SMALL FRACTIONAL PARTS OF THE SEQUENCE αn^k

R. C. Baker

1. INTRODUCTION

Let k be a natural number, $k \ge 2$, and let $K = 2^{k-1}$. Denote by $\|...\|$ the distance to the nearest integer. Let $N > c_1(k,\epsilon)$ where $\epsilon > 0$, then

(1)
$$\min_{1 \le n \le N} \|\alpha n^k\| < N^{-(1/K) + \epsilon}$$

for any real α . This was proved by Heilbronn [5] for k=2 and extended to $k\geq 3$ by Danicic [2]. For extensions of (1) see W. M. Schmidt [6] and R. C. Baker [1]. Schmidt shows [6] that $-(1/K) + \epsilon$ can be replaced in (1) by the sharper exponent $-1/(8k^2 \log k + 4k^2 \log \log k + 11.2 k^2)$ for $k\geq 14$ and $N>c_2(k)$.

It follows from (1) that

$$\|\alpha n^k\| < n^{-(1/K)+\epsilon}$$

for infinitely many natural numbers n. The exponent $-(1/K) + \epsilon$ in (2) can be replaced by -(1/L), where $L = (8k(\log k + 1)\log (k\log k + 1))/\log k$. This is a special case of a theorem of I. M. Vinogradov [8, Chapter V]. However, it is by no means clear from Vinogradov's argument that $-(1/K) + \epsilon$ can be replaced by -(1/L) in (1).

In the present note, I show that for any real α ,

(3)
$$\min_{1 \le n \le N} \|\alpha n^k\| < N^{-(2/L)}$$

for $k \ge 9$ and $N > c_3(k)$. This is sharper than (1). The method of proof is adapted from Chapters IV and V of [8]. For $2 \le k \le 8$ the method of Heilbronn and Danicic is still the most effective.

All small Latin letters (except e and z) denote integers, and p denotes a prime variable. We write $e(z) = e^{2\pi i z}$ and $\theta = 1 - (1/k)$. Constants implied by '<<' depend at most on the quantities k, h and ϵ .

2. PERMISSIBLE EXPONENTS

Let $\lambda_1, ..., \lambda_h$ be real positive numbers, $1 \ge \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_h$. Suppose that the number of solutions of

(4)
$$m_1 x_1^k + \ldots + m_h x_h^k = m_1 y_1^k + \ldots + m_h y_h^k,$$

Received March 25, 1980.

Michigan Math. J. 28 (1981).

satisfying

(5)
$$P^{\lambda_1} < x_1, y_1 < 2P^{\lambda_1}, ..., P^{\lambda_h} < x_h, y_h < 2P^{\lambda_h},$$

is at most

(6)
$$c_4(k,\lambda_1,\ldots,\lambda_h,\epsilon) P^{\lambda_1+\ldots+\lambda_h+\epsilon} M^h/|m_1\ldots m_h|$$

whenever $\epsilon > 0$, $P \ge 1$, $0 \le \log M < < \log P$, and $m_1, ..., m_h$ are nonzero integers in [-M,M]. Then we say that $\lambda_1, ..., \lambda_h$ are permissible exponents for kth powers.

Note that permissible exponents are (in particular) admissible exponents in the sense of [3], [4].

THEOREM. Let $\lambda_1, ..., \lambda_h$ be permissible exponents.

Suppose further that $\Lambda = \lambda_1 + ... + \lambda_h - (k-1) > 0$. Then for $\epsilon > 0$, $N > c_5(k,\lambda_1,...,\lambda_h,\epsilon)$ and any real α , we have

$$\min_{1 \le n \le N} \|\alpha n^k\| < N^{-(\Lambda/(4h+2\theta+\Lambda k^{-1}))+\epsilon}.$$

We require two lemmas.

LEMMA 1. Let $0 < \Delta < 1/2$ and let r be a natural number. Then there is a function $\psi(z)$ of period one on the real line, having

(i)
$$\psi(z) = 0 \quad \text{for } ||z|| \ge \Delta,$$

(ii)
$$\psi(z) = -\Delta + \sum_{m \neq 0} \gamma(m) \ e(mz),$$

where

$$|\gamma(m)| < c_6(r) \min (\Delta, \Delta^{-r} m^{-r-1}).$$

Proof. This is a consequence of Lemma 12 of [8, Chapter I].

LEMMA 2. Let R, Q > 1. Let α be real and suppose that

(8)
$$|\alpha - \alpha/q| \le q^{-1}R^{-k}$$
, $(\alpha,q) = 1$, where $1 \le q \le R^k$.

Let $\phi_n(|n| < Q)$ be complex numbers. Then

$$\sum_{|n| < Q} \sum_{R/4 < p < R/2} \phi_n \, e \, (\alpha n p^k)$$

$$<< (Rq^{-1} + 1)q^{\epsilon} \left(\sum_{i=1}^{n} |\phi_n|^2 \right)^{1/2} (Q^{1/2} + q^{1/2}) \min (R^{1/2}, q^{1/2}).$$

Proof. This is a variant of Lemma 2 of [7]; see also Lemma 2 of [8], Chapter IV.

Proof of the Theorem. We may suppose that ϵ is small as a function of $k, \lambda_1, ..., \lambda_h$. Let $N > c_6(k, \lambda_1, ..., \lambda_h, \epsilon)$. We define

$$\Delta = N^{-(\Lambda/(4h+2\theta+\Lambda k^{-1}))+\epsilon}$$

and we suppose that

(9)
$$\|\alpha n^k\| \geq \Delta \qquad (n=1,...,N).$$

We shall ultimately obtain a contradiction.

Let $\epsilon_1 = \epsilon/(5k)$. We write $M = [\Delta^{-(1+\epsilon_1)}]$ and

$$R = N^{1/2} M^{1/(2k)}, \qquad P = N^{1/2} M^{-1/(2k)}.$$

Then R > P > 1. (It is an easy consequence of the hypotheses of the theorem that $\Lambda \le 1$, and so $\Delta > N^{-1/(4h)}$). Let $r = [2h/\epsilon_1] + 1$. Let $\psi(z)$ be as in Lemma 1 and define $\psi_0(z) = \psi(z) + \Delta$. Since RP = N, we have $\psi_0(p^k x_i^k) = \Delta$ whenever

$$\frac{1}{4}R$$

Consequently, $S_j(p) > \Delta P^{\lambda_j}/2$ (R/4 , where

$$S_j(p) = \sum_{P^{\lambda_j} < x_j < 2P^{\lambda_j}} \psi_0(\alpha p^k x_j^k).$$

Let $H = \sum_{R/4 . Since <math>R$ is large, we have

(10)
$$H > \Delta^h P^{\lambda_1 + \ldots + \lambda_h} R^{1 - \epsilon_1}.$$

On the other hand, we have

$$S_{j}(p) = \sum_{m_{j}\neq 0} \gamma(m_{j}) \sum_{P^{\lambda_{j} < x_{i} < 2P^{\lambda_{j}}} e(\alpha p^{k} m_{j} x_{j}^{k}),$$

so that

(11)
$$H = \sum_{m_1 \neq 0} \dots \sum_{m_h \neq 0} \gamma(m_1) \dots \gamma(m_h) T(m_1, \dots, m_h),$$

where

$$T(m_1,...,m_h) = \sum_{R/4$$

It is clear that

$$|T(m_1,...,m_h)| < RP^{\lambda_1 + ... + \lambda_h}.$$

From (7),

(13)
$$\sum_{m} |\gamma(m)| << 1,$$

and

(14)
$$\sum_{|m|>M} |\gamma(m)| << (\Delta M)^{-r} << \Delta^{2h}.$$

It follows from (12), (13) and (14) that the contribution to the sum in (11) from those sets $m_1, ..., m_h$, for which any of $|m_1|, ..., |m_h|$ exceeds M, has modulus $<<\Delta^{2h} RP^{\lambda_1+...+\lambda_h}$. We deduce from (10), (11) that

$$(15) \quad \sum_{0 < |m_1| \le M} \dots \sum_{0 < |m_k| \le M} |\gamma(m_1) \dots \gamma(m_h) T(m_1, \dots, m_h)| > \Delta^h P^{\lambda_1 + \dots + \lambda_h} R^{1 - \epsilon_1}.$$

By Dirichlet's theorem there is a natural number $q \leq R^k$ satisfying (8). If $q \leq R$, then $\|\alpha q^k\| \leq q^{k-1} \|\alpha q\| \leq R^{(k-1)-k} < \Delta$, which contradicts (9). Thus we may suppose that q > R.

We rewrite $T(m_1,...,m_h)$ in the form

(16)
$$T(m_1,...,m_h) = \sum_{R/4$$

where ϕ_n is the number of sets $x_1, ..., x_h$ satisfying $m_1 x_1^k + ... + m_h x_h^k = n$. Thus $\sum_n |\phi_n|^2$ is the number of solutions of (4) satisfying (5). Since $\lambda_1, ..., \lambda_h$ are permissible exponents and N is large, we have

(17)
$$\sum_{n} |\phi_{n}|^{2} \leq P^{\lambda_{1}+\ldots+\lambda_{h}+\epsilon_{1}} M^{h}/|m_{1}\ldots m_{h}|.$$

In view of (16) and (17), we deduce from Lemma 2 that

$$\begin{split} T(m_1,\ldots,m_h) << (Rq^{-1}+1)q^{\epsilon_1}(P^{\lambda_1+\ldots+\lambda_h+\epsilon_1}M^h)^{1/2}M^{1/2}P^{k/2}R^{1/2}/|m_1\ldots m_h|^{1/2}\\ << R^{(1/2)+2k\epsilon_1}M^{(h+1)/2}P^{(k+\lambda_1+\ldots+\lambda_h)/2}/|m_1\ldots m_h|^{1/2}. \end{split}$$

Summing over $m_1, \dots m_h$, we obtain

(18)
$$\sum_{0 < |m_1| \le M} \dots \sum_{0 < |m_h| \le M} |\gamma(m_1) \dots \gamma(m_h) T(m_1, \dots, m_h)|$$

$$<< M^{(h+1)/2} R^{(1/2)+3h\epsilon_1} P^{(h+\lambda_1+...+\lambda_h)/2} \left(\sum_{0<|m|\leq M} |\gamma(m)| m^{-1/2} \right)^h.$$

We see from (7) that

(19)
$$\sum_{0 < |m| \le M} |\gamma(m)| m^{-1/2} << \Delta \sum_{0 < |m| \le M} m^{-1/2} << \Delta M^{1/2} << M^{-(1/2) + 2\epsilon_1}.$$

Combining (15), (18) and (19), we obtain

$$\Delta^{h} P^{\lambda_{1} + \dots + \lambda_{h}} R^{1 - \epsilon_{1}} << M^{1/2} R^{(1/2) + 3k\epsilon_{1}} P^{(k + \lambda_{1} + \dots + \lambda_{h})/2}$$

Thus

$$\Delta^{h+(1/2)-(2-\Lambda)/4k} << N^{-(\Lambda/4)+4k\epsilon_1}.$$

This contradicts the definition of Δ , and the theorem is proved.

3. Proof of the Inequality (3). Let $\lambda_j = \theta^{j-1}$ (j = 1,...,h). Then $\lambda_1, ..., \lambda_h$ are permissible exponents for k-th powers. The proof is straightforward—the case $m_1 > 0, ..., m_h > 0$ is contained in Lemma 1 of [8], Chapter V. Now in the notation of the theorem,

$$\Lambda = 1 - k \, \theta^h.$$

Thus it suffices to show that there is a natural number h satisfying

$$\frac{1-k\theta^h}{4h+2\theta+\Lambda k^{-1}}>\frac{2}{L}.$$

We take h to be the least integer for which $k \theta^h < 1/(\log k + 1)$, or in other words

$$h = \left[\frac{\log (k \log k + k)}{-\log \theta} + 1\right].$$

Write $\nu = 1/k$. Since $-\log \theta > \nu/(1 - (\nu/2))$, we have

$$h < k(1 - (\nu/2)) \log (k \log k + k) + 1.$$

Thus

$$\frac{\Lambda}{4h + 2\theta + \Lambda k^{-1}} > \frac{1 - k\theta^{h}}{4k(1 - (\nu/2))\log(k\log k + k) + 6}$$
$$> \frac{\log k}{4k(\log k + 1)((1 - (\nu/2))\log(k\log k + k) + 3\nu/2).}$$

The proof is completed on noting that $\log (k \log k + k) \ge \log (9 \log 9 + 9) > 3$.

We outline the proof of a slightly stronger result. Let

$$\lambda_1 = 1, \qquad \lambda_2 = \frac{k^2 - \theta^{h-3}}{k^2 + k - k \theta^{h-3}}, \qquad \lambda_3 = \frac{k^2 - k - 1}{k^2 + k - k \theta^{h-3}},$$

and let $\lambda_j = \lambda_3 \theta^{j-3}$ (j = 4,...,h). By a straightforward extension of Lemma 3 of R. C. Vaughan [7], we can show that $\lambda_1, ..., \lambda_h$ are permissible exponents for k-th powers. Now we have

$$\Lambda = 1 - k \left(\frac{k^3 - 3k^2 + k + 2}{k^3 + k^2 - k^2 \theta^{h-3}} \right) \theta^{h-3}$$

instead of (21). For example, we obtain $\min_{1 \le n \le N} \|\alpha x^9\| < N^{-1/159}$ for $N > c_6$, by taking h = 31. Further improvement is perhaps possible by adapting Theorem 2 of [3].

REFERENCES

- 1. R. C. Baker, *Recent results on fractional parts of polynomials*. Number Theory, Carbondale 1979, pp. 10-18, Lecture Notes in Math., Vol. 751, Springer, Berlin 1979.
- 2. I. Danicic, Ph.D. thesis, London 1957.
- 3. H. Davenport, On sums of positive integral k-th powers. Proc. Royal Soc. A 1070 (1939), 293-299.
- 4. H. Davenport and P. Erdös, On sums of positive integral k-th powers, Ann. of Math. 40 (1939), 533-536.
- 5. H. Heilbronn, On the distribution of the sequence $n^2\theta$ (mod 1). Quart. J. Math. Oxford (1), 19 (1948), 249-256.
- 6. W. M. Schmidt, Small fractional parts of polynomials. Regional Conference Series in Math., No. 32, Amer. Math. Soc., Providence, R.I., 1977.
- 7. R. C. Vaughan, Homogeneous additive equations and Waring's problem. Acta Arith. 33 (1977), no. 3, 231-253.
- 8. I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Interscience, London, 1954.

Royal Holloway College Egham Surrey.