COMPLEX HOMOGENEOUS MANIFOLDS WITH TWO ENDS

Bruce Gilligan and Alan T. Huckleberry

INTRODUCTION

Given a topological space, one may ask if it admits the structure of a topological
group. This is not always possible for there are certain conditions that must be
satisfied. For example its fundamental group must be abelian. In investigating
conditions of this kind, Freudenthal considered the notion of end of a topological
space, where intuitively an end is a “hole at infinity” of the given space (for
the definition see section 1). He showed that a connected topological group which
is locally connected, locally compact and second countable has at most two ends
[10, Satz 15]. In the case of Lie groups one can see this directly by using the
Iwasawa decomposition. And in particular the Iwasawa decomposition shows that
a connected Lie group G has two ends precisely if it is homeomorphic to K X R,
where K is a maximal compact subgroup of G.

Instead of considering the action of a given topological group G on its underlying
topological space, one may consider its action as a topological transformation group
on various other topological spaces X. Often it is assumed that such an action
is either discontinuous or else transitive and under each of these assumptions
there are results known concerning the number of ends that X may have. For
example Hopf showed that a necessary condition for a noncompact topological
space X to admit a discontinuous group G of homeomorphisms having a compact
fundamental set, i.e. a compact subset whose transforms under G cover X, is
that X has either one or two or a Cantor set of ends [13].

If a Lie group G acts transitively on a smooth manifold, then it is well known
that the homogeneous manifold X is diffeomorphic to the coset space G/H, where
H:={g € G:gx,=x,} is a closed subgroup of G called the isotropy subgroup
of G at the point x, € X. For homogeneous spaces of a (real) Lie group, Borel
showed that if H is connected then G/H has at most two ends [5]. Further, such
a G/ Hhastwo ends precisely if it is homeomorphicto K /L X R, where K (respectively
L) is a maximal compact subgroup of G (respectively of H, contained in K). If
H has finitely many connected components, then the same results also hold (see
section 1). As well Borel gave a class of examples of homogeneous manifolds having
more than two ends. The existence of such examples points out that the situation
can become quite complicated if one drops the assumption that the isotropy subgroup
has finitely many connected components.

The Iwasawa decomposition for Lie groups and Borel’s theorem for homogeneous
manifolds with connected isotropy describe fopologically the structure of such spaces

Received February 28, 1980.
The first author’s research was partially supported by NSERC Grant No. A-3494. The
second author’s research was partially supported by NSF Grant No. 75.07086.

Michigan Math. J. 28 (1981).

183



184 BRUCE GILLIGAN and ALAN T. HUCKLEBERRY

having two ends. Under additional hypotheses one expects that a sharper classifica-
tion ought to be possible. Indeed, this is so!. For example, Ahiezer [1] considered
algebraic varieties G/H, where G is a linear algebraic group over C and H is
an algebraic subgroup. As H has only a finite number of connected components,
Borel’s theorem implies G/H has at most two ends. Ahiezer proved that G/H
has two ends precisely if it has a homogeneous fibration with fiber C* and base
a rational, i.e. precisely if H is the kernel of a non-trivial character ¢:P— C*,
where P is a parabolic subgroup of G. By a homogeneous fibration of G/H we
mean the fibration given by G/H — G/J, where ¢J is some closed subgroup of
G containing H. As well Hosrovjan [14] has characterized those spaces G/H with
two ends, where G is a complex semisimple Lie group and H is a closed connected
complex subgroup, in terms of a root system of the Lie algebra of G.

In this note we consider complex homogeneous manifolds, i.e. coset spaces G/ H
where G is a complex analytic Lie group and H is a closed complex subgroup.
For H having a finite number of connected components, we determine the structure,
as complex homogeneous manifolds, of such G/H having two ends. The basic
philosophy is to exhibit the two ends by showing the existence of a complex
homogeneous fibration having C* either as fiber or as base.

The complex structure of the Lie group plays a significant role, for the main
technique consists of using certain homogeneous fibrations which exist in the
complex case, e.g. the Steinizer fibration [21] and the normalizer fibration [32],
[6]. However, in order to be able to apply any fibration to the problem at hand,
one needs to know that if the total space of the fibration has two ends, then
either its fiber is compact and its base has two ends, or else its base is compact
and its fiber has two ends. This is false in general. But in the cases that we
consider here, such a “Fibration lemma” follows either from the Iwasawa decomposi-
tion or else from Borel’s theorem. Using this Fibration lemma, we obtain the
following structure theorem:

Suppose G is a connected complex Lie group and H is a closed complex subgroup
with a finite number of connected components such that G/H has two ends. Then
there exist closed complex subgroups I and J of G, with J containing I containing
H, suchthat G/Jis a homogeneous rational manifold and the homogeneous fibrations
G/H— G/I— G/dJ realize G/H either as a C*-bundle over a torus bundle over
G/dJ or else as a torus bundle over a C*-bundle over G /.

Adding the ends to a topological space yields a compactification of that space.
But this compactification may not admit any natural complex structure. As we
are interested in complex Lie group actions, this is not very satisfactory in the
present setting. Instead, given a complex homogeneous space X := G/ H, we would
like to find a compact complex analytic space X, together with a holomorphic
action of G on X, such that this action has an open orbit biholomorphic to X.
Such a space X is called an almost homogeneous space relative to the group G
and it is well known that X\ X is an analytic subvariety of X (see [26]).

Now C* has P! as its natural compactification and in the above structure theorem
one has fibrations involving compact manifolds as well as C*. Thus one might
expect that one can always find an almost homogeneous manifold compactifying
such G/ H. Certainly if the C*-bundle is “on top,” i.e. if G/ H — G /I is the C *-bundle
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in the above structure theorem, then the associated P'-bundle does the job. If
the torus bundle is “on top,” then the situation is not so clear. For, there do
exist nontrivial elliptic curve bundles over C*, e.g. certain complex solv-manifolds
(see [8]), which are not compactifiable as almost homogeneous manifolds. If one
could interchange the torus and C* fibrations, then as before, one has the associated
P'-bundle. Now we show that in the fiber over each point of G/J one can do
this. Namely, the typical fiber J/H of the fibration G/H — G/J is biholomorphic
to the product of C* and the torus. But we give an example of a complex homogeneous
space X having two ends and a connected isotropy subgroup where the torus bundle
is “on top” but where no interchange is possible in the category of complex
homogeneous manifolds, i.e. we show that one cannot realize X as a homogeneous
C*bundle X = G/H— G/I for the (effective) action of any complex Lie group
G. The question of finding an almost homogeneous compactification in some other
way lies beyond the scope of the present paper and will not be considered.

This note is organized as follows. In the first section we recall some of the
basic facts about ends and develop some of the tools needed later. We show in
the second section that if a connected complex Lie group has two ends, then it
is abelian and may be realized as a C*-bundle over a torus (Theorem 1). In the
third section we consider complex homogeneous manifolds G/H having two ends,
assuming H has a finite number of connected components, and prove the structure
theorem quoted above (Theorem 4). Also we note that if such a space is holomorphi-
cally separable then the torus part drops out and the space may be realized as
a homogeneous cone in some C" (Theorem 2). In the fourth section we present
an example and show that the homogeneous interchange of the torus and C*
fibrations in the structure theorem is not possible in this case. Finally in the
fifth section we point out that, for every integer k > 2, there exists a discrete
subgroup I', of SL(2,C) such that SL(2,C)/I", has & ends. These examples are
quite similar to Borel’s (see [5]), except that they are complex.

1. PRELIMINARIES

In this section we note some of the properties concerning ends which we use
later. We begin by recalling the definition (e.g. [10]).

Definition. Let X be a connected topological space. Consider the family #
of sequences {U, } , <y such that

1. U, is an open, connected subset of X with nonempty, compact boundary
2.U,,,C U, foreveryn €N
3. MU.=9

neN

In # we introduce the equivalence relation ~ given by: {U,} ~ {V,,} if and
only if for everym € N there existsn € N suchthat U, C V,,.The set of equivalence
classes #/ ~ are the ends of X.

This definition is rather cumbersome. Also it is not entirely obvious that the
relation introduced in the definition is symmetric (see [10, Satz 2, p. 695]). These
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criticisms aside, the definition does make precise the intuitive notion of “holes
at infinity.” It may help the reader to visualize an end as such a “hole at infinity”
together with some representative sequence {U,,} defining that end. As an example,
the two ends of C* are represented by the two sequences of complements of expanding
annuli, e.g. the complements of A, := {z € C:1/n =< |z| = n}. From this example
one also sees the role that the equivalence relation plays. For it is clearly irrelevant,
as far as the ends are concerned, that the annuli have circles as boundaries.

The following proposition, observed as a footnote by Serre [29, p. 59], points
out that only in complex dimension one can a Stein manifold have more than
one end. For domains of holomorphy in C” this is obvious.

PROPOSITION. LetX be a Stein manifold withdim X > 1. Then X has precisely
one end.

Proof. Since X is Stein, for p > n:= dim¢X one has H,(X) = 0 (e.g. see [12,
p. 156]). In particular H,, ,(X) =0 since n > 1. But if X had more than one
end, H,,_, (X)) would necessarily be nonzero. For there would then be (2n — 1)-cycles
which would not be boundaries, e.g. any compact hypersurface approximating the
boundary of one of the open sets in an “ends sequence.”

Remark. One can also see this by noting that every n-dimensional Stein
manifold X contains a real n-dimensional closed CW-complex which is a strong
deformation retract of X[12, p. 156].

The following Corollary plays a central role in our investigation of complex
homogeneous manifolds with two ends.

COROLLARY. Any complex homogeneous manifold which is Stein and has
more than one end is biholomorphic to C*.

We recall the result of Borel describing the structure of homogeneous manifolds
having connected isotropy. In the following X ~ Y denotes that the topological
spaces X and Y are homeomorphic.

THEOREM. [5, Théoreme 2]. Let H be a closed connected subgroup of the
connected Lie group G, K and L be maximal compact subgroups of G and H
such that K O L, and s and t be integers such that G ~ K X R° and H ~ L X R".
Then s = t and one of the following holds:

0) s =t, K operates transitively on G/H and G/H ~ K /L is compact.

1) s>t+ 1 and G/H has one end.
2) s=t+1, G/H~ K/L X R and has two ends.

In section three we shall consider homogeneous spaces G/H with two ends,
when H has a finite number of connected components. It turns out that we would
like to consider G/H?° as well and one wants to know that it has two ends whenever
G/H does. The fibration G/H®— G/H is a finite covering map. But in general,
finite coverings do not preserve the number of ends. For example, the Moebius
band has one end and admits, as a double covering, the cylinder S* X [0,1] which
has two ends. But this quotient is given by a homogeneous fibration of real Lie
groups. Further examples are provided by the complex homogeneous spaces given
in section five. However in the case in which we are presently interested, the
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number of ends is preserved. We are grateful to D. N. Ahiezer for pointing out
an error in an earlier version of this proposition.

PROPOSITION 1. Suppose G is a connected complex Lie group and H is a
closed complex subgroup having finitely many connected components. Then G/H
and G/H® have the same number of ends.

Proof. Let K (respectively L) be a maximal compact subgroup of G (respectively
of H, contained in K). Then one has the covariant fibration of Mostow [23],
i.e., G/H is diffeomorphic to a real vector bundle over K/L by a K-equivariant
map. Thus G/H has at most two ends. As well using Borel’s theorem we have
that G/H° has at most two ends. Since G/H is compact if and only if G/H®
is, in order to complete the proof it suffices to consider the case when G/H®
has two ends. In this case, the K-orbits in both G/H® and G/H are all real
hypersurfaces, and Mostow’s fibration theorem allows one to identify these spaces
with the normal bundles of appropriately chosen K-orbits, 3° and 3 respectively
(also see [25]). In fact in the former case, this bundle is trivial [5], and thus
we may assume that X° lies over 3: 3° = K/L°— K/L = 3. It is enough to show
that 3, is orientable, because using this along with the orientation of the ambient
complex manifold G/ H we obtain a trivialization of the normal bundle of 3. Therefore
it is enough to show that L/L° acts on 2° as a group of orientation preserving
transformations. For this we note that the orientation « for the complex manifold
G/H® can be split along 2° o = v A 7, where v is a nonvanishing K-equivariant
section of the normal bundle of 3° and t is an orientation on 3°. Since K acts
holomorphically on G/H, the elements 2 € K are orientation preserving. Thus
for all 2 € K, one has k,{(w) = f ' o, where f is a positive smooth function. Since
v is K-invariant, it follows that &, (t) = f - 7 (i.e., K is orientation preserving on
3°). Thus L/L° preserves the orientation defined by .

The following is needed to be able to use homogeneous fibrations in the study
of ends.

FIBRATION LEMMA. Suppose G is a connected complex Lie group and<J and
H are closed complex subgroups with H C J. Suppose J/H is connected, H has
a finite number of connected components and G/H has two ends. Then either
G/J is compact and J/H has two ends or else G/J has two ends and J/H is
compact.

Proof. Choose Iwasawa decompositions G~ K X R°, J°~L X R’ and
H°® ~ M x R*, where MC L C K and s= t= u. Since G/H has two ends, G/H°
does as well and Borel’s theorem implies u = s+ 1. Thus t=s or { = s + 1. The
result for G/J° and J°/H?® follows at once by using Borel’s theorem again. To
complete the proof, we only have to observe that J° acts transitively on J/H
and apply Proposition 1 to the finite covering J°/H®— J°/J° N H.

In passing we note that solv-manifolds also have at most two ends. This follows
from the fact that any solv-manifold can be realized as a vector bundle over a
compact solv-manifold (see [24] or [2]).

Later we shall be concerned with the possibility of “interchanging” tori and
C* in certain homogeneous fibrations. Of course this is not always possible. For
there exist examples of two dimensional complex solv-manifolds which are nontrivial
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elliptic curve bundles over C* [8]. But for complex solv-manifolds with connected
isotropy and for complex Lie groups we do have such an “interchange.”

PROPOSITION 2. Let G be a connected complex Lie group and J and H be
closed complex subgroups with J containing H. Suppose J/H is biholomorphic to

a complex torus T and G/J is biholomorphic to C*. Further suppose that either
of the following holds:

a) G is solvable and H is connected.
b) H is a normal subgroup of G.
Then G/H is biholomorphic to the product C* X T.

Proof. a) Since G is solvable, the structure theorem of Chevalley [7] yields
the existence of a central compact subgroup A of G, where A = A/w,(G), A being
a central vector subgroup of the universal covering group of G containing m, (G).
Letting = denote the Lie algebra of A, we obtain a closed complex subgroup B
of G corresponding to the complex Lie algebra z + i-. Note that B is also central.

We claim that B acts transitively on G/H. Since G/J = C* and (Aut C*)° = C*¥,
J is a normal subgroup of G. Hence the orbit map, say ¢:G— G/J, is a group
homomorphism. Since H and J/H are connected by assumption, ¢/ is as well. Using
the exact homotopy sequence of the fibration G — G/J, we see that =, (G) maps
onto w,(G/J). Thus ¥ (B) contains a generator for w, (G/J). Since B is central
and ¢ is a homomorphism, it follows that ¥ (B) = G/J. Now consider the orbit
map ¢:G—> G/H. If 0 :G/H— G /J denotes the bundle projection, then ¢ = oo .
From above it follows that the action of B is transitive on the set of fibers of
o. In order to complete the proof that B acts transitively on G/H, we have only
to show that B N J acts transitively on J/H. But this follows in much the same
way as before. For, as H is connected, from the exact homotopy sequence of the
fibration J— J/H we get the fact that w,(J) maps onto w,(J/H). Also from the
exact homotopy sequence of the fibration G— G/J = C* we get that m, (J) maps
injectively into w,(G). Thus ¢ (B N J) contains generators for w,(J/H). Since
J/H=T and (Aut T)° =T, we have that |, is a group homomorphism. This
together with the fact that J N B is central imply that ¢ (B N J) =J/H. Thus
the abelian group B acts transitively on G/H. Hence G/H is biholomorphic to
an abelian complex Lie group and since rank ¢(G/H) = 1, this group is the direct
product C* X T (e.g. [22, Theorem 3.2]).

b) Without loss of generality we may assume that G/H = G, i.e. H = (e). Clearly
J = T is the Steinizer of G and is thus central [21]. As G/T is abelian, G’ is
contained in 7. Therefore G is nilpotent, hence solvable, and we may apply a).
Thus G is biholomorphic to C* X T.

We now describe the normalizer fibration of a complex homogeneous manifold.
For a given complex homogeneous space G/H, the Lie algebra # of H is a vector
subspace of the Lie algebra z of G and may thus be considered as a point
in the Grassmann manifold G,, of k-planes in n-space, where k:=dimcH
and n:=dim.G. For g€ G, ad(g) acts holomorphically on G,, where
ad:G— Hom( ¢, £) is the adjoint representation of (. The orbit of this action
can be canonically identified with G/N, where N := N,(H®), the normalizer in
G of the connected component of the identity H° of H. Since one always has
H C N, one has the so-called normalizer fibration G/H — G/ N.
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PROPOSITION 3. Suppose G is a connected complex Lie group acting on P"
and X := G/H is an orbit. Suppose I is a connected normal complex subgroup
of G and V is an I-stable algebraic variety in P" whose intersection &/:= VN X
is nonempty and minimal. Then {g«/ :g € G} is a G-equivariant partition of G/ H.
Moreover, there exists a closed complex subgroup J of G, containing H and I, such
that the partition {g«/:g € G} is precisely the partition of G/H given by the
homogeneous fibration G/H— G/J.

Proof. Fix g € G and let &/’ := g N & Since I is a normal subgroup of G,
for any & € I, one has 2’ := g 'hg € I. Thus

he' =hgod N he =gh'/ Nhod =g/ NAL =’

and ./’ is I-invariant. Because of the minimality - of &4 either &/’ = or
&' =@. Thus g NF=Q or g/ = Thus {g/:g € G} is a G-equivariant
partition since for any g,, g, € G, one has

g, 4N g, &+ P ifandonlyifg;' g, &N A#QD
if and only if g; ' g,/ =&
if and only if g, & = g,

A remark of Remmert and van de Ven [27, p. 144] verifies that the stabilizer
J in G of & is a closed complex subgroup, containing H and I, such that the
fibration G/H— G/J yields the same partition of G/H as the partition
{g7:g € G}

Remark. Thesame results also hold for any minimal I-invariant analytic subset
of an arbitrary complex homogeneous manifold, the proof being the same as in
Proposition 3.

PROPOSITION 4. Suppose G is a connected complex Lie group acting linearly
on P" and X := G/H is an orbit. If G=S- R is a Levi-Malcev decomposition of
G, then any minimal R-invariant algebraic set o/ in X is holomorphically sepa-
rable. Moreover, if G/H — G/J is the homogeneous fibration realizing the partition
{go:g € G}, then G/J may be written as S/ L, where L is an algebraic subgroup
of S.

Proof. Since G is acting linearly on P”, there exists an R-invariant flag
P"=L,DL, ,D..L,={p},where dim;L, = k.If &/is any minimal R-invariant
algebraic set in X and & N L, # @ for any k, then &/ C L,. Hence there exists
k such that .« C L,\ L, _,. Since L,\L,_, is holomorphically separable, so is .2

Suppose &= X N V where V is an R-stable algebraic variety in P". Then
I:=Stabgp,,1.¢)(V) is an algebraic group. But J := Stab (%) =I N G and con-
tains R. Thus S acts transitively on G/J with isotropy SN J=SNI=:L, an
algebraic subgroup. :

2. COMPLEX LIE GROUPS

Freudenthal [10, Satz 15] showed that a connected topological group which
is locally compact, locally connected and second countable has at most two ends.
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For Lie groups one can see this using the E. Cartan-Malcev-Iwasawa decomposition
(see [19]): Every connected Lie group is homeomorphic to the direct product of
a maximal compact subgroup and a Euclidean space. Thus a connected Lie group
has two ends precisely if a maximal compact subgroup has real codimension one.
In this section we point out that a complex Lie group has two ends only if it
is abelian and is a C*-bundle over a torus. Clearly this is false for real Lie groups.

LEMMA 1. Let T be a discrete subgroup of rank 2n — 1 of the vector group
C”. Then C" /T is a C*-bundle over a compact complex torus.

Proof. Since I' has rank 2n — 1, without loss of generality we may write
I'= {e,,...,e,,V;,...,U,_, ), Where e; is the i-th standard basis vector of C" and
{e;,...,e,,Vy,...,U,_, } is linearly independent over R. Let

RZ7™ = (€e1,..,€,,VU15--yUp_1 Jm
be the real vector subspace of C" spanned by I'. Since
v;=Rev; + i Imy; and Rev, € (e,,...,e, )
for 1 =j=n—1, it is clear that the maximal complex vector subspace of RZ*™*
can be written as Ci ':= (Imv,,...,Imv, ,).. Further we may assume that
e, £Cr7*, ie. {e,,Im v,,...,Im v,_,} is a basis of C" over C. With respect

to this basis, the i-th column in the following matrix represents the i-th generator
of I (in the order e,, ..., e,, Uy, ..., U,_1):

1 ap G o @, by by by |
0 ay @y ... @y byt Do ‘ bop_1
9 Qge Gz - Qg b_31 b32.+ i b37_1
|0 @ @, ... a, b,: b, o by 1|
where a;, b; € R. Note that the (n — 1) X (n — 1) matrix (a;), 2= i,j=n, is

non-singular since it has the same determinant as the n X n matrix expressing
the set of linearly independent vectors {e,,...,e,} in terms of the given basis
(expansion by cofactors!). Thus the columns of the matrix (a;), 2=<1i,j=n, are
linearly independent. It thus follows that if V:= (e,)s, then V+T is a closed
complex subgroup of C". Hence the fibration C*/I'— C"/V + T realizes C* /T as
a bundle with fiber V/I' N V= C* and base C"/V + I, a compact complex torus
of complex dimension n — 1.

THEOREM 1. Let G be a connected complex Lie group with two ends. Then
G is abelian and there is a complex torus T such that one of the following holds:

a) 7(G) =C and G is a topologically trivial C*-bundle over T, such that no
power of the associated line bundle is holomorphically trivial.

b) rank Z(G) =1and G=C* X T.

Proof. First suppose &(G) = C. Then, as is well-known, G is abelian and
G =C"/T,, where I', is a lattice in the vector group C" of rank k, n <k =2n
[21]. Since C"/T, is homeomorphic to (S*)* X R**7*, G has two ends precisely if
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k=2n—1. Lemma 1 shows how to realize G as a C*-bundle over a torus T.
Also it is well known that such bundles are topologically trivial but no power
of the associated line bundle is holomorphically trivial (e.g. [15, Theorem 7]).

Now if @(G) # C, then there exists a connected closed central complex subgroup
G, of G, the Steinizer of G, such that G/G, is Stein and &¢(G,) = C [21]. Since
G has two ends, one sees, either by using the Fibration lemma or directly from
the Iwasawa decomposition, that G, is compact and thus a central torus and that
G/ G, has two ends. Thus by the Corollary to the Footnote of Serre, G/G, = C*.
By Proposition 2 we have that G = C* X T and G is abelian in this case as well.
Clearly rank Z(G) = 1.

3. THE MAIN STRUCTURE THEOREM

In this section we determine the structure of complex homogeneous manifolds
G/ H with two ends, when H has a finite number of connected components. Before
turning to the general case, we first consider such spaces which satisfy the maximal
rank condition.

Definition. Let X be a complex manifold. Two points p and ¢ in X are defined
to be equivalent if f(p) = f(q) for every fE€ &(X). The codimension of an
equivalence class at x € X is called rank, @#(X) and we say that X satisfies the
maximal rank condition if rank, &(X) = dim; X for some x € X.

THEOREM 2. Suppose G is a connected complex Lie group and H is a closed
complex subgroup with finitely many connected components such that G/H has
two ends and satisfies the maximal rank condition. Then there exists a closed
complex subgroup J of G, containing H, such that the homogeneous fibration
G/H — G/dJ realizes G/ H as a C*-bundle over the rational manifold G/J.

Proof. Consider the Mostow covariant fibration [23] X := G/H — K /L, where
K (respectively L) is a maximal compact subgroup of G (respectively H, contained
in K). Since X has two ends and is orientable, the K-orbits in G/H are all real
analytic hypersurfaces. Let M be the zero section. Then the elements of K are
biholomorphisms of X which leave M invariant and thus the Levi form of M
has the same signature at every point of M. We claim that because G/ H satisfies
the maximal rank condition, it follows that the Levi form of M is (positive) definite
at every point of M. For, if the Levi form of M had any zero eigenvalues, then
M would be foliated by positive dimensional complex submanifolds (see [30] or
[9]). But M is compact and has analytic dimension equal to the complex dimension
of X. One knows [15, Theorem 2] that in this setting X does not satisfy the
maximal rank condition. This contradiction rules out the existence of zero eigenval-
ues.

As well the Levi form of M cannot have eigenvalues of opposite sign. For
suppose that it would have. Then a small deformation of M does not change the
sign of any of the eigenvalues. Since M is compact we can deform M into a
hypersurface M’ which still has a Levi form having eigenvalues of opposite sign
at every point. But then X is a pseudoconcave manifold since the relatively compact
open set between M and M’ has at least one negative eigenvalue of its Levi
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form at each of its boundary points. Then (X)) = C, contradicting the assumption
that X satisfies the maximal rank condition.

Thus M is a strongly pseudoconvex homogeneous hypersurface in the sense
of Rossi [28]. Rossi showed in this setting that G/H is a C*-bundle over a
homogeneous projective algebraic manifold. In fact, using the results of [17] one
can explicitly realize G/H as a linear cone in some C".

Remark. It is now obvious that any G/H which has two ends and satisfies
the maximal rank condition, where H has finitely many connected components,
has an envelope of holomorphy. Just add the vertex to the cone! As far as we
know it is still an open question whether every holomorphically separable complex
homogeneous manifold has an envelope of holomorphy.

THEOREM 3. (Ahiezer [1]). Suppose G is a linear algebraic group over C
and H is an algebraic subgroup such that G/H has two ends. Then there exists
a parabolic subgroup P of G, containing H, such that the homogeneous fibration
G/H — G/P realizes G/H as a C*-bundle over the homogeneous rational manifold
G/P.

Proof. Assume G=S-R is a Levi-Malcev decomposition of G. Since G is
algebraic, so is R and thus the R-orbits in G/H are closed. Hence there is a
homogeneous fibration G /H — G /RH with connected fiber, since R acts transitively
on that fiber. Clearly G/RH = S/L for some algebraic subgroup L of S. If S/L
is Stein (precisely if L is reductive [20]) then the Fibration lemma implies that
S/L has two ends and thus is C* and that the fiber is compact. But then the
fiber must be trivial since R acts transitively on it. Thus G/H = C*.

Now suppose S/L is not Stein and so L is not reductive. Then there exists
a parabolic subgroup P such that L G P G S. The method of constructing such a

P is well known, so we only remind the reader of how it goes. Let U be the
unipotent radical of the connected component of the identity of L, i.e. U:= R, (L°).
Since L is not reductive, U # (e). Then set N,:= N,;(U), U,:=U - R,(N,) and
inductively define N, := N,(U,_,), U,:= U,_, - R,(N,). Since unipotent radicals
are connected and G is finite-dimensional, these two sequences stabilize, i.e.
U,=U,,,=..and N,=N,,, = ... for some k. Then P:= N, is the desired para-
bolic subgroup (e.g., see [18, Section 30.3] for more details). Now since R acts triv-
ially on G/RH, the fibration G/RH =S/L— S/P is G-equivariant and thus
one has a fibration G/H— G/RH — G/J := S/P. Since S/P is rational and thus
compact, the Fibration lemma implies J/H has two ends. Proceeding by in-
duction, we may assume the existence of a fibration J/H — J/I, where I/H=C*
and J/I is rational. But then G/H— G/I is the fibration we want, since
G/I— G/J is a rational bundle over a rational and thus G/ is also rational.

THEOREM 4. Suppose G is a connected complex Lie group and H is a closed
complex subgroup with a finite number of connected components such that G/H
has two ends. Then there exist closed complex subgroups I and J of G, with J
containing I containing H, such that G/J is a homogeneous rational manifold
and the homogeneous fibrations G/H— G/I— G/J realize G/H either as a
C*-bundle over a torus bundle over G/J or else as a torus bundle over a C*-bundle
over G/J.
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Proof. We consider the normalizer fibration G/H— G/N. If G/N is compact,
then N is connected and G/ N is a homogeneous rational manifold (Borel-Remmert
[6, Satz 7]). Now by Proposition 1, G/H?® has two ends. Applying the Fibration
lemma to the fibration G/ H° — G/ N, we conclude that its fiber N/ H°is a connected
complex Lie group with two ends. Thus by Theorem 1, N/H? is abelian and hence
H/H® is normal in N/H°. Using the Iwasawa decomposition, we see that N/H
has two ends. Thus by Theorem 1 again, N/H is a C*-bundle over a torus.

Next suppose G/ N is not compact. In this case N is not necessarily connected.
However, if we denote by N the set of connected components of N which meet
H, then N is a closed complex subgroup of G having only finitely many connected
components. Clearly G/ N is not compact for it covers G/N. Also N/ H is a connected
complex torus since N°/H® as a compact complex Lie group is a torus. By the
Fibration lemma G/N has two ends.

We claim that there exists a closed complex subgroup J of G, containing N,
such that J/N is C* and G/J is rational. To prove this we distinguish three
cases. First if G/ N satisfies the maximal rank condition, then Theorem 2 provides
us with the appropriate /. Second if the semisimple part S of G in some Levi-Malcev
decomposition G =S R acts transitively on G/N, then S also acts transitively
on G/N. Thus we may write G/N as S/L, where L:=SN N. Let L:=Sn N.
Since S is acting via the adjoint representation as an algebraic group on S/L
and L is the stabilizer of an algebraic set, namely a point, it follows that L is
an algebraic subgroup of S (see [26, Satz 1.3.6]). Thus L has a finite number
of connected components and thus L does too. Since S/Lhas two ends, by Proposition
1 it follows that S/L also has two ends. Hence there exists a closed complex
subgroup P of S containing L such that S/L — S/P is a C*-bundle over a rational
(see [1] or Theorem 3). Thus we have a C*-bundle G/N = S/L— S/P, but we
still need to find a G-equivariant fibration. We get this by noting that S/L is
Zariski-open in its closure X on which G acts. Taking stabilizers we see that
the algebraic hull of G acts on S/L and we may apply the result of Ahiezer
to this group (which contains G'!).

The remaining case occurs when the semisimple part S of G in any Levi-Malcev
decomposition G = S - R does not act transitively on G/N and G/N does not satisfy
the maximal rank condition. Then G/N also does not satisfy the maximal rank
condition. As well the radical R of G acts nontrivially on G/N and thus on G/N.
Now consider any minimal R-invariant algebraic set .« in G/N. Clearly such &/
exist, since G/N itself is an R-invariant algebraic set. And by Proposition 4 .o
is holomorphically separable, thus 0 < dim .2/ < dim G/ N. By Proposition 3 there
exists a closed complex subgroup J of G, containing N and R, such that the fibers
of G/N— G/J are precisely the sets of the partition {go :g € G}. Let J be
the subgroup consisting of those (finitely many) connected components of J which
meet N. Applying the Fibration lemma to G/ N— G/dJ, we see that G/J is compact
and J /N has two ends. Thus G/J is compact and since by Proposition4 G/J = S/L
is the quotient of algebraic groups, G/dJ is rational. Thus J is connected, J=dJ
and J/N has two ends. Also J/N satisfies the maximal rank condition since it
covers J/N. By Theorem 2 there exists a closed complex subgroup I of J, containing
N, such that J/N— J/I is a C*bundle over a rational. Thus I is the subgroup
we want because I/N = C* and G/I, as a rational over a rational, is itself rational.
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4. INTERCHANGING HOMOGENEOUS FIBRATIONS

The main structure theorem assures the existence of the homogeneous fibration
G/H— G/J, where G/J is rational. In this section we look at the fiber J/H
of this fibration in the case when it is a torus bundle over a C*-bundle and consider
the possibility of interchanging these fibrations. We show first that the typical
fiber is biholomorphic to the product of C* and the torus. Then we present an
example where it is not possible to interchange the C* and torus fibrations
homogeneously.

Suppose that G/H has two ends, where H has a finite number of connected
components, and we are in the second case in the proof of Theorem 4, i.e. suppose
we have homogeneous fibrations G/H— G/N— G/J where N/H is a torus and
J/N = C”*. Since G/J is a rational manifold, it is simply connected. Thus ¢ is
connected and its orbit J/H in G/H is a torus bundle over C* which is given
by the fibration J/H — JJ/ N. Since H has a finite number of connected components
and N/ H is connected, it follows that IV has a finite number of connected components.
Thus the fibration J/H°— J/N° is also a torus bundle over C*. Now J/N° abelian
implies J’ C N° and N°/H° abelian implies (N°)’ € H®. Hence (J')’ C H°
and the solvable group J/(J')’ acts transitively on J/H° with connected isotropy
H°/(J')’. It follows from Proposition 2, a) that J/H° is biholomorphic to the
product of C* and the torus N°/H°. Thus J/H is biholomorphic to C* X N/H.

Next we present an example which cannot be interchanged homogeneously.
Let G := SL(2,C) X T, where T is an elliptic curve. To simplify the notation, write

G= {(a,B,v,S,w):(a E ) € SL(2C),weE T};
Y

understood with the appropriate group structure. Let
J:= {(e,,0,a” ", w)}, N:= {(1,8,0,1,w)} and H:=({1,8,0,1,2B)},

where @ :C— T is the usual universal covering homomorphism. Then X := G/H
has two ends and H is connected. Further w:G/H — G /N is a nontrivial torus
bundle over the bundle C*\\ {0} = G/N— G/J=P' and = is the holomorphic
separation map of X. Since 7, (C®\{0}) = 0 for j = 1, 2, and T is an elliptic curve,
it follows that m, (X) = Z> Also one should note that in constructing this example
we have taken the group G in order to have connected isotropy. Certainly SL (2,C)
also acts transitively on X, but with infinite discrete isotropy. It is of note that
in some cases one can change the group acting so as to have isotropy with a
finite number of connected components.

Now suppose that X = G/H, where G is any connected complex Lie group.
Then there exists a closed complex subgroup J of G, containing H, such that
the fibration G/H — G /J is the holomorphic separation fibration of G/H [11,
Theorem 1]. But w:X— C*\ {0} is the holomorphic separation map of X. Thus
G/J=C?*\{0} and J/H=T, i.e. one always has a homogeneous fibration
X=G/H— G/J=C>\{0} with J/H=T.
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For the moment consider any homogeneous fibration G/H— G/J, where
G/J = C*\ {0} and J/H is an elliptic curve T. Since C*\ {0} is simply connected,
J is connected and the bundle is principal. Now without loss of generality we
may assume G is simply connected and we may choose a Levi-Malcev decomposition
G = S X R. Since no solvable group can act transitively on C*\ {0}, Shas nontrivial
orbits in C*\ {0}. But no S-orbit can be 1-dimensional, for then this orbit would
be P'. Thus S has only open orbits and fixed points. But fixed points are ruled
out by the Cone Theorem [17] and thus S acts transitively on C*\ {0}. Its isotropy
is algebraic and not reductive and so is contained in a parabolic. Thus there is
an S-equivariant fibration C*\ {0} — P' and we can split off an SL(2,C) from
S which also acts transitively on C*\ {0}. For simplicity let S:= SL(2,C) in the
rest of this section. Now consider the S-orbits in G/H. Either they are open or
they are sections of the principal bundle G/H — G/J. In the latter case, the bundle
is trivial, i.e., G/ H = C>\. {0} X T. So we conclude that either S acts transitively
on G/H or else the universal covering manifold of G/H is C*\ {0} X C and thus
is not Stein.

But the complex manifold X constructed above has the universal covering
manifold SL(2,C) which is Stein. Thus we have shown that if any connected complex
Lie group G acts transitively on X, then there exists an S = SL(2,C) in G and
S-equivariant fibrations

T c*

S/T-— S/U —S/B

[ | I
X c\{oy P!

and by conjugating we may suppose B = {(3 )\Ifl )} is the “standard Borel”

0 1
I' is the lattice of Tin U= C,ie. U/T = T.

and U = {( L u)} is the “standard maximal nilpotent.” Also it is clear that

Finally we claim that X cannot be realized as a homogeneous fibration
X=G/H— G/Iwith I/H =C" and G/I compact, where G is any connected com-
plex Lie group acting transitively on X. For assume that such a fibration exists.
Then the fibration is also S-equivariant, i.e., we have

X=8S/T—>S/IT=G/I, where I:=SnI

But then S/f, as a compact complex homogeneous surface, is one of the
following: %, T* X P, P%, P! X P or a homogeneous Hopf surface (e.g. [32]). The
first two are ruled out since S cannot act transitively on them and the second two
are easily ruled out by looking at the exact homotopy sequence of the bundle
G/H— G/I and recalling «,(G/H) = Z2*. Thus S/ 1 is a homogeneous Hopf sur-
face and has universal covering S/F® = C>\\{0}.Hence C* = I°/1°NTand I°NT
is a rank one lattice. Since I° is algebraic and C* is holomorphically sep-
arable, I° contains the algebraic closure of [° N I' (see Barth-Otte [3]), i.e.,
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I’°n (1) i" .Thus I° = Uand I°/T = C*, contradicting the fact that U/T’ = T.

This contradiction rules out the existence of any homogeneous C*-fibration.

5. ARBITRARILY MANY ENDS

For each integer k£ > 2, Borel [5] has shown the existence of discrete subgroups
I',, of SL(2,R) such that SL(2,R) /T, has %k ends. In this section we point out, using
the same idea as Borel, how to construct complex homogeneous manifolds with
arbitrarily many ends.

Let S:=SL(2,C) and let K be a maximal compact subgroup of S. One model
of the space K\ S is hyperbolic 3-space and any discrete subgroup I" of S acts
discontinuously on H®. One way of determining the number of ends of such an
S/’ would be to construct a fundamental domain for I'. However we shall take
a different approach. Recently Thurston [31] has shown that the complements
of certain knots in S® are complete hyperbolic and thus have H? as their universal
covering surface. This then gives a method for proving the existence of discrete
subgroups I', in S such that the double coset space K\ S/I', has £ ends, even
though one does not know explicitly in all cases what the groups I', are. For
example, the complement in S? of the k-link chain is complete hyperbolic with
%k ends and thus can be written as K\S/TI,, for some discrete I', in S. Since
the natural map S/T',—» K\ S/T, has connected compact fibers, S/I', also has
k ends and is a complex homogeneous manifold.

~

We note some particular examples. For k& = 3 (respectively k2 = 4) one can take
SL(2,R), where R is the ring of integers of the quadratic imaginary number field
Q(\/—7) (respectively Q(v/—38)). For these examples and others, Bianchi [4]
computed explicit fundamental domains and initiated the study of reduction theory
for Hermitian forms under the action of SL(2,R).

As pointed out by Thurston [31, 6.38] if %2 divides / then there is a covering
map of degree [/k from K\S/I', to K\S/T', and such a map can be lifted
to a map from S/T’, to S/T,. As we noted in section one, such finite covering
maps do not preserve the number of ends.

In closing we would like to point out that, for any 2 > 2, there are no non-constant
holomorphic functions on X := SL(2,C) /T, . For consider the possibilities for rank
@(X). First X is not holomorphically separable. For, if it were, then I', would
be algebraic (see Barth-Otte [3]). But then S— S/T', would be a finite covering
and S/T, would be Stein and thus have only one end. Also rank &(X) cannot
be positive. For denote by S/I', — S/J the holomorphic separation fibration [11,
Theorem 1]. If rank ¢&(X) = 1, then dim. S/J =1 and thus S/J = P*, which is
clearly absurd. And if rank &(X) = 2, one has an explicit list of the possibilities
for S/J: namely the affine quadric, the complement of the quadric in P? or some
power #", for n > 0, of the hyperplane section bundle over P' (see [16]). But
these are all easily ruled out. For example by comparing their fundamental groups
with that of S/TI', using the exact homotopy sequence of the fibrationS/T', — S/J.
Thus 7(X) = C.
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