the extension defining G, E,%- =H;(Z,; Hi(Z,)). For i+j=2the only
possibly nonzero term is £, which one calculates to be Z4, d as above. The only
possibly nontrivial differential entering or leaving E,, is d%: E% — E}. To finish
the proof it suffices then to prove that d%, vanishes.

To this end, consider the subgroup G={x¢, y) of G where c=m/(m,r—1).
Note that x€ is the smallest nontrivial power of x fixed by y, so (x)=(Z,,)’.
View C_; as the direct product extension of (Z,,,)y by Z, and let E? de-
note the correspondlng spectral sequence. Now E30 = H3 (Z,; Hy((Z,,)”)) =
H3(Z,; Hy((Z,,)) =E%. On the other hand d?: E% — Ej is zero as a conse-
quence of the Kunneth formula. Naturality of the spectral sequence now implies
that d%=0 as required. a
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For more details of this and related computations see [1; §1V.2] and the ref-
erences cited there.

We now proceed to a geometric description of a free action of a finite group G
on a connected, closed, oriented surface M. Let p: M — N be the orbit map,
which we view as before as a G-covering map of N. This covering is classified by
an epimorphism p: 7 (N, xg) = G. Now 7 (NN, Xy) has a standard presentation of
the form

<al, blv--sambn: [ala b.]---[a,,, bn]=l>

where a;,b,,...,a,,b, are represented by oriented simple closed curves
A, By,...,A,, B, on N, suitably connected to the basepoint x; such that
ANA;=B;NB;=A;N\B;= if i#j and A;NB; is one point of transverse inter-
section for all i. It follows from the classification of surfaces that any two such
systems of simple closed curves and arcs in N are related by an orientation-
preserving homeomorphism of N. In particular we can describe the representa-
tion p: (N, x9) = G by a sequence (g, hy;...; &, h,) of elements of G such
that (g, 1]---[&n, hy]=1. We call this sequence a Hurwitz system for the ac-
tion. It follows that two actions are equivalent if and only if they possess iden-
tical Hurwitz systems, for suitable choices of simple closed curves for the two
actions. We now return to our standard metacyclic group G.

(1.3) PROPOSITION. Suppose the split metacyclic group G acts freely, pre-
serving orientation, on the connected surface M. Then N=M/G has genus
greater than one, and the action has a Hurwitz system of the form

(xXy,x%; x5 1;1,1;...51,1).

Proof. Since the corresponding representation p: m;(N) — G is surjective and
we are assuming G is nonabelian, N must have genus at least two.

First consider the composition «(N) = Z,, of p with projection G — Z,,. This
corresponds to a Z, action with orbit space N. By the uniqueness of free cyclic
actions on surfaces ([2] or [4]), we may choose a Hurwitz system for the given G
action which has any desired image in Z,, (so long as it generates Z,). In par-
ticular, the action has a Hurwitz system of the form

(x'y, x9; xk2, xl2; .. xKn, xlny,

Now the tail of the Hurwitz system, (x*2, x'2;...; x%n x'r), is a Hurwitz system
for an action of a cyclic group contained in {x) C G, with orbit surface of genus
n—1. Again by the uniqueness of free cyclic actions we may arrange that this tail
has the form (x*,1;...;1,1). In particular, the given G action has a Hurwitz sys-
tem of the form (x‘y,x’; x¥, 1;1,1;...;1,1). 0O

(1.4) COROLLARY. If G is a split nonabelian metacyclic group acting freely on
a surface M, then B: $Q(G, M)* - H,(G) is surjective.

Proof. Since H,(G) =Q,(BG), each element of H,(G) is represented by a free
action on some surface, which can be chosen to be connected. But (1.3) shows
that each element can be represented on any surface on which G acts freely. O
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(1.5) PROPOSITION. If the nonabelian split metacyclic group G acts freely on
a surface M, then the action has a Hurwitz system of the form

(y,xx,1;1,1;...;1,1), where c=m/(m,r—1).

Proof. By (1.3) we may assume N=M/G has genus 2 and that the action is
given by a Hurwitz system (x’y,x/; x*,1), where we suppress the tail string of
1’s which shall subsequently be unchanged. We shall make use of two families of
alterations of Hurwitz systems. (In fact the moves below are all that one needs to
prove the result about cyclic actions used above; and in that case one may ignore
base points.) Let (u,, v;; u,, v;) be a Hurwitz system.

MOVE D. (u;,v;) = (u;,v;uf) or (u;vf,v;), g€Z. To achieve this simply
apply a g-fold Dehn twist about A; or B;.

MOVE M. (uy, vy; Uy, 03) = (uputy, vg; vy 07 L upy v u5 oY), To achieve this
““mixing’’ alteration of the Hurwitz system, note that the defining relation of the
surface of genus 2 still holds if u;,v,,u,, and v, are replaced by the second
4-tuple, and the latter elements generate. A pictorial proof can be achieved by
moving the u;-curve over u, and suitably choosing the other curves. Fortunately
in our applications v, u, v '=u, and w, v,u; v = v, 0

We first arrange to have the system in the form in (1.3) such that £ | j. To do
this, let = (/, k), and choose integers a, b such that t=aj+bk. Apply D with
q=bto achieve (x'y, x’; x*, x%*). Now apply M gm — a times, where q is chosen
so that gm— a is positive. This yields (x*97=Dxiy x/; x" xbky—itam—a)y =
(x'=%ay x7; x*, x'). Since t| k, Dehn twists yield (x'~*%y, x/; x',1). Since #] j,
we may now assume that in form (1.3), k| J.

Now we claim that x* and x* generate Z,,= =(x) where s=Y5= —b r%, so that
(is, k) is prime to m. Since k| j, we have that (x'y, x*)y=G. Now x"*= (x'y)"
and H=(x", x¥y C (x) is a normal subgroup of G with G/H generated by the
coset of x'y. Since no (x‘y)%, 0<k <n, lies in H, it follows that H has order m,
and hence that H={x), as required.

It follows that we may choose integers @ and b such that ais+ bk=1mod m.
Apply D with g =>b in the second half of the Hurwitz system to obtain
(x'y,x’; x xbk) Then apply D with ¢= —an in the first half to obtain
(xiy,xfx ais, xk x%%y, where s= X Z) r® Now apply M, obtaining

( k—Hy’ j—ais, X xbk—j+ais)=(xi'y,xj';xk’xl—j).

Since k| J, (k,1—j)=1. Therefore, by applying D suitably, we can achieve
(x"y,x’"; x,1). Now apply M pm —i ‘times where p is chosen so that pm—i’20.
This yields ( y, x4y x, x/pm=i )) Finally D, with g= —i’j’, yields the required
form (y,x’’; x,1). Since [y,x’'][x,11=1, we have [y,x/ ]—1 It follows easily
that j"has the form ¢/ where c=m/(m,r—1) and / is some integer. a

(1.6) PROPOSITION. If an action of G has a Hurwitz system (y,x; x, 1), then
it also has a Hurwitz system (y,x'*9; x, 1), where c=m/(m,r—1), d=
(m,r—1)(m,s)/m, and s=L"_} r¢

Proof. Clearly cd= (m,s), so there are integers @ and b such that cd=am + bs.
Applying Move M b times we obtain (x%y, x; x,x~'). Applying D in the
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second part with g=bcl, we get (xy,x; x,1). Now applying D, with g=n, in
the first part of the system we obtain

(xby, xdbe; X, 1) — (xby, xcl+cd—am;x’ 1)

= (xy, xU+D; x 1).

Now apply M pm—b times, where pm—b >0, to get (y,xUTd; x, xbet+d)y

Application of D creates the desired form. O

(1.7) THEOREM. If the nonabelian split metacyclic group G acts freely,
preserving orientation, on a connected, closed, oriented surface M, then
B: 5Q(G,M)* —> H,(G) is a bijection.

Proof. By (1.4), B is surjective. By (1.1), H,(G) has order d. But by (1.6),
FQ@(G, M)* has cardinality at most d. O

REMARKS. (1) The results (1.3) through (1.5) apply just as well to general
metacyclic groups (¥"=x?). Perhaps (1.6) can be modified to apply in this
generality too. (2) Aut G acts on FQ(G,M)* and on H,(G) and B induces a
bijection of the weak equivalence classes of free G actions on M with the set
H,(G)/Aut G.

2. Indecomposable actions. Let G be an arbitrary finite group, and let ¢ be
any effective, orientation-preserving action of G on a connected, closed, ori-
ented surface M. The singular set S, is the set of points with nontrivial isotropy
group; the branch set By is the image of S, in the orbit space N=M/¢. The cor-
responding G-branched covering w: M — N is determined by a surjective homo-
morphism p: 7 (N—By, xp) = G; M is the end compactification of the corre-
sponding G-covering space of N—B,. ‘

Let By={x,...,x,} and let C,..., C, be small, disjoint simple closed curves
in N— B, such that C; bounds a disk D; with D;NBy,={x;}, fori=1,...,n. Each
C; is to be oriented in a standard way and suitably connected to the base point X,
so that elements v, ...,v, €7 (N—By,Xy) are determined in a standard way.
If N=S2?, these elements generate T (N—By, Xp), subject only to the rela-
tion y;vy,...v,=1. In any case the set of conjugacy classes of the elements
o(711),...,0(v,) of G (with multiplicities) constitutes the fixed point data for the
action ¢ and depends, up to order, only on the action ¢ and the orientation of M.
Moreover, two actions of G have the same fixed point data if and only their
restrictions to invariant neighborhoods of the singular sets are equivalent.

Define an action of G on a surface M to be indecomposable if it preserves no
family of disjoint, homotopically nontrivial, simple closed curves on M.

(2.1) LEMMA. An action ¢ of G on M is indecomposable if and only if the
orbit space N=M/¢ is S? and the action has at most three singular orbits.

Proof. Suppose the action of G on M is decomposable, and let JC M denote
an invariant family of nontrivial simple loops. We may suppose G acts transi-
tively on the set of components of J. We may further assume G acts freely on J:
the only other possibility is that each component of J consists of two arcs
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connecting points of isotropy group Z,; in this case replace J with the boundary
of a small invariant tubular neighborhood of J. Let w: M — N be the orbit map.
Then = (J) is a single simple closed curve. Suppose N=S2. If G has at most three
singular orbits, then 7 (J) bounds a disk D containing at most 1 branch point. It
follows that each component of 7 ~!(D) is a disk, and, hence, that J is homo-
topically trivial, contradicting the nontriviality of J.

For the converse, suppose that either N S? or M contains more than three
singular orbits. Then in N one can choose a simple loop C which misses the
branch set, and which does not bound a disk containing less than two branch
points. One easily verifies that J=7 ~!(C) is an invariant system of nontrivial
simple loops in M. O

REMARKS. (1) The cases when M/¢=S? with only two singular orbits are
uninteresting. Henceforth an indecomposable action shall be one with exactly
three singular orbits.

(2) The alteration of a decomposable group action given above produces an
action cobordant to the original one. Therefore indecomposable actions generate
the cobordism group O,(G) of G actions on surfaces.

Now let ¢ be an indecomposable G action on M with N=M/¢ homeomorphic
to S% and branch set By={x;,X;,X3]CN. Let C, C,, C; be the small circles
about the branch points as before, with corresponding elements «,,v,,vy3; of
m1(N— By, Xg). As before, we shall refer to the triple (p(v,), 0(7v2), p(73)) of ele-
ments of G as a Hurwitz system for the action ¢. Of course, a given action has
many different Hurwitz systems in general. One easily proves that two indecom-
posable G actions are equivalent by an orientation-preserving equivariant hom-
eomorphism if and only if they have identical Hurwitz systems. From one Hur-
witz system for a given action one can construct all others by altering the given
one by orientation-preserving homeomorphisms of S2 which preserve the set of
branch points and fix the base point.

Recall that two G actions ¢ and ¢ on M are weakly equivalent if there is o €
Aut G such that Y = ¢ (where we view ¢ and ¢ as homomorphisms from G into
Homeo (M)). Similarly ¢ and ¢ have weakly equivalent fixed point data if there
is an automorphism of G taking one set of fixed point data onto the other.

(2.2) PROPOSITION. Let ¢ and { be indecomposable actions of G on a con-
nected surface M with Hurwitz systems (g, &2, &) and (hy, hy, h3), respectively.
Suppose that g; is conjugate to h;, i=1,2,3.

(i) If there is a single element g € G such that gg,-g'l=h,-, i=1,2,3, then ¢ is
equivalent to .
(i) If there is a € Aut G such that a(g;)=h;, i=1,2,3, then ¢ is weakly equiv-
alent to y.
(ili) If the three conjugacy classes represented by g,, g, g3, are distinct, then the
converses of (i) and (ii) hold.

Proof. (i) An isotopy which drags the base point x; around a loop representing
g converts the Hurwitz system for ¢ into that for y. (Such a loop exists since M is
connected.)
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(ii) The condition implies that the Hurwitz system (a(g;), «(g>),a(g3)) for
¢oa is a Hurwitz system for .

(iii) When the three conjugacy classes are distinct, the other Hurwitz systems
for ¢ are obtained by applying an orientation-preserving homeomorphism which
fixes the base point and the three branch points. Such a homeomorphism is iso-
topic to the identity, while fixing the branch set, but perhaps letting the base
point move. See [5; Expos€ 2, §I11], for example. Thus all Hurwitz systems for ¢,
with conjugacy classes in the same order, are of the form (gf, g5, ), £€G; and
all Hurwitz systems for weakly equivalent actions, with the same fixed point
data, are of the form («(g;), a(g>), a(g3)), a € Aut G. O

Now specialize again to the case of a finite split metacychc group G with a
standard presentation of the form

(2.3) (x,y:x"m=yt=1, yxy~l=x")

where r"=1mod m. If X is a collection of elements of G, then (X ) denotes the
subgroup of G generated by X.
/

(2.4) THEOREM. Let G be a finite split metacyclic group with standard
presentation (2.3). Suppose that G={g;, &) ={hy, hy), and g; is conjugate to
h; for i=1,2. Then there is an automorphism o«: G — G such that a(g;)=h;,
i=1,2.

REMARK. We do not know whether o can always be chosen to be an inner
automorphism.

(2.5) COROLLARY. Two indecomposable actions of a finite metacyclic group
G on a connected, closed, oriented surface M are weakly equivalent if and only if
they have weakly equivalent fixed point data.

Proof. Weakly equivalent actions clearly have weakly equivalent fixed point
data. For the converse, let two indecomposable actions of G on M be given with
weakly equivalent Hurwitz systems (g, &>, &3) and (/;, h,, h3), respectively. One
may alter one of these by an automorphism of G and hence assume that g; is con-
jugate to h; for i=1,2,3. Since M is connected, G={g,, &) ={h;, hy). By (2.4)
there is an automorphism «: G — G such that «(g;) =h; and «a(g,) =h,. Then
a(g3) = h;, and the two actions are weakly equivalent. O

Proofof (2.4). By conJugatmg hy, h, we may assume g,=h,. Let g;=x band
&= y so that h,=x°%y 4 for some 1ntegers a, b, c,d,e. We shall seek an auto-
morphism «: G — G such that a(x) =x* and a(y)=x"y. We omit the easy veri-
fication that for each u and v this yields a well-defined homomorphism.

Let o), stand for L¥Z4 r’. Then we require that

au+topv ., b

x4l =a(x%y?)=x"(x'y)’=x y

and
xeyd= O‘,'("(.c'.J',d) =x"u(x”y)d_—_x"“+“dvyd.

In other words we seek simultaneous solutions to the following congruences.
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2.6) | {au+abv—=—amodm

cu+ozv=emod m.

Unfortunately the matrix of coefficientts nged not be invertible in Z,,.
Let xeyd=xsy!(xcyd)y—tx-s=xs+r c—r syd. Then

e—c=(r'=1)c—(r“—1)s mod m.
In particular e—c is divisible by r—1in Z,,.

(2.7) LEMMA. If G={g, h), then the commutator subgroup {G,G] is gen-
erated by the commutator [g, h]=ghg ~'h~\.

Proof. Note that [G,G] = (x""!), since G/(x"~!) is abelian and x"~!=
x Yyxy 1€ [G,G]. Let H=([g, h]) C[G,G] =<{x""y. It follows that H is
normal in G, since any element of G conjugates any element of H to a power of
itself. Then the cosets of g and 4 generate G/H and commute. This implies that
[G,G]CH. O

Now

b d a+rbc—rda——c=xa(l—-rd)—c(l—rb)

[xayb,xcyd] =xaybxcydy— x—ay— —C—yx
By (2.7) there is an integer k such that k[a(l—rd) —c(1=r®)]=1-—rmod m.

We use this to solve the system (2.6). Eliminate « by subtracting c times the first
congruence from a times the second. This yields (aoy;— cap)v=a(e—c) mod m.
Since a,= (1—r?)/(1—r), multiplying both sides by k(1—r), k as above, yields
(1-r)v=k(1—r)a(e—c) mod m. Thus we may set v=ka(e—c). Returning to
the first congruence of (2.6) and substituting for v yields au+opka(e—c)=
a mod m. Therefore we may set u=1+o0,k(c—e).

These values for ¥ and v do indeed satisfy the second congruence of (2.6) as
well, as one can easily verify, using the fact that e—c is divisible by r—11in Z,,.

Finally, since the homomorphism « defined by # and v takes one generating

set for G to another, « is onto, hence an automorphism. 0

It is an intriguing problem in its own right to explore the extent to which ana-
logs of (2.4) hold for other finite groups. The rest of this paper is devoted to one
extension of (2.4) and the construction of a family of limiting counterexamples.

(2.8) THEOREM. Let A, A,, By, B,€SL,(F,), the group of 2X2 matrices of
determinant 1, with entries in the finite field with q elements. Suppose that

1) A,~B,, A,~B,, and A;A,~ B, B,, where ~ denotes conjugacy by an ele-
ment of GL,(F,); and that

2) SLy(Fy)=(A,A2)=(By, By).
Then there is P € GL,(F,) such that PA,P~'=B, and PA,P~'=B,.

As before this implies the following result about actions of SL,(F,).

(2.9) COROLLARY. Any two indecomposable actions of SL,(F¥,;) on a con-
nected, closed, oriented surface are weakly equivalent if and only if they have
weakly equivalent fixed point data. O
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Proof of (2.8). Fix the pair (A, A,) and consider all pairs (B, B;) such that
B,~A,, B,~A,, and B|B,~ A A, and such that { By, B,} generates SL,(F,).

Now GL,(F,) acts by conjugation on such pairs (B, B,) and each orbit con-
tains a pair (B, B,) with B,=A,. Consider the set ® of such pairs (B;, B,) with
By=A,. Then the centralizer C(A,) of A;in GL,(F,) acts on ®. Moreover, since
each { By, B,} is required to generate SL,(F,) it follows that C(A4;)/Z acts freely
on ®, where Z is the center of GL,(F,), which consists of the nonzero scalar
matrices and has order g—1.

Now we shall compute that

g—1 if A,is diagonalizable
|C(A))/Z]|=+ q if A, is triangularizable but not diagonalizable
qg+1 if A;is not triangularizable.

On the other hand we shall show that

g—1 if A,is diagonalizable
|®|<+ ¢q if A, is triangularizable but not diagonalizable
2q if A,is not triangularizable.

Because the action of C(A4)/Z on @ is free, it follows that C(A)/Z acts transi-
tively on @, as required.

First suppose A4, is diagonalizable. We may assume A;= (g lf,)a). Suppose CA;=

A, C. Since (A, A,)=SL,(F,), A, cannot be a scalar matrix. It follows that C
must be diagonal, since it must preserve the eigenspaces of A,. Since det C#0,
there are (g—1)* possible matrices C. But |Z|=g—1. Therefore |C(A4,)/Z|=
q-—1.

To estimate |®| when A;= (g ) we determine the number of matrices C=

(% 2) such that det C=1, tr C=tr A,, tr A, C=tr A; 4, and (A, C)=SL;y(F,).
Let tr A,=¢ and tr A; A,=s. Then these three equations become

xw—yz=1
X+w=t
ax+a 'w=s.

Because A, # +1, a— a ~'#0. Therefore the second two equations may be solved
uniquely, for x and w. The first equation then has (¢ —1) solutions unless xw=1.
But if xw=1, one of y or zis 0; and then C'is triangular and (A4,, C) # SL,(F,).
Thus |®|<g—1, as required.

Next suppose that A, is triangularizable, but not diagonalizable. We may then
assume that A;=+ (é ‘l’), a#0. To determine |C(A;)/Z|, suppose that CA,=

A;C, where det C#0. It follows that C has the form (}”), x#0. Because

0 x

det C0, there are exactly (g —1)qg such matrices. Since |Z|=g—1, |C(A4,)/Z|=
qg.
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To estimate |®| when A= (é ‘l’) , a#0, we determine the number of matrices
C= (’z‘ ﬁ) such that det C#0, trC=trAd,=¢, and trA;C=trA;A, =s, and

(A;, C)=SL,(F,).
These three equations become

xXw—yz=1
X+w=s
X+az+w=t.

The second and third equations imply that z=(¢—s)/a. Let x €F, be arbitrary.
Then the second equation yields w=s—Xx; and the first equation then yields

x(s—x)—y(t—s)/a=1.

This has exactly one solution y in terms of x, provided we show that s f—that is
|®| < g. To see that s#¢, suppose to the contrary that s=¢. Then z=0and both
C and A, are upper triangular, so that {(A4;, C)# SL, (F,), contrary to hypothesis.

Finally suppose A, is not triangularizable. Then A, is conjugate to a matrix of
the form (‘l’ "a'). We may assume A, has this form. Since the characteristic poly-
nomial has no roots in F, it follows that a’—4 is not a square in F,. Suppose
CA;=A,C where C= (’z‘ ;“v) and det C#0. We then find that z=—y and x—ya=
w. Then det C=x(x—ya)+y2. We claim that det C=0 if and only if x=y=0. If
y#0, then x*>— yax+y*=0if and only if A=a’y*—4y?is a square in F,. But A
is a square if and only if a>—4 is; and we assumed a?—4 is not a square. Simi-
larly there are no solutions with x>0. Therefore there are precisely g2>—1 ma-
trices as above. So |C(A)|=g?*—1; and hence |C(A)/Z|=g+1.

As before, we estimate |®| when A4,= (? _a‘), by estimating the number of
matrices C= (’z‘ fv) such that det C=1, tr C=tr A,=¢, and tr A;C=tr A;A,=s.
These three equations become

xw—zy=1
xX+w=t
aw+y—2z=s.

Using the second and third equations to eliminate z and w from the first, we
obtain

—x2taxy—y*+itx+(s—at)y=1.

For each value of x there are 0, 1, or 2 values of y which solve the equation. We
conclude that |®|<2gq. O

REMARKS. (1) In the statement of (2.8) one cannot in general choose P in
SL,(F,), even if the conjugacies in Hypothesis 1) are by elements of SL,(F,).
This is why it is necessary to use the notion of weak equivalence.
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(2) Minor changes in the proof show that the analogue of (2.8) in which
SL,(F,) is replaced by GL,(F,) also holds true. It follows that indecomposable
actions of GL,(F,) are equivalent if and only if they have the same fixed point
data.

(3) If one attempts to carry through the proof of (2.8) with SL,(¥,) replaced
by PSL,(F,), one discovers weakly inequivalent actions of PSL,(F,) with
weakly equivalent fixed point data. See (2.10) and (2.11) for simpler examples of
this phenomenon.

(4) We have learned that the computations in the proof of (2.8) are similar to
ones appearing in [6].

ACKNOWLEDGEMENT. Conversations with John Ewing, and Darrell Haile,
and Ravi Kulkarni were very helpful in working out the preceding results about
SL,(F,).

In conclusion we shall construct some indecomposable actions of symmetric
groups which are inequivalent but have the same fixed point data.

(2.10) PROPOSITION. There exist two inequivalent, indecomposable actions
of the symmetric group S5 on the surface of genus 16, having identical fixed
point data.

Proof. Let BC S?—{x,} be a set of three points. Identify 7, (S?— B, xo) as the
free group on two generators with three-generator presentation {x, y, z: xyz=1).
Define homomorphisms p,, p,: 7,(S2—B, x) = S5 by

pi(x) = (145)(23) p2(x)=(145)(23)
p1(y)=(123) and  p(y)=(124)
p1(2) = (1254) p2(2) = (2543).

Left-to-right multiplication of permutations is understood. One easily checks
that p; and p, are well-defined epimorphisms. Actions ¢, and ¢, are defined by
taking the corresponding regular Ss-branched coverings. The Riemann-Hurwitz
formula says that the two actions are both on the surface M of genus 16. Clearly
the two actions have the same fixed point data. By (2.2) the actions are equiva-
lent if and only if p; and p, are conjugate by an element p of 85. But such an
element pu would have to be a power of (145) times a power of (23), to fix
(145)(23); and such an element cannot conjugate (123) to (124). 0

REMARKS. (1) Since every automorphism of 8;s is inner, the two actions in
(2.10) are not weakly equivalent.

(2) Since H,(S8,; Z)=1Z,, n =4 [3], it is possible that these two actions are dis-
tinguished by cobordism considerations as in [2; §5] for abelian groups. That is,
it is possible that ¢, and ¢, are not cobordant by an action with branch set con-
sisting of three arcs. To eliminate this possibility we make a similar construction
for §4.
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(2.11) PROPOSITION. There exist three indecomposable actions of 8; on a sur-
face of genus 1321, having identical fixed point data, which are not weakly
equivalent to one another. (At least two of these actions are cobordant by a
8;-cobordism with just three branch arcs, since H,(87; Z)=17,.)

Proof. As in (2.10) define three homomorphisms py, p3, 03: T (S2—B, xp) = 87
by

p1(x)=(1234)(567) pa(x)=(1234)(567) p3(x)=(1234)(567)
p1(y)=(1567) > p2(¥)=(1523) , and p3(y)=(1526)
p1(2) =(1675432) p2(2)=(1276543) p3(2) =(1543276).
One argues just as before. O
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