ON CERTAIN CLASSES OF ALMOST PRODUCT STRUCTURES

A. Montesinos

1. Introduction. A. M. Naveira [2] gave a classification of Riemannian almost product structures (M, g, P) attending to the invariances of ∇P under the action of $O(p) \times O(q)$. The essential conditions defining the classes are F (foliation), C_1 (Vidal's), C_2 (minimal), C_3 (umbilical). O. Gil-Medrano [1] gave an interpretation of C_i under the general assumption of integrability.

We first show the transversal nature of the conditions C_i when integrability is assumed. Then, we give a geometric interpretation of these conditions without integrability by expressing them in terms of Lie derivatives.

Condition C_2 turns out to depend only on the volume form induced by g on the distribution $\Im C$. It can be rephrased in terms of the *expansion* of $\Im C$, which in certain sense is dual to the divergence of the complementary distribution $\Im C$, and becomes the *complementary form* of Vaisman [5] when $\Im C$ is integrable.

We see that C_3 can be written as C_1 at each point by a conformal transformation, and give an example. If in addition ∇ is integrable, we have a conformal foliation.

If ∇ is a conformal foliation of codimension $q \ge 3$, S. Nishikawa and H. Sato [3] have proved that $\operatorname{Pont}^k(\mathfrak{IC}; \mathbf{R}) = 0$ in cohomology for k > q, by using Cartan connections and classifying spaces. In a forthcoming paper on the conformal curvature of a conformal foliation we shall give a differential geometric proof of that result for arbitrary q. Another proof with standard techniques, less conceptual but more direct, could be given from Proposition 5.1.

2. General set-up. Let (M, g, P) be a Riemannian almost-product structure, i.e. g is a Riemannian metric on M and P is an (1,1) tensor field such that $P^2 = 1$, g(P, P) = g. Let \mathbb{V} and \mathbb{C} be the *vertical* and *horizontal* distributions, corresponding to the projectors $v = \frac{1}{2}(I+P)$, $h = \frac{1}{2}(I-P)$, and assume dim $\mathbb{V} = p$, dim $\mathbb{C} = q \neq 0$. The capitals $A, B, C, \ldots; X, Y, Z, \ldots; Q, S, T, \ldots$ will denote vector fields that are, respectively, vertical, horizontal and unrestricted. All objects are supposed C^{∞} .

Let ∇ be the Levi-Civita connection and put $\alpha(Q, S, T) = g((\nabla_Q P)S, T)$. Then

(1)
$$\alpha(Q, S, T) = \alpha(Q, T, S) = -\alpha(Q, PS, PT).$$

Let $\{e_u\}$ $(u:p+1,\ldots,p+q)$ denote in the sequel an orthonormal local base of horizontal vector fields. Then the 1-form λ is globally well defined through the local expression $\lambda(Q) = (1/q) \sum_u \alpha(e_u, e_u, Q)$, and it is clear from (1) that $\lambda = \lambda v$.

Received April 22, 1981. Revision received June 31, 1982. Michigan Math. J. 30 (1983).

We say that 3C is:

- i) C_1 , if $\alpha(X, X, A) = 0$ (*Vidal* [6]);
- ii) C_2 , if $\lambda = 0$ (minimal);
- iii) C_3 , if $\alpha(X, X, A) = g(X, X)\lambda(A)$ (umbilical).

Apart from *foliation*, whose interpretation is obvious, these are the essential conditions leading to the Naveira classification [2]. Now, we write them in terms of Lie derivatives.

PROPOSITION 2.1. $\alpha(X, X, A) = (L_A g)(X, X)$, and

$$\lambda(A) = -\frac{2}{q}(L_{e_u}\theta^u)(A),$$

where $\theta^u = g(e_u,)$.

Proof. We have:

$$\alpha(X,X,A) = g((\nabla_X P)X,A) = g(\nabla_X PX,A) - g(P\nabla_X X,A) = -2g(\nabla_X X,A).$$

Since g(X, A) = 0, we get:

$$-2g(\nabla_X X, A) = 2g(X, \nabla_X A) = 2g(X, \nabla_A X) - 2g(X, L_A X) = (L_A g)(X, X).$$

Now

$$\begin{aligned} q\lambda(A) &= \sum_{u} \alpha(e_{u}, e_{u}, A) = \sum_{u} (L_{A}g)(e_{u}, e_{u}) = -2 \sum_{u} g(L_{A}e_{u}, e_{u}) \\ &= 2\theta^{u}(L_{e_{u}}A) = -2(L_{e_{u}}\theta^{u})(A). \end{aligned}$$

COROLLARY 2.2. Conditions C_i are equivalently written

 $C_1: (L_A g)(X, X) = 0$

 C_2 : $(L_{e_u}\theta^u)v=0$

 $C_3: (L_A g)(X, X) = g(X, X)\lambda(A).$

These conditions refer more to the normal bundle ν of $\mathbb V$ than to $3\mathbb C$. This will be clear when $\mathbb V$ is a foliation after the following result.

PROPOSITION 2.3. Let (M, g, P) be a Riemannian almost-product structure with integrable vertical distribution \mathbb{V} , and let \mathfrak{N} be a complementary distribution, i.e. $\mathbb{V} \oplus \mathfrak{N} = TM$. If \mathfrak{K} is respectively C_1, C_2, C_3 , then it is possible to choose a metric g' such that $(M, g', \mathbb{V} \oplus \mathfrak{N})$ is a Riemannian almost-product structure, and that \mathfrak{N} is C_1, C_2, C_3 .

Proof. Let v' and h' be the vertical and horizontal projectors corresponding to $\mathbb{V} \oplus \mathfrak{N}$. We put g'(Q, S) = g(v'Q, v'S) + g(hQ, hS). Then, if g'(Q, Q) = 0, we have hQ = 0, and Q is vertical; hence v'Q = Q, and so Q = 0. Therefore, g' is Riemannian. Also g'(h'Q, v'S) = g(hh'Q, hv'S) = 0; thus g' is adapted to $\mathbb{V} \oplus \mathfrak{N}$. Now, if Z is h'-horizontal and basic (here we need the integrability):

$$(L_A g')(Z, Z) = L_A g'(Z, Z) = L_A g(hZ, hZ) = (L_A g)(hZ, hZ).$$

Then, in the cases C_1 or C_3 :

$$(L_A g')(Z, Z) = g(hZ, hZ)\lambda(A) = g'(Z, Z)\lambda(A),$$

and our claim follows. As for the case C_2 , if $\{e'_u\}$ is an orthonormal base of h'-horizontal vectors, we have $\delta_{uv} = g'(e'_u, e'_v) = g(he'_u, he'_v)$. Hence:

$$\sum_{u} (L_{A} g')(e'_{u}, e'_{u}) = \sum_{u} (L_{A} g)(he'_{u}, he'_{u}) = 0.$$

3. The Vidal condition. The condition C_1 was stated by E. Vidal and E. Vidal-Costa [6] under the form $(D_A g)(X, X) = 0$, where D is the Vaisman connection (see also [5]). Its form as $\alpha(X, X, A) = 0$ is due to A. M. Naveira [2].

Let us give a geometric interpretation. If $m \in M$, for computing $(L_A X)_m$ it is enough to know the values of X upon the integral curve of A by m. Let ϕ_t be the flow of A and $X_m \in \mathcal{C}_m$. Then, $X_t = \phi_{t^*} X_m$ represents the dragging of X_m along the integral curve $\phi_t(m)$. Thus $(L_A X_t)_m = 0$ and $(L_A g(X_t, X_t))_m = (L_A g)(X_m, X_m)$. If C_1 holds, this is zero. Hence, C_1 says that the transport of X_m by means of the flow of A makes the length of X_t stationary at M.

In pictorial terms, the ribbon X_t , whose sides are the integral curves of A passing by the cue and the tip of X_m , twists but not widens at m. The Vidal condition is a generalization of the Reinhart's [4] in the sense that the former drops the integrability of ∇ . A Reinhart space can be viewed as a foliation whose leaves maintain constant distance. Now we have no leaves, but certainly have curves in ∇ (1-leaves in ∇). In this sense, our interpretation generalizes that of the Reinhart structure.

As far as I am aware, there are no examples in the literature of a Riemannian almost-product structure with the condition C_1 only. The following is one. Let $S^3 \subset \mathbb{R}^4$ be parametrized by (x, y, z, w), with $x^2 + y^2 + z^2 + w^2 = 1$, and S^1 parametrized by θ . Let U_1, U_2, U_3 be the parallelization of S^3 given by

$$U_1 = (-y, x, -w, z),$$
 $U_2 = (w, z, -y, -x),$ $U_3 = (-z, w, x, -y).$

We take for $S^3 \times S^1$ the Riemannian structure

$$g = s^1 \otimes s^1 + s^2 \otimes s^2 + s^3 \otimes s^3 + fd\theta \otimes d\theta - (s^1 \otimes d\theta + d\theta \otimes s^1),$$

where f = 4 + wx - yz, and $\{s^i, d\theta\}$ is the dual of $\{U_i, \partial/\partial\theta\}$. We put $\mathcal{V} = \{U_3, U_1 + \partial/\partial\theta\}$, $\mathcal{C} = \{U_1, U_2\}$.

We have $[U_i, U_j] = -2U_k$, $L_{U_i}s^j = -L_{U_j}s^i = -2s^k$ if i, j, k is a cyclic permutation of 1, 2, 3; the remaining Lie derivatives are zero. Hence, neither \mathbb{V} nor \mathbb{K} are foliations. Now, since $U_1(f) = 0$, we have:

$$L_{U_1}g=0$$

$$L_{U_2}g = U_2(f)d\theta \otimes d\theta - (s^3 \otimes d\theta + d\theta \otimes s^3)$$

$$L_{U_3}g = U_3(f)d\theta \otimes d\theta + (s^2 \otimes d\theta + d\theta \otimes s^2)$$

$$L_{\partial/\partial\theta}g=0.$$

Hence $(L_{U_3}g)(X,X) = (L_{U_1+\partial/\partial\theta}g)(X,X) = 0$, for $X \in \mathcal{C}$; thus \mathcal{C} is C_1 . Also, $(L_{U_2}g)(U_3,U_3) = 0$, $(L_{U_2}g)(U_1+\partial/\partial\theta,U_1+\partial/\partial\theta) = U_2(f) \neq 0$. Therefore \mathcal{C} is not C_1 , nor C_2 , nor C_3 .

4. Minimal distributions. Let $\Im C$ be a q-dimensional distribution on M and ω a volume form on $\Im C$, that is a q-form such that $\omega(X_1,\ldots,X_q)\neq 0$ if $\{X_1,\ldots,X_q\}=\Im C_m$ for arbitrary m. Let $\nabla_m=\{Q\in M_m\mid \omega(Q,\cdot)=0\}$. Then, $m\to \nabla_m$ defines a p-dimensional distribution on M such that $\nabla \oplus \Im C=TM$. In other words, the pair $(\Im C,\omega)$ defines an almost-product structure P on M.

Let $\{X_u\}$ $(u:1,\ldots,q)$ be a set of vector fields on $U \subset M$ generating \mathcal{C} on U, and such that $\omega(X_1,\ldots,X_q)=1$ on U. Then, we define the *expansion* of \mathcal{C} with respect to ω , Ex_{ω} , as the 1-form given on U by

$$\operatorname{Ex}_{\omega}(Q) = (L_{vO}\omega)(X_1, \ldots, X_q).$$

It is clear that $\operatorname{Ex}_{\omega}$ is globally well defined. Let $\{\theta^u\}$ $(u:1,\ldots,q)$ be the dual of $\{X_u\}$, i.e. $\theta^u = -\theta^u P$, $\theta^u(X_v) = \delta_v^u$. Then $\operatorname{Ex}_{\omega} = \frac{1}{2}\theta^u L_{X_u} P$. In fact, we have

$$(L_{vQ}\omega)(X_1, ..., X_q) = -\sum_{u} \omega(X_1, ..., L_{vQ}X_u, ..., X_q)$$

$$= -\theta^u(L_{vQ}X_u)\omega(X_1, ..., X_q) = \theta^u(L_{X_u}vQ)$$

$$= (\theta^u L_{X_u}v)(Q) = -(L_{X_u}\theta^u)(vQ) = \frac{1}{2}(\theta^u L_{X_u}P)(Q).$$

COROLLARY 4.1. Let (M, g, P) be a Riemannian almost-product structure. Then \Re is C_2 if and only if $\operatorname{Ex}_{\omega} = 0$, where ω is the volume form induced by g on \Re .

Now, let $\{A_a, X_u\}$ be an adapted frame of P on $U \subset M$ such that

$$\omega(X_1,\ldots,X_q)=1$$

on *U*. Let $\{\alpha^a, \theta^u\}$ be its dual and $\tau = \alpha^1 \wedge \cdots \wedge \alpha^p \wedge \theta^1 \wedge \cdots \wedge \theta^q$. Then:

PROPOSITION 4.2.
$$(A_1 \wedge \cdots \wedge A_p)(\operatorname{Ex}_{\omega},) = v(\operatorname{div}_{\tau}(A_1 \wedge \cdots \wedge A_p)).$$

Proof. We have $L_{A_a}\tau = (\alpha^b([A_b, A_a]) + \theta^u([X_u, A_a]))\tau$, whence

$$\operatorname{div}_{\tau}(A_{1}\wedge\cdots\wedge A_{p})$$

$$=\sum_{a}(-1)^{a+1}\theta^{u}([X_{u},A_{a}])A_{1}\wedge\cdots\wedge\hat{A}_{a}\wedge\cdots\wedge A_{p}$$

$$-\sum_{a\leq b}(-1)^{a+b}\theta^{u}([A_{a},A_{b}])X_{u}\wedge A_{1}\wedge\cdots\wedge\hat{A}_{a}\wedge\cdots\wedge\hat{A}_{b}\wedge\cdots\wedge A_{p}$$

Therefore

$$v(\operatorname{div}_{\tau}(A_1 \wedge \cdots \wedge A_p)) = \sum_{a} (-1)^{a+1} \theta^{u}([X_u, A_a]) A_1 \wedge \cdots \wedge \hat{A}_a \wedge \cdots \wedge A_p.$$

Now

$$(A_1 \wedge \cdots \wedge A_p)(\operatorname{Ex}_{\omega},) = \sum_{a} (-1)^{a+1} \operatorname{Ex}_{\omega}(A_a) A_1 \wedge \cdots \wedge \hat{A}_a \wedge \cdots \wedge A_p,$$

and $\operatorname{Ex}_{\omega}(A_a) = \theta^u([X_u, A_a])$, whence our claim follows.

In this sense, Ex_{ω} is dual to the divergence of V.

The geometric meaning of $\operatorname{Ex}_{\omega}$ is clear. Let $m \in M$ and $X_u \in \operatorname{3C}_m$ be such that $\omega_m(X_1,\ldots,X_q)=1$; thus we have at m a horizontal parallelepiped of unit volume. Take a vertical field A, that is a field transversal to $\operatorname{3C}$ with respect to ω . Drag the parallelepiped along the flow of A, and compute at m the rate of growth of its volume; the result is $\operatorname{Ex}_{\omega}(A)_m$. Thus $\operatorname{3C}$ is minimal, in the sense of stationary volume along vertical directions, if $\operatorname{Ex}_{\omega}=0$.

REMARK. ω is a volume form on the normal bundle ν of \mathbb{V} ; if \mathbb{V} happens to be a foliation, one can do all this after replacing \mathcal{K} by ν , cf. 2.3. Then, $\operatorname{Ex}_{\omega}$ becomes the *complementary form* of Vaisman [5].

5. Conformal foliations. Let 3C be C_3 . Then $(L_A g)(X, X) = g(X, X)\lambda(A)$. If $m \in M$, there is some function f on M such that $2(df)_m = -\lambda_m$. Therefore $(L_A e^{2f}g)(X,X)_m = 0$. In other words, C_1 can be realized at m by a conformal change of g. Hence, the condition C_3 is a conformal invariant (cf. [1]). Thus, the geometric interpretation of C_3 reduces to that of C_1 .

An interesting case arises when ∇ is a foliation.

PROPOSITION 5.1. Let $\Im C$ be C_3 and $\Im C$ a foliation. Then, for each $m \in M$ there is some open neighborhood U of m on which the given Riemannian almost-product structure is conformally Reinhart.

Proof. Let $\{dx^u\}$ be a coordinate base of horizontal 1-forms on U and $\{X_u\}$ its dual base of horizontal vector fields; let ω be the volume form on $\Im C$ and $2qf = \ln \omega (X_1, \ldots, X_q)^2$. We have

$$\lambda(A) = -\frac{2}{q} (L_{e_u} \theta^u)(A),$$

when $\{e_u\}$ is orthonormal; if $e_u = B_u^v X_v$ and $\theta^u = \underline{B}_v^u dx^v$, where the matrix \underline{B}_v^u is the inverse of B_v^u , then we obtain by substitution:

$$q\lambda(A) = -2(\underline{B}_w^u dB_u^w)(A) = -A\left(\ln\left(\det B_u^w\right)^2\right) = -A(2qf).$$
 Hence $(L_A e^{2f}g)(X, X) = 0$ on U .

Then, we have proved that ∇ is a conformal foliation (cf. [3], [5]) if and only if $3\mathbb{C}$ is C_3 . Not every conformal foliation admits a global conformal transformation making it a Reinhart structure, as it is known [3]. The following is another example; it allows to visualize clearly the global obstruction. Let $M = S^1 \times \mathbf{R}$ be parametrized by (θ, x) . Take $g = d\theta \otimes d\theta + dx \otimes dx$, $\nabla = \{\partial/\partial\theta + x\partial/\partial x\}$, $\mathcal{C} = \{-x\partial/\partial\theta + \partial/\partial x\}$. Then \mathcal{C} is trivially C_3 . However, since the leaf l_0 of ∇ at x = 0 is a circle and the nearby leaves approach more and more that circle after whole turns, it is impossible to take a global metric making constant the distance from l_0 to a nearby leaf. In other words, that structure is not Reinhart whatever may be g.

REFERENCES

- 1. O. Gil-Medrano, On the geometric properties of some classes of almost product structures, preprint.
- 2. A. M. Naveira, A classification of Riemannian almost product manifolds, Rend. Mat., to appear.
- 3. S. Nishikawa and H. Sato, *On characteristic classes of Riemannian, conformal, and projective foliations*, J. Math. Soc. Japan 28 (1976), 223–241.
- 4. B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119–132.
- 5. I. Vaisman, Conformal foliations, Kodai Math. J. 2 (1979), 26-37.
- 6. E. Vidal and E. Vidal-Costa, *Special connections and almost foliated metrics*, J. Differential Geometry 8 (1973), 297–304.

Departamento de Geometría y Topología Facultad de Matemáticas Burjasot (Valencia), Spain