ON ZEROS OF p-ADIC FORMS

D. J. Lewis and Hugh L. Montgomery

1. Introduction. In the 1930’s E. Artin conjectured (see [3, p. x]) that a form F
of degree d in n variables with coefficients in a p-adic field Q, must have a non-
trivial zero in that field if n> d2. He was aware that for each d and each p there
is a form of degree d in d? variables with coefficients in Qp with no nontrivial
p-adic zero; e.g., the reduced norm of a central simple division algebra over Q,,.
As a first step towards Artin’s conjecture, R. Brauer [5] showed that there is a
function ¢, (d) such that if n> ¢,(d), then F has a nontrivial p-adic zero. Ter-
janian [16] disproved Artin’s conjecture by exhibiting a 2-adic quartic form in 18
variables with no nontrivial 2-adic zero; later [17] he gave such an example with
20 variables. Generalizing Terjanian’s construction, Browkin [6] gave counter-
examples for each prime p, but always in fewer than d> variables. Recently
Arhipov and Karacuba [1, 2] greatly improved on this by showing that for each p
there are infinitely many d such that

d
bld)> exp( (log d)2(log log d)° )

By introducing a more efficient principle of p-adic interpolation (Lemma 1), we
sharpen their result slightly.

THEOREM 1. Let p be a given prime and suppose € > 0. For infinitely many d
there is a form F in Z[x,,...,x,] of degree d with

d
i e""( (log d)(loglog d) ¢ )

such that if ay,...,a, €Z and F(a,,...,a,)=0 (mod p%), then a=- - - =a,
0 (mod p).

]

It is not clear how close to best possible the above might be. The upper bound
for ¢,(d) that one obtains from Brauer’s argument is an iterated exponential
which is very much larger than the lower bound we have obtained.

It would be nice to know precisely when ¢,(d) = d?. Meyer [14] found that
¢,(2) =4 for all p. Demyanov {10] and Lewis [13] independently showed that
¢,(3) =9 for all p (for other proofs see Springer [15] and Davenport [9]). Ax
and Kochen [4] and Ersov [11, 12] independently proved there exists a function
Po(d) such that ¢,(d)=d? for all p> p,(d). Cohen [8] demonstrated that it is
possible, at least in principle, to compute an upper bound for py(d). It is
interesting to note that in all the known examples for which ¢,(d) > d? one has
d even, composite and divisible by p—1. Thus it could be that these are the only
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exceptions to ¢,(d)=d", 2. and more particularly that o, (d) =d? when d is a
prime. We note that for addltlve forms of degree d, d*+1 variables suffice to
imply the existence of p-adic zeros.

Our basic lemma yields the following result, which is of independent interest:

THEOREM 2. Suppose that p is an odd prime and that M is a positive integer. Let
N
(D S, =8,(x) = E X

If x1,...,xy are integers, not all divisible by p, and if S(p_1ym =0 (mod p (p=1M)
forM<m<2M then N = p™

A similar result applies when p =2 (see Lemma 3). Arhipov and Karacuba
obtained the weaker bound N > pM/106M] That Theorem 2 is essentially best
possible can be seen from a result of Browkin [7, Lemma 4], which asserts that if
Fy,...,F;are formsinx,;,...,xy of degrees d,,...,d; respectively, then the sys-
tem of congruences Fj(x) =0 (mod p%), 1 <j < J, has a solution with not all the
Xy divisible by p, provided

1
N>—— Y d;(p9—1).
p_l JEI

2. p-adic interpolation. We now establish an elementary result which enables
us to interpolate p-adically the values of a polynomial. If « is a rational number
and a = p*a/b, where (a,p)= (b,p)=1, k € Z, we say orda =k.

LEMMA 1. Let a be an integer and let ny,n,,...,ng be distinct integers such
thata=n;=n,=---=ng (modp). Let f€ Z[z], and suppose that

f(n)=0 (mod p™), k=1,2,...,K.
Then ord f(a) Zmin(K,K—L+M—1) where

K
L = max {ord( II (nj—ny ))}
k j=1
jzk
For our purposes the particular advantage of the above formulation is that L
depends not on the minimum p-adic separation of the n; but rather on an aver-

age of the distance from one n; to the others.

Proof. Define the polynomial h(z) € Q[z] by the relation:

n;)

2 f(z)= Ef( k)H — —+h(z).

j=1 ( ng—n;)

J#Ek .
Let D be the least common denominator of the coefficients of 4 (z). Clearly
ord D < max{0,L —M}. Now Dh(z) lies in Z[z] and is divisible by I1; (z—ny),
so that by Gauss’ lemma D4 (z) =g(z) I1x (z—ny ) with g(z) in Z[z]. We insert
this expression for 4(z) in (2) and put z=a to obtain
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K

(a—n;) g(a)
f(a)-—Z:f(”/c)jHl (e — ) D

H (a—ny).

J#*k
But
n;)
ord(f(nk) 11 ——) 2K—-L+M-1
Jj=1 ( g3 n)
i#k
and
gla)y K .
rd - I (a—ny) ) 2 K—max(0,L— M) =min(K,K— L+ M).
k=1
Thus we have the stated result. | O

On combining this result with the ideas of Arhipov and Karacuba, we obtain

LEMMA 2. Suppose p is an odd prime. Let M be a positive integer, and let I
be a set of K integers in the range [M,2M—1]. Suppose that there are N integers
Xi,...,XN, not all divisible by p, such that

(3) S(p—l)m(x) =0 (mOdp(p—l)M)
for all m in M. Then N > pX.

Proof. If p|x,, then x,, makes no contribution to the congruences (3), and .
thus we may suppose (x,,p) =1 for all n. Let gbe a primitive root (mod p?), so
that g is a primitive root for all powers of p. Write x,, = g% (mod p?~YM) with
0<a, <¢(pP~ VM) Put f(z) =X, z%. (The numbers a, are not necessarily
distinct.) We note that f(1) = N. We shall now apply Lemma 1 to this f(z) with
a=1 to show that N is divisible by a high power of p. We take the n; of Lemma 1
to be the numbers g?~D™ for m € 9. Note that the n; are distinct and all are
congruent to 1 (mod p). By hypothesis f(g®~1P™) =0 (mod p»~PM) for m € M.
Thus, by Lemma 1, ord f(1) 2 min(K,K—L+ (p—1)M—1), where

L = max ord( 11 (g(p_l)’_g(P—l)m)).
meM redn
rZm

But ord(g ?~YS—1) =1+ ords for any natural number s, and hence
ord(g P~V —g@=0my = | L ord(r—m).
However, the product IT,ecqn(r—m) is a factor of (m—M)!(2M—m—1)!,

r#Zm
which in turn is a factor of (M —1)! since the binomial coefficient ( ) is an
integer. Thus L < K—1+ord((M—1)!). But

M-1 * M-—1 M-—1
ord(M—1)!)= ) [ 7 ]< Y = ,
so that
M-—1
K—L+(p—1)M—-12(p—1)M-— 1 >2M =K.

Hence pX| (1) and the proof is complete. 0



86 D. J. LEWIS AND HUGH L. MONTGOMERY

The argument above does not apply to the case p=2, because the group
(Z/2™Z)* is not cyclic when m >3. By making suitable alterations we can
establish

LEMMA 3. Let M be a positive integer, and let I be a set of K integers in the
range [M,2M —1]. Suppose that there are N integers x,...,Xn, not all of them
even, such that Sg, (x) =0 (mod 2M) for all m in M. Then N = 2K,

3. Proofs of the theorems. To obtain Theorem 2 we have only to take K=M
in Lemma 2.

In proving Theorem 1 we restrict our attention to odd primes; the argument
for p =2 is similar. For each natural number r we define a form F, of degree d, in
n, variables with coefficients in Z as follows. Let F, (x) = x{ —ax3 + px} — pax?,
where (ﬁ) = —1. Then d, =2, n, =4, and the congruence F; (z) =0 (mod p?) has
only the trivial solution. For r 2 2, the form F, is defined in terms of F,_;. Let
M=n,_; and N=n,=p™?_1. From the fact that n,_; is even and p is odd it
follows that #, is also an even integer. We then set F, (x) =F,_;(u), where u=
(uy,...,u, _,)and
4) Un =SM+m-1)p-1) (XIS eM-myp-1) (X), 1<sm<M=n,_,.

Thus each u,, is a form of degree (3M—1)(p—1) in n, = N variables, and hence
F, is a form of degree d, = (3M—1)(p—1)d,_; in n, =N=pM/2_] variables,
with coefficients in Z.
We now show that if F,(x) =0 (mod p%) then x=0 (mod p). Since F,_, has
this property, we see that
ordF,_y(u)<d,_1—1+d,_; min {ordu,]}.
lsmsM
But ord F,.(x) 2d, = (3M—-1)(p—1)d,_;, so that ordu,, 2 (BM—1)(p—1) for
1 < m < M. Thus in particular (since M > 2)
(5) Uy =0(mod p? M@=y for 1<m< M.

Let N be the set of those natural numbers of the form M+m—1, with 1<
m < M, such that S(ar4 m—1y(p—1y) =0 (mod p P~DM)_ From (4) and (5) we see that
for each m at least one of the two numbers M +m —1 and 2M —m is in 9. Hence

card 9 > 3 M. Since the number N of variables is smaller than p™/2, it follows
from Lemma 2 that x;=x;,=-.:-=x5=0 (mod p). Hence F, has the desired
property.

We now consider the relative sizes of n, and d,. Since d, = (3n,_1—1) X
(p—1)d,_,, we see that (3p)'n,_n,_,...ny>d,>n,_n,_,...n;. Since n, =
p"r-1"2_1, we observe that n,_; =logn,. Thus if \, is chosen so that

d, = (logn,)(loglog n, ) (log loglog n,)™,
then A, = 1 as r = oo, Hence, for each ¢> 0,

d,
(logd,)(loglogd, ) **

for all sufficiently large r, and the proof is complete. O

logn, >
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Note added in proof: Recently Dale Brownawell established results compar-

able to ours, and Wolfgang Schmidt showed that ¢, (d) < exp(29d!), by refining
Brauer’s method. The papers of these authors will appear in the Journal of
Number Theory.
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