ON CERTAIN CLASSES
OF ALMOST PRODUCT STRUCTURES

A. Montesinos

1. Introduction. A. M. Naveira [2] gave a classification of Riemannian almost
product structures (M, g, P) attending to the invariances of VP under the action
of O(p) X O(q). The essential conditions defining the classes are F (foliation),
C, (Vidal’s), C, (minimal), C; (umbilical). O. Gil-Medrano [1] gave an interpre-
tation of C; under the general assumption of integrability.

We first show the transversal nature of the conditions C; when integrability is
assumed. Then, we give a geometric interpretation of these conditions without
integrability by expressing them in terms of Lie derivatives.

Condition C, turns out to depend only on the volume form induced by g on
the distribution JC. It can be rephrased in terms of the expansion of 3C, which in
certain sense is dual to the divergence of the complementary distribution V,
and becomes the complementary form of Vaisman [5] when V is integrable.

We see that C; can be written as C; at each point by a conformal transforma-
tion, and give an example. If in addition V is integrable, we have a conformal
foliation.

If V is a conformal foliation of codimension g > 3, S. Nishikawa and H. Sato
[3] have proved that Pont*(3C; R) = 0 in cohomology for k> g, by using Cartan
connections and classifying spaces. In a forthcoming paper on the conformal
curvature of a conformal foliation we shall give a differential geometric proof of
that result for arbitrary q. Another proof with standard techniques, less concep-
tual but more direct, could be given from Proposition 5.1.

2. General set-up. Let (M, g, P) be a Riemannian almost-product structure,
i.e. g is a Riemannian metric on M and P is an (1,1) tensor field such that
P?2=1, g(P,P)=g. Let V and JC be the vertical and horizontal distributions, cor-
responding to the projectors v=1(I+P), h=1(I-P), and assume dimV = p,
dim JC=¢g#0. Thecapitals 4,B,C,...; X,Y,Z,...; 0,8, T,... will denote vec-
tor fields that are, respectively, vertical, horizontal and unrestricted. All objects
are supposed C*.

Let V be the Levi-Civita connection and put «(Q, S, T) = g((Vo P)S, T) . Then

(1) O{(Q,S, T)=C((Q, T,S)=—O[(Q,PS,PT).

Let {e,} (u:p+1,...,p+q) denote in the sequel an orthonormal local base
of horizontal vector fields. Then the 1-form A is globally well defined through
the local expression N(Q)=(1/q) ¥, «(e,,e,, Q), and it is clear from (1) that
A=Av.
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We say that JC is:

i) C,if a(X,X,A)=0 (Vidal [6));

ii) G,, if A\=0 (minimal);

iil) G, if a(X, X, A)=g(X, X)N(A) (umbilical).

Apart from foliation, whose interpretation is obvious, these are the essential
conditions leading to the Naveira classification [2]. Now, we write them in terms
of Lie derivatives.

PROPOSITION 2.1. a(X, X, A) = (L g)(X, X), and
2
AMA) = —;(Leuﬂ”)(A),

where 0¥ =g(e,, ).
Proof. We have:
a(X, X, A)=g((VxP)X,A)=g(VxPX,A)—g(PVxX,A)=—-2g(VxX,A).
Since g(X,A) =0, we get:
—28(VxX,A)=28(X,VxA)=28(X, V4 X)—-28(X,La X)=(L48)(X, X).
Now

gNA) = Ea(eu,eu,A)= E(LAg)(eu, ey)= _Zzg(LAeu’eu)

u

=20"(L,, A) = —2(L, 6")(A).

COROLLARY 2.2. Conditions C; are equivalently written
C: (Lag)(X,X)=0

Cy: (Le,0")v=0

C3: (La8)(X,X)=g(X,X)N(A).

These conditions refer more to the normal bundle » of V than to JC. This will be
clear when V is a foliation after the following result.

PROPOSITION 2.3. Let (M, g, P) be a Riemannian almost-product structure
with integrable vertical distribution V, and let U be a complementary distribu-
tion, i.e. VO =TM. If IC is respectively C,,C,,C;, then it is possible to
choose a metric g’ such that (M, g’, V@®MN) is a Riemannian almost-product
structure, and that N is Cy, Cy, C;.

Proof. Let v’ and A’ be the vertical and horizontal projectors corresponding to
V@IN. We put g’(0,S)=g(v'Q, v'S)+g(hQ, hS). Then, if g’(0, Q) =0, we
have hQ =0, and Q is vertical; hence v'Q=Q, and so Q=0. Therefore, g’ is
Riemannian. Also g’(h’'Q,v’S)=g(hh’'Q, hv’'S)=0; thus g’ is adapted to
V@ N. Now, if Z is h’-horizontal and basic (here we need the integrability):

(Lag')Z,Z2)=L,8(Z,Z)Y=Lag(hZ,hZ)= (Lag)(hZ,hZ).

Then, in the cases C; or Cj:
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(Lag')(Z,2)=g(hZ,hZ)NA)=g"(Z,Z)\(A),

and our claim follows. As for the case C,, if {e;] is an orthonormal base of
h’-horizontal vectors, we have 6, = g’(e;, e;) = g(he,, he;). Hence:

Y(Lag') (e, e;) =Y (Lag)(he,, he;)=0.

3. The Vidal condition. The condition C,; was stated by E. Vidal and E. Vidal-
Costa [6] under the form (D4 g)(X, X) =0, where D is the Vaisman connection
(see also [5]). Its form as a(X, X, A) =0 is due to A. M. Naveira [2].

Let us give a geometric interpretation. If m € M, for computing (L4 X),,
it is enough to know the values of X upon the integral curve of A by m. Let ¢, be
the flow of A and X, € 3C,,. Then, X, = ¢,+ X,, represents the dragging of X,,
along the integral curve ¢,(m). Thus (L4 X,;),,=0 and (L42(X;, X)) =
(Lg8)( X, X,). If C; holds, this is zero. Hence, C, says that the transport of
X by means of the flow of A makes the length of X, stationary at m.

In pictorial terms, the ribbon X/, whose sides are the integral curves of A pass-
ing by the cue and the tip of X,,,, twists but not widens at m. The Vidal condition
is a generalization of the Reinhart’s [4] in the sense that the former drops the
integrability of V. A Reinhart space can be viewed as a foliation whose leaves
maintain constant distance. Now we have no leaves, but certainly have curves in
V (1-leaves in V). In this sense, our interpretation generalizes that of the Rein-
hart structure.

As far as I am aware, there are no examples in the literature of a Riemannian
almost-product structure with the condition C, only. The following is one. Let
S3 C R* be parametrized by (x, y, z, w), with x2 4 y?2+z>+w?=1, and S! param-
etrized by 0. Let U;, U,, U; be the parallelization of S3 given by

Ul=(_yax, _W,Z), U2=(W,Z, ) "X), U3=(—Z,W,x,—y).
We take for S3 x S! the Riemannian structure
g=5s'Rs'+52R5%2+ s> R} + fdORdO— (s' RdO+dORs"),
where f=4+wx—yz, and {s’,d0) is the dual of {U;, 8/90}. We put V=
{U3,U1+8/69},JC={U1,U2}. ] )

We have [U;, U;] = —2Uy, LU‘_sf = —LUjs‘= —2s*if i, j, k is a cyclic permu-
tation of 1, 2, 3; the remaining Lie derivatives are zero. Hence, neither V nor JC
are foliations. Now, since U, (f) =0, we have:

LU1g=O

Ly,g=U,()d0®db6— (s> ®db+di®s?)

Ly,g=Us(f)dO0®db+ (s> ®dO+ dO®s?)

Ljysa08=0.

Hence (LU3g)(X,X) =(Ly, +a/008)(X, X) =0, for X € 3JC; thus JCis C,. Also,
(Ly,8)(U;,U3)=0, (Ly,8) (U, +03/380, U, +3/30) = U, (f) # 0. Therefore V is
not C;, nor C,, nor Cj.
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4. Minimal distributions. Let JC be a g-dimensional distribution on M
and w a volume form on JC, that is a g-form such that w(X,,...,X,;)#0 if
{Xi,...,X,} =3, for arbitrary m. Let V,,={Q €M, |w(Q, )=0}. Then,
m — Y, defines a p-dimensional distribution on M such that V@ IC=7TM. In
other words, the pair (JC, w) defines an almost-product structure P on M.

Let {X,]} (u:1,...,q) be aset of vector fields on U C M generating 3C on U,
and such that w(X},...,X;) =1 on U. Then, we define the expansion of 3C with
respect to w, Ex,,, as the 1-form given on U by

Ex,(Q) = (Lva)(Xl:-- -9Xq)-

It is clear that Ex,, is globally well defined. Let {#“} (u:1,...,q) be the dual
of {X,],i.e. 0%¥=—-0P, 8%(X,)=46,. Then Ex, = %()“LX"P. In fact, we have

(Lva)(Xls“-an):_Ew(Xl,---vaQXus“-sXq)
u

= —0"(Lyg X, )o(X1,. .., Xq) =0"(Lx, vQ)
= (0"Lx v}(Q) = —(Lx,0")(vQ)=3(8"Lx P)(Q).

COROLLARY 4.1. Let (M, g, P) be a Riemannian almost-product structure.
Then 3C is C, if and only if Ex, =0, where w is the volume form induced by g
on 3C.

Now, let {A,, X, } be an adapted frame of P on U C M such that
W( Xy, Xq) =1
on U. Let {«? 60"} be its dual and 7=a!A- - -AaPAO'A- - -A09. Then:

PROPOSITION 4.2. (A A---ANAp)(EX,, )=v(div, (A A---AAp)).

Proof. We have LAaT= (ab([Ab,Aa])+0“([Xu,Aa])).,, whence
diVT(Al/\' . '/\Ap)
= E (_1)a+10u([XusAa])A1/\' . '/\AAa/\- . 'AAp
a

— ¥ (=)0 ([Ag, Ap DXy AAA- - NAGA- - - ANAA- - NA,

a<b

Therefore
v(div, (A A AAL)) = 5 (=10 X,, A DAIA - - NAN- - NA,.
a
Now

(AN AR (EXy, )= E (=D HEx (A A A - NG+ NA,
a

and Ex,(A4,) =0"([X,,A.]), whence our claim follows. a
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In this sense, Ex,, is dual to the divergence of V.

The geometric meaning of Ex,, is clear. Let m € M and X,, € 3C,,, be such that
wn(Xy,...,Xz)=1; thus we have at m a horizontal parallelepiped of unit
volume. Take a vertical field A, that is a field transversal to JC with respect to w.
Drag the parallelepiped along the flow of A, and compute at m the rate of
growth of its volume; the result is Ex(A),,. Thus JC is minimal, in the sense of
stationary volume along vertical directions, if Ex, =0.

REMARK. w is a volume form on the normal bundle v of V; if ¥V happens to
be a foliation, one can do all this after replacing 3C by », cf. 2.3. Then, Ex,
becomes the complementary form of Vaisman [5].

S. Conformal foliations. Let 3C be C;. Then (L4g)(X, X)=g(X, X)N(A).If
m € M, there is some function f on M such that 2(df),, = —\,,. Therefore
(LAezfg)(X,X)m =0. In other words, C, can be realized at m by a conformal
change of g. Hence, the condition Cj is a conformal invariant (cf. [1]). Thus, the
geometric interpretation of C; reduces to that of C;.

An interesting case arises when V is a foliation.

PROPOSITION 5.1. Let 3C be Cs and V a foliation. Then, for each m € M there
is some open neighborhood U of m on which the given Riemannian almost-
product structure is conformally Reinhart.

Proof. Let {dx"} be a coordinate base of horizontal 1-forms on U and {X,}
its dual base of horizontal vector fields; let @ be the volume form on 3C and
2¢f=Inw(X,,...,X,;)* We have

2
>\(A)=—;1—(Leu9")(/l),

when {e, } is orthonormal; if e, =B, X, and 6% = B/dx", where the matrix BY
is the inverse of B}/, then we obtain by substitution:

gMA) = —2(BydB,/)(A) = —A(In(det B))?) = —A(2qf).
Hence (LAezfg)(X,X) =0on U. O

Then, we have proved that V is a conformal foliation (cf. [3], [5]) if and only
if 3C is C;. Not every conformal foliation admits a global conformal transforma-
tion making it a Reinhart structure, as it is known [3]. The following is another
example; it allows to visualize clearly the global obstruction. Let M =S' xR be
parametrized by (6,x). Take g=d0QRd0+dxRdx, V=[(3/30+x3/dx}, 3=
{—x03/00+0/0x}. Then JC is trivially C;. However, since the leaf /[, of Vat x=0
is a circle and the nearby leaves approach more and more that circle after whole
turns, it is impossible to take a global metric making constant the distance from
/o to a nearby leaf. In other words, that structure is not Reinhart whatever may
be g.



36 A. MONTESINOS

REFERENCES

1. O. Gil-Medrano, On the geometric properties of some classes of almost product struc-
tures, preprint.

2. A. M. Naveira, A classification of Riemannian almost product manifolds, Rend.
Mat., to appear.

3. S. Nishikawa and H. Sato, On characteristic classes of Riemannian, conformal, and
projective foliations, J. Math. Soc. Japan 28 (1976), 223-241.

4. B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959),

119-132.

1. Vaisman, Conformal foliations, Kodai Math. J. 2 (1979), 26-37.

6. E. Vidal and E. Vidal-Costa, Special connections and almost foliated metrics, J. Dif-
ferential Geometry 8 (1973), 297-304.

(]

Departamento de Geometria y Topologia
Facultad de Matematicas
Burjasot (Valencia), Spain



