SMALL FRACTIONAL PARTS OF THE SEQUENCE an®

R. C. Baker

1. INTRODUCTION

Let % be a natural number, £ = 2, and let K = 2*~*, Denote by ||...|| the distance
to the nearest integer. Let N > ¢, (k,€) where € > 0, then

1) min [jan®|| < N~0/0*<
1sn=N

for any real a. This was proved by Heilbronn [5] for 2 = 2 and extended tok =3
by Danicic [2]. For extensions of (1) see W. M. Schmidt [6] and R. C. Baker
[1]. Schmidt shows [6] that —(1/K) + € can be replaced in (1) by the sharper
exponent —1/(8%%log & + 4k® log log k + 11.2 k®) for k= 14 and N > c, (k).

It follows from (1) that
(2) lan®| < n= /B +e

for infinitely many natural numbers n. The exponent —(1/K) + € in (2) can be
replaced by —(1/L), where L = (8k(log 2 + 1) log (klog 2 + 1)) /log k. This is a
special case of a theorem of I. M. Vinogradov [8, Chapter V]. However, it is
by no means clear from Vinogradov’s argument that —(1/K) + e can be replaced
by —(1/L) in (1).

In the present note, I show that for any real «,

(3) min |lan®|| < N~®/2
l=n=N

for 2 =9 and N > ¢,(k). This is sharper than (1). The method of proof is adapted
from Chapters IV and V of [8]. For 2 < £ =< 8 the method of Heilbronn and Danicic
is still the most effective.

All small Latin letters (except e and 2) denote integers, and p denotes a prime

variable. We write e(z) = e and 6 = 1 — (1 / k). Constants implied by ‘<<’ depend
at most on the quantities %, & and e.

2. PERMISSIBLE EXPONENTS

Let A,, ..., A, be real positiv‘e numbers, 1 = \, = A\, = ... = \,. Suppose that the
number of solutions of

4) mxt+ .+ mxr=myt+ .+ m,
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satisfying
(5) PM < x,y, < 2P, ..., P <, y, < 2P
is at most
(6) Co(BNgyer N pp€) PPN ME JImy L my|

whenever € >0, P=1, 0= logM <<log P, and m,, ..., m, are nonzero integers
in [-M,M]. Then we say that \,, ..., A, are permissible exponents for kth powers.

Note that permissible exponents are (in particular) admissible exponents in
the sense of [3], [4].

THEOREM. Let\,,...,\, be permissible exponents.

Suppose further that A=\ + ...+ N\, =(k—1)>0. Then for ¢>0, N>
cs (B, 1,.. A €) and any real o, we have

. — -1
min ||ank||<N (A/(4h +20+Ak ))+e.
1=n=N

We require two lemmas.

LEMMA 1. Let 0<A<1/2 and let r be a natural number. Then there is
a function {(2) of period one on the real line, having

@) () =0  forlef = 4,

(ii) Y(2) = —A+ D y(m) e (m2),
m#0

where

(7) |v(m)| < cg (r) min (A,A™"m ™",

Proof. This is a consequence of Lemma 12 of [8, Chapter I].
LEMMA 2. LetR,Q > 1. Let a be real and suppose that

(8) la—a/ql=q7'R7%, (a,q) =1, where1 =< g < R".
Let ¢, (|n| < @) be complex numbers. Then

b, e (anp®)

|n|<@Q R/4<p<R/2

1/2
<<(Rq™" + )¢’ ( > |¢,.|2) (@'* + "% min (R*/*,¢""%).

In|<Q

Proof. This is a variant of Lemma 2 of [7]; see also Lemma 2 of [8], Chapter
Iv.
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Proof of the Theorem. We may suppose that € is small as a function of
RyNy, ...\, . Let N> cg(k\j,..., A €). We define

A= N—(A/(4h+2o+Ak-1))+e
and we suppose that

) lan®|=A  (n=1,..,N).

We shall ultimately obtain a contradiction.
Let ¢, = ¢/(5k). We write M = [A~""*?] and
R= N1/2M1/(2k) P= NI/ZM_I/(Zk).
Then R > P > 1. (It is an easy consequence of the hypotheses of the theorem that
A=1,and so A>N"Y“") Let r= [2h/€,] + 1. Let §(2) be as in Lemma 1 and
define Y, (z) = ¥ (2) + A. Since RP = N, we have {,, ( pkxf ) = A whenever

1 1 .
:R<p<-2—R, PY < x; < 2PM.

Consequently, S;(p) > APY/2 (R/4 <p <R/2,j=1,...,h), where

Si(p)= D, dolop*s)).

P)‘J<xj<2P}‘j
h
Let H = Z H S;(p). Since R is large, we have
R/4<p<R/2 j=1
(10) .H> AhP)\1+...+Ah Rl—il.

On the other hand, we have

S;(p) = z vy (m;) 2 elop® m;x}),

m;#0 Ph<xj<2PN
so that
(11) H= .. vy(m)...y(m,) Tm,,..,m,),
mj #0 my#0
where
Tmy..om) = D, > > elapt(muat+ ..+ m,af)).

R/4<p<R/2 PM<x;<2PM PMh<xp<2PM
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It is clear that

(12) |T(m,,...,m,)| < RP M+,

From (7),

(13) > lvem) <<1,

and

(14) > yim)] << (AM) << A,
|m|=>M

It follows from (12), (13) and (14) that the contribution to the sum in (11) from

those sets m,, ..., m,, for which any of |m,|, ..., |m,| exceeds M, has modulus
<< A** RPM***n We deduce from (10), (11) that

(15) > D vmy) oy (my) Timy,..my)| > A" PR

o<|my|=M o<|mpy|=M

By Dirichlet’s theorem there is a natural number ¢ < R* satisfying (8). If ¢ < R,
then [lag”|| = ¢* 'llag] = R* " ~* < A, which contradicts (9). Thus we may suppose
that ¢ > R.

We rewrite T'(m,,...,m,) in the form

(16) T(mymy) = D > baelanph,

R/4<p<R/2 |n|<<MPk

where ¢, is the number of sets x,, ..., x, satisfying m,x%* + ... + m, x% = n. Thus
2 |<1)n|2 is the number of solutions of (4) satisfying (5). Since A\, ..., \, are

permissible exponents and N is large, we have
(17) 2 |¢n|2 < Pk1+...+)\h+€1 Mh/lml...mhl.

In view of (16) and (17), we deduce from Lemma 2 that

T(ml,---,mh) << (Rq—l + l)qel(Pz\1+...+)\h+eth)l/2 M1/2Pk/ZRI/2/|ml.”mh 1/2

<< RU/D+2key prin+1)/2 P(k+}“+"'ﬂ")/2/|m1...mh|1/2.
Summing over m,, ... m,, we obtain
(18) Do D Ivmy)y (my) TOmy,.om,)|

o<|my|=M o<|mp|=M
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h
<< M®PV/2 pO/2+3ke; plRAN+...tnp)/2 ( 2 |'Y (m)|m—1/2) )

o<|m|=M
We see from (7) that
(19) > WmmTr<<A D mTVE<<AMYE << MY
o<|m|=M 0<|m|=M
Combining (15), (18) and (19), we obtain

Ah Phl+...+)\h Rl—el <<M1/2 R(1/2)+3kel P(k+A1+...+Ah)/2'

Thus

Ah+(1/2)—(2-—A)/4k << 1\1-—(A/4)+4kzl

This contradicts the definition of A, and the theorem is proved.

3. Proof of the Inequality (3). Let \; = /"' (j=1,..,h). Then X\, ...,\, are
permissible exponents for k-th powers. The proof is straightforward—the case
m, >0, ..., m, > 0is contained in Lemma 1 of [8], Chapter V. Now in the notation
of the theorem,

(21) A=1-k0"
Thus it suffices to show that there is a natural number A satisfying

1 — ko" 2

> .
4h + 20+ AR L

We take % to be the least integer for which k26" <1/(log £ + 1), or in other
words

log (Rlogk + &
LTI
—log 6

Write v = 1/k. Since —log 6 > v/(1 — (v/2)), we have
h<k(l-—-(w/2)]log(klogk+ k) + 1.
Thus

A 1 - k06"
>
4h + 20+ AR™Y 4RI — (v/2)]log (klogk + k) + 6

- log &
4k(logk + 1)(1 — (v/2)) log (R log k + k) + 3v/2).
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The proof is completed on noting that log (% log & + 2) = log (9 log 9 + 9) > 3.
We outline the proof of a slightly stronger result. Let

k?—0"° EP—k-1

}\=1, A = ] )\ = b
! 2 R 4 ph—Rer® LIy S ¥ Lo

and let \; = A;0°72(j = 4,...,h). By a straightforward extension of Lemma 3 of
R. C. Vaughan [7], we can show that \,, ..., A\, are permissible exponents for
k-th powers. Now we have

R®—3k*+R+2\ , .
A=1_k k3+k2_k29h——3 e

instead of (21). For example, we obtain min [ax?] < N7'/'*° for N > ¢, by taking

l=n=N

h = 31. Further improvement is perhaps possible by adapting Theorem 2 of [3].
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