PSEUDOCONVEXITY AND VALUE DISTRIBUTION FOR SCHUBERT ZEROES

Chia-Chi Tung

The distribution of zeroes of holomorphic sections in a Hermitian vector bundle was first studied using characteristic forms by Bott and Chern [2], and later by Cowen [5], Griffiths-King [8] and Stoll [15] [17]. In the general setting, let $f: X \to Y$ be a holomorphic map (where X, Y are complex spaces); assume in Y a reasonable set of subvarieties, $\mathfrak{A} = \{S_b\}_{b \in N}$, is given. One wishes to describe the typical behavior of the fiber $S_{b,f} = f^{-1}(S_b)$, $b \in N$. Assume X carries a pseudoconvex (respectively, pseudoconcave) exhaustion function; i.e., a proper, C^{∞} map $\varphi: X \to \mathbb{R}$ whose Levi form $L(\varphi) = dd^c \varphi \ge 0$ (respectively, $L(\varphi) \le 0$) off a compact set. If $\{S_{b,f}\}$ is zero dimensional, suitable growth conditions or geometric properties of f imply that $S_{b,f} \neq \emptyset$ for almost all $S_b \in \mathcal{U}$ (e.g. [3] [5] [6] [7] [14] [20]). If $\{S_{hf}\}$ has positive dimension, in order to prove the same an additional closed, nonnegative form measuring the volume of S_{b,f} was usually required ([9] [14] [17] [19]). In place of the latter hypothesis, one may assume there is a closed form $\theta \in A_2^{1,1}(X)$ such that outside a compact set, $\theta \ge 0$, $\theta \ge L(\varphi)$ and $\theta^m \ne 0$ $(m = \dim X)$. In terms of this θ the Casorati-Weierstrass type theorems can be established even in the case $L(\varphi)$ has eigenvalues of different signs. It is unknown, however, if such a θ exists for a given φ . If φ is strongly logarithmic pseudoconvex (in the sense of Griffiths-King-Stoll [8] [15]), the natural choice of θ is of course $L(\varphi)$. In this case, (under certain conditions) one can prove the equidistribution property: the valence of a generic S_b grows to infinity over suitable sequences of open sets at the same rate as the characteristic of f ([19,4.9]). Taking into account also the 0-convex exhaustion function of Andreotti-Grauert [1], a unified notion of pseudoconvexity which admits equidistribution seems to be of interest. To this end, the g-pseudoconvex, (g,y)-pseudoconvex as well as the g-pseudoconcave exhaustion functions are introduced in Section 1.

The equidistribution theorems are first proved for an admissible family $\mathfrak U$ in Y (Section 2). These can be applied to the case of Schubert zeroes of sections in a semi-ample vector bundle over Y (Section 3). The results obtained generalize those of Chern [3, p. 537] [4, 4.8], Cowen [5,7.1], Stoll [15,13.3,13.4] [17,4.6] and Wu [20, pp. 86-88].

1. EXHAUSTION FUNCTION AND G-PSEUDOCONVEXITY

For the basic notations the reader is referred to [19]. All complex spaces are assumed reduced, pure dimensional and countable at infinity. Let X be a complex space of dimension m > 0. Let $\varphi: X \to \overline{\mathbb{R}}$ $[-\infty,\infty)$ be an exhaustion function; *i.e.*,

Received May 15, 1978. Revision received August 1, 1978. Partially supported by NSF Grant MCS 76-08478.

Michigan Math. J. 26 (1979).

an upper-semicontinuous map such that the sets $X[r] = \{x \in X : \phi(x) \le r\}$ are compact for all $r \ge 0$ and ϕ is C^{∞} off some $X[c_0]$. The exhaustion function ϕ is called semi-regular if ϕ is unbounded and the set of critical points of $\phi[X_{reg} - X[r_0]]$ has measure zero for some $r_0 \ge c_0$. For example, if X is noncompact and there is a compact set $K \subseteq X$ such that either ϕ has isolated critical points in $X_{reg} - K$ or ϕ is real analytic on $X_{reg} - K$, then ϕ is semi-regular.

LEMMA 1.1. Assume φ is semi-regular. Let $\zeta \in A_0^{2m}(X)$ with $\bar{\zeta} = \zeta$. Assume $h: \mathbb{R} \ [c_0, \infty) \to \mathbb{R}$ is continuous. Set $h_{\varphi} = h \circ \varphi$. Then for large $r_0 \ge c_0$, the function $A(r) = \int_{X(r)} \zeta$ is absolutely continuous on $\mathbb{R} \ [r_0, \infty)$ and

(1.1)
$$\int_{X(\mathbf{r}_0,\mathbf{r})} \mathbf{h}_{\varphi} \zeta = \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{h}(\mathbf{t}) \mathbf{A}'(\mathbf{t}) d\mathbf{t} \qquad (\mathbf{r} > \mathbf{r}_0).$$

Proof. Take a positive form $\chi \in A_0^{m-1,m-1}(X)$. At first assume $\zeta \ge 0$. There is a measurable function Q: $X - X[c'] \to \mathbb{R}[0,\infty)$, for some $c' \ge c_0$, such that

$$\zeta = Q d\phi \wedge d^c \phi \wedge \chi \qquad \text{almost everywhere on } X - X \text{ [c']}$$

(cf. [12, 5.37]). For $r > r_0 > c'$, Fubini's Theorem implies

$$\int_{X[r_0,r]} \zeta = \int_{r_0}^r \left(\int_{dX(t)} Q d^c \phi \wedge \chi \right) dt.$$

This proves that A is absolutely continuous on \mathbb{R} $[r_0,\infty)$. Now the Jordan decomposition of $\zeta | X_{reg}$ yields the general case. The absolute continuity of A implies (1.1).

Assume $g: \mathbb{R} [c_0, \infty) \to \mathbb{R} (c_0 \ge 0)$ is of class C^3 with $\|e^g\|_{c_0}^r = \|e^g\|_{L^1[c_0, r]} \to \infty$. Define

$$\xi_{g} = L(\phi) + g'_{\phi} d\phi \wedge d^{c}\phi \quad \text{on } X - X[c_{0}]. \quad \bullet$$

The exhaustion φ of X is called g-pseudoconvex (respectively, g-pseudoconcave) if and only if $\xi_g \geq 0$ (respectively, $\xi_g \leq 0$) on $U_0 = X_{reg} - X[c_0]$. There exists a closed form $\theta_g^* \in A_2^{1,1}(X)$ such that

$$\theta_g^* \left[X - X \left[c_1 \right] \right] = u_{\phi} \xi_g$$

for some $c_1 \ge c_0$. Here $u = e^g$ is uniquely determined. Without loss of generality assume $c_1 = c_0$. If φ is g-pseudoconvex, define $\theta_g = \theta_g^*$; if φ is g-pseudoconcave, define $\theta_g = -\theta_g^*$. The exhaustion φ is called *strongly* g-pseudoconvex if and only if $\xi_g^{\circ} > 0$ at almost all points of U_0 .

The following example shows that the g-pseudoconvexity generalizes the 0-convexity of Andreotti-Grauert [1]. For $z=(z_1,...,z_n)\in\mathbb{C}^n$, let $\|z\|^2=\sum_{i=1}^n z_i\bar{z}_i$. Define $\phi(z)=\log(\log\|z\|^2)$ if $\|z\|>1$, and $\phi=-\infty$ otherwise. Assume n>1. Let

 $E = \{z \in \mathbb{C}^n : z_1 = \dots = z_{n-1} = 0\}, B = \{z \in \mathbb{C}^n : ||z|| \le 1\}, \text{ and } \iota : E \to \mathbb{C}^n \text{ be the inclusion.}$ Then $\iota^* L(\varphi) < 0$ on E - B. With $g(r) = r + e^r$, (1.2) implies

$$\xi_g = \frac{dd^c \|z\|^2}{\|z\|^2 \log \|z\|^2} > 0$$
 on $\mathbb{C}^n - B$.

Thus the exhaustion φ of \mathbb{C}^n is (strictly) g-pseudoconvex but not 0-convex.

A complex space X (of dimension m) is said to be rational relative to (ϕ,g) if and only if ϕ is a g-pseudoconvex exhaustion of X such that $\theta_g^m \not\equiv 0$ on U_o and

$$A_g(r) = \int_{X(r)} \theta_g^m = 0$$
 (1) $(r \rightarrow \infty)$.

For instance, if $\pi: X \to \mathbb{C}^p$ is a proper holomorphic map of strict rank m with algebraic image, then X is rational relative to $\varphi = 1 + \|\pi\|^2$, $g(r) = -\log r$.

If $y,z: \mathbb{R}[c_0,\infty) \to \mathbb{R}$ are of class C^1 and if θ_y^*, θ_z^* are defined on $X - X[c_1]$ by (1.3), then for each $q \in \mathbb{Z}[1,m]$,

(1.4)
$$\theta_{v}^{*} \wedge (\theta_{z}^{*})^{q-1} = (\theta_{v}^{*})^{q} \quad \text{off } X[c_{1}]$$

where v=(y+(q-1)z)/q. A g-pseudoconvex exhaustion ϕ of X is called (g,y)-pseudoconvex of degree q if y: \mathbb{R} [c_0,∞) $\to \mathbb{R}$ is of class C^1 such that

$$\theta_y^* \wedge \theta_g^{q-1} \ge 0 \qquad \text{off a compact set.}$$

An exhaustion function φ of X is called c. g-convex ([19]) if $g: \mathbb{R}(0,\infty) \to \mathbb{R}$ is increasing of class C^1 , if $\xi_{-g} \geq 0$ on X - X[0], and if X[0] has measure zero. If φ is c.g-convex, define $u_1 = e^{-g}$, and

$$\omega_{u_1} = (u_1)_{\varphi} \xi_{-g}$$
 on $X - X [0]$.

A c.g-convex exhaustion φ is $(0,y_q)$ -pseudoconvex of degree q with $y_q = -qg$, for each $q \in \mathbb{Z}[1,m]$; in fact, (1.4) implies

(1.6)
$$\theta_0^{q-1} \wedge \theta_{-qg}^* = \omega_{u_1}^q \ge 0 \quad \text{on } X - X [c_1].$$

An exhaustion ϕ of X is called g-semiparabolic if ϕ is a c.g-convex with $\theta_0^m \not\equiv 0$ and if $\omega_{u_1}^m \equiv 0$ off a compact set.

2. EQUIDISTRIBUTION FOR ADMISSIBLE FAMILIES

The following result generalizes the calculus lemma of Wu [20, II, p. 379]; the proof draws on an idea of Dektyarev [6, p. 69].

LEMMA 2.1. Let $h, q_j : \mathbb{R}[r_0, \infty) \to \mathbb{R}[0, \infty)$, j = 1, 2, where h is positive, increasing, absolutely continuous, and q_j , hq_j are locally integrable. Let $E \subseteq \mathbb{R}[r_0, \infty)$

be a set of measure zero. Assume

(2.1)
$$\lim_{r \to \infty} \inf_{r \notin E} \|q_1\|_{r_0}^r / \|q_2\|_{r_0}^r = 0.$$

Then

$$\lim_{r \to \infty, r \notin E} \|hq_1\|_{r_0}^r / \|hq_2\|_{r_0}^r = 0.$$

Proof. Assume $\|\mathbf{q}_1\|_{r_0}^r \neq 0$ (otherwise the lemma is trivial). Then (2.1) implies that $\|\mathbf{q}_2\|_{r_0}^r \to \infty$. Define

$$G(r,c) = \int_{r_0}^{r} (q_1 - cq_2)(t) h(t) dt$$
 $(r > r_0, c > 0).$

Suppose there exist c>0 and $r'\geq r_0$ such that G(r,c)>0 for all r>r', $r\notin E$. Then for such r,

$$\int_{\,r'}^{\,r} (q_{\,1} - c q_{\,2})(t) \, dt \, + \, O(1) = \frac{G\,(r,c)}{h\,(r)} \, + \, \int_{\,r'}^{\,r} G\,(t,c) \, \frac{h^{\,\prime}\,(t)}{h\,(t)^{\,2}} \, dt > 0.$$

This clearly contradicts (2.1).

Throughout this section, the general assumptions (I)-(V) shall be in force. (I) X is a complex space of dimension m with at least one non-compact branch. (II) The family $\mathfrak{A} = \{S_b\}_{b \in \mathbb{N}}$ is strictly admissible in a complex space Y and is defined

by $Y \stackrel{\tau}{\leftarrow} M \stackrel{\pi}{\rightarrow} N$ ([19]); the index set N is a compact, connected complex manifold

of dimension k > 0. (III) $f: X \to Y$ is a meromorphic map almost adapted to \mathfrak{A} ([19]). Let $s = \operatorname{codim} S_b$, q = m - s. (IV) $\varphi: X \to \mathbb{R}$ $[-\infty,\infty)$ is an exhaustion function of one of the following types: g-pseudoconvex, g-pseudoconcave, or g-semiparabolic.

Let $'X\subseteq X\times Y$ be the graph of the holomorphic correspondence associated to f ([11]). Let $P: 'X\to X$, $F: 'X\to Y$ be the projections. There is a largest open set $X^0\subseteq X$ such that $P: P^{-1}(X^0)\to X^0$ is bihomorphic. Assume $w: \bar{\mathbb{R}}\ [r_0,\infty]\to \mathbb{R}\ [0,\infty),\ -\infty\le r_0\le c_0$, is continuous. Take $b\in N_{X[r],f},\ r>c_0$ ([19, Section 1]). Define the counting function, respectively, valence of S_b ([19, 2.3, 4.1]) for $r\ge t\ge c_0$ by

$$\begin{split} N_{f}(X(t), S_{b}, \theta_{g}^{q}) &= \int_{S_{b,f} \cap 'X(t)} \nu_{F}^{b}('\theta_{g})^{q} \qquad ('\theta_{g} = P * \theta_{g}) \\ N_{f,w}(r, c_{0}, S_{b}) &= \int_{c_{0}}^{r} N_{f}(X(t), S_{b}, \theta_{g}^{q}) w(t) dt. \end{split}$$

If $\xi \in A_0^{p,p}(Y)$, $0 \le p \le m$, and $y:\mathbb{R}[r_0,\infty) \to \mathbb{R}$ is of class C^1 , define

$$D_{f,y}^{p}(\mathbf{r},\mathbf{r}',\xi) = \int_{X[\mathbf{r}',\mathbf{r})} \theta_{y}^{*} \wedge \theta_{g}^{m-p-1} \wedge f^{*}\xi$$

$$D_{f}^{p,w}(\mathbf{r},\mathbf{r}',\xi) = \int_{X[\mathbf{r}',\mathbf{r})} e^{-w_{\varphi}} \theta_{g}^{m-p} \wedge f^{*}\xi \qquad (\mathbf{r} > \mathbf{r}' \ge \mathbf{r}_{0})$$

$$D_{f}^{p}(\mathbf{r},\mathbf{r}',\xi) = D_{f}^{p,0}(\mathbf{r},\mathbf{r}',\xi),$$

where $\theta_y^* \in A_0^{1,1}(X)$ (see (1.2)-(1.3)). If $\eta \in A_0^{p',p'}(N)$ with $p'-k+s=p \in \mathbb{Z}$ [0,s], define $\eta_Y = \tau_* \pi^* \eta$. Let ω_N be a C^∞ volume element on N normalized so that $\int_N \omega_N = 1. \text{ Define } \Omega = (\omega_N)_Y. \text{ For } r > r' \geq c_0, \text{ the integral}$

$$\begin{split} T_{f,w}(\mathbf{r},\mathbf{r}',\Omega) &= \int_{\mathbf{r}'}^{\mathbf{r}} D_{f}^{s}(t,-\infty,\Omega) \, w(t) \, dt \\ &= O(1) + \int_{\mathbf{r}'}^{\mathbf{r}} D_{f}^{s}(t,c_{o},\Omega) \, w(t) \, dt \quad (\mathbf{r}' \text{ fixed}) \end{split}$$

exists ([19, 4.1]). $T_{f,w}(r,r',\Omega)$ is called the characteristic of f for $\mathfrak A$ in respect to (ω_N,w) . By [19, 2.3, 4.1], the Crofton Formula holds:

(2.4)
$$T_{f,w}(r,c_{0},\Omega) = \int_{N} N_{f,w}(r,c_{0},S_{b})\omega_{N} \qquad (r > c_{0}).$$

Assume (V) If q>0 and if ϕ is not g-semiparabolic, either (i) $\theta_g^m\not\equiv 0$ on $X-X[c_0]$ or (ii) $\theta_g^q\wedge f^*\Omega\not\equiv 0$ on $X^0-X[c_0]$. Observe that if $\theta_g^m\not\equiv 0$ on an open set $U_1\subseteq U_0$, then $\theta_g>0$ on U_1 . Hence (i) implies (ii) by [19, 2.4]; if q=0, then $f^*\Omega\not\equiv 0$ on $U_0\cap X^0$ ([19, 2.4]).

Let $\xi \in A_0^{p,p}(Y)$ be nonnegative and w > 0. Then w is called a growth function for (f,ξ) if and only if there exists a continuous $\alpha: \mathbb{R}[c_0,\infty) \to \mathbb{R}(0,\infty)$ such that $\|\alpha w\|_{c_0}^r \to \infty$ and $D_f^p(r,c_0,\xi)/\alpha$ (r) is increasing in r. If p = s, for such w, α [19, 4.3] yields

(2.5)
$$\frac{T_{f,w}(\mathbf{r},\mathbf{c}_{0},\xi)}{\|\alpha w\|_{\mathbf{c}_{0}}^{\mathbf{r}}} \rightarrow \lim_{r \to \infty} \frac{D_{\mathbf{f}}^{s}(\mathbf{r},\mathbf{c}_{0},\xi)}{\alpha(\mathbf{r})}.$$

Let $\sigma = \{r_j\}$ be a ϕ -admissible sequence, that is, a strictly increasing sequence tending to infinity such that each $X(r_i)$ is a Stokes domain ([19, Section 4]).

For each $b \in N^{[\sigma]} = \bigcap_{j=1}^{\infty} N_{x[r_j],f}, S_{b,F}$ has pure dimension q (if not empty) ([19,

Section 1]). Suppose φ is either g-pseudoconvex or g-pseudoconcave. Let

$$\Delta = \Delta(\Omega, \sigma, g, w)$$

be the set of all $b \in N - N^{[\sigma]}$ and all $b \in N^{[\sigma]}$ for which there exists no subsequence $\{r_i'\}$ of σ with $r_i' \to \infty$ such that (in terms of θ_g) $N_{f,w}(r_i',c_0,S_b) \to \infty$ and

$$\lim_{j\to\infty} \frac{N_{f,w}(r'_j,c_0,S_b)}{T_{f,w}(r'_j,c_0,\Omega)} = 1.$$

The map f is said to have zero \mathfrak{A} -defect, $d(f, \mathfrak{A}) = 0$, relative to (Ω, σ, g, w) , if the defect set Δ has measure zero.

Take a singular potential $\{\lambda_b\}_{b\in N}$ such that $dd^c\lambda_b = \omega_N$ on $N-\{b\}$ ([19, 2.5]). Let Λ denote the integral average of $\{\lambda_b\}_{b\in N}$; then $\Lambda\in A_0^{k-1,k-1}(N)$ and $\Lambda\geq 0$ ([14, 6.3]).

THEOREM 2.2. Assume $w = e^y : \mathbb{R} [c_0, \infty) \to \mathbb{R} (0, \infty)$ is a growth function for (f,Ω) and one of the following holds:

(a) φ is (g,y)-pseudoconvex of degree q+1 (where y is C^1), and for $\eta = \Lambda$ or for some positive $\eta \in A_0^{k-1,k-1}(N)$,

(2.6)
$$D_{f,v}^{s-1}(r,c_0,\eta_Y) = o'(T_{f,w}(r,c_0,\Omega)) \qquad (r \to \infty)$$

(Here "o'" means the o-relation holds for some φ -admissible sequence σ).

(b) φ is semi-regular, h = g - y is increasing, absolutely continuous, and for some $\eta \in A_0^{k-1,k-1}(N)$ as above,

(2.7)
$$D_{f}^{s-1,h}(r,c_{0},\eta_{Y}) = o'(T_{f,w}(r,c_{0},\Omega)) \qquad (r \to \infty).$$

Then $d(f, \mathfrak{A}) = 0$ relative to $(\Omega, \sigma, g, \tilde{w})$, where $\tilde{w} = w$ for (a), $\tilde{w} = u$ for (b). (In the second case, σ is a suitable φ -admissible sequence.)

Proof. Since f is almost adapted to \mathcal{L} , the F.M.T. (relative to suitable bumps) ([18, 9.1.5] [19, 2.6]) remains valid for $\chi = \theta_g^q$. Thus [19, 4.4, 4.5] are applicable in the present case. Let $G(r) = \|\mathbf{w}\|_{c_0}^r$. Then $L(G_{\varphi}) = \theta_y^*$ off a compact subset of X. Hence (a), (1.5) and [19, 2.2, 4.5] yield the desired result.

Now assume (b). By (1.1), for $r_0 \gg c_0$,

$$D_{f}^{s-1,h}(r,r_{0},\eta_{Y}) = \int_{r_{0}}^{r} e^{-h(t)} (D_{f}^{s-1})'(t,c_{0},\eta_{Y}) dt \qquad (r > r_{0}).$$

Therefore (2.5), (2.7) and Lemma 2.1 imply that

$$D_f^{s-1}(r,c_0,\eta_Y) = o'(T_{f,u}(r,c_0,\Omega)) \qquad (r \to \infty).$$

Then [19, 4.5] concludes the proof.

Remark. In view of (1.6) and (2.5), [19, 4.9] follows from Theorem 2.2 (a) by setting $w = e^{-(q+1)g}$, $\alpha = e^{qg}$ and $\Omega = \Omega_s$.

THEOREM 2.3. Assume one of the following holds:

(a) φ is g-pseudoconcave.

- (b) X is rational relative to (φ, g) , Y is compact and s = 1.
- (c) φ is semi-regular, g-pseudoconvex with $g(r) \to \infty$, and

$$(D_{f}^{s-1})'(r,c_{o},\eta_{Y}) = O(D_{f}^{s}(r,c_{o},\Omega)) \qquad (r \to \infty)$$

for $\eta = \Lambda$ or some positive $\eta \in A_0^{k-1,k-1}(N)$.

Let σ be an arbitrary φ -admissible sequence. Then $d(f, \mathfrak{A}) = 0$ relative to (Ω, σ, g, u) .

Proof. Let $G(r) = \|e^g\|_{c_0}^r$. Then (a) implies

$$L(G_{\varphi}) \wedge \theta_{\varphi}^{q} = \theta_{\varphi}^{*} \wedge \theta_{\varphi}^{q} \leq 0$$
 on $X - X[c_{0}]$.

Hence [19, 4.4] and (2.5) yield the result. If Y is compact and s=1, Λ_Y is a bounded function on Y. Thus (b) (and also, clearly (c)) implies (2.6) which holds with y=g.

A continuous function $\rho: \mathbb{R} [c_0, \infty) \to \mathbb{R} (0, \infty)$ is said to have weak growth if ρ is increasing and $\|1/\rho\|_{c_0}^r \to \infty$ as $r \to \infty$.

COROLLARY 2.4. Assume φ is g-pseudoconvex. Assume there exist a constant c>1 and a function ρ of weak growth such that one of the following holds:

(a)
$$\left[\int_{c_0}^{r} D_f^{s-1}(t,c_0,\Lambda_Y) \frac{dt}{\rho(t)}\right]^{c} = O(T_{f,u}(r,c_0,\Omega)).$$

(b)
$$\frac{\left|D_{f}^{s-1}\left(\mathbf{r},\mathbf{c}_{0},\Lambda_{Y}\right)\right|^{c}}{\rho\left(\mathbf{r}\right)\mathbf{u}\left(\mathbf{r}\right)} = O\left(D_{f}^{s}(\mathbf{r},\mathbf{c}_{0},\Omega)\right).$$

Then there exists a φ -admissible sequence σ such that $d(f, \mathfrak{A}) = 0$ relative to (Ω, σ, g, u) .

 $\begin{array}{ll} \textit{Proof.} & \text{In view of Theorem 2.3, assume } D_f^{s-1}(r_0,c_0,\Lambda_Y)>0 \text{ for some } r_0>c_0. \\ \text{Let a(r)} = \|1/\rho\|_{c_0}^r. \text{ Define } \tilde{D}(y) = D_f^{s-1}(a^{-1}(y),c_0,\Lambda_Y) \text{ for } y>0, \text{ and} \end{array}$

$$Q(y) = \tilde{D}(y)(\|\tilde{D}\|_{0}^{y})^{-c}$$

for $y > a(r_0)$. Condition (a) yields

$$D_f^{s-1}(r, c_0, \Lambda_Y) \leq \text{const. } Q(a(r)) T_{f,u}(r, c_0, \Omega) \qquad (r >> r_0).$$

Since $Q \in L^1[y',\infty)$ for large y', there exists a φ -admissible sequence $\sigma = \{r_j\}$ such that $Q(a(r_j)) \to 0$. Thus (2.6) holds (with y = g) for σ . The case of (b) is similar (cf. [19, 4.11]).

PROPOSITION 2.5. Assume $\omega_{N,1}$, $\omega'_{N,1}$ are cohomologous fundamental forms of Kähler metrics on N. Define $\Omega_s = (\omega^k_{N,1})_Y$. Assume one of the following:

- (a) ϕ is g-pseudoconcave, $\sigma=\{r_j\}$ is an arbitrary $\phi\text{-admissible}$ sequence, and w=u.
- (b) y: \mathbb{R} $[c_0,\infty) \to \mathbb{R}$ is of class C^1 , φ is (g,y)-pseudoconvex of degree q+1, $w=e^y$ is a growth function for (f,Ω_s) , and there exist a positive $\eta \in A_0^{k-1,k-1}(N)$ and a φ -admissible sequence $\sigma = \{r_i\}$ for which (2.6) holds (with $\Omega = \Omega_s$). Then

(2.8)
$$\lim_{j\to\infty} \frac{T_{f,w}(r_j,c_0,\Omega'_s)}{T_{f,w}(r_i,c_0,\Omega_s)} = 1.$$

Proof. There exists a singular potential $\{\lambda_b\}_{b\in N}$ such that $\lambda_b>0$ and $dd^c\lambda_b=\omega_{N,1}^k$ on $N-\{b\}$ (see [19, 2.5]). The proof of [14, AII, 6.8] shows that $\Lambda>0$ on N. If ϕ is g-pseudoconcave, [19, (3.3)] yields

$$D_f^{s-1}(r_i, c_0, \Lambda_Y) = O(1) \qquad (j \rightarrow \infty).$$

Now under hypothesis (a) or (b), (2.8) can be proved in the same way as in [19, 4.5(2)].

3. EQUIDISTRIBUTION FOR SCHUBERT ZEROES

Let V denote a complex vector space of dimension n+1>1. The Grassmann manifold $G_p(V)$ of projective p-planes has dimension d(p,n)=(p+1)(n-p). To each symbol $\alpha=(a_0,...,a_p)\in\mathfrak{S}(p,n)$ and flag $b\in\mathbb{F}(\alpha)$, the associated Schubert variety $S(b,\alpha)$ has dimension $|\alpha|=\sum_{j=0}^p a_j$. Define $s_\alpha=d(p,n)-|\alpha|$. The set $\mathfrak{S}(\alpha)=\{S(b,\alpha)\}_{b\in\mathbb{F}(\alpha)}$ is strictly admissible in $G_p(V)$ relative to the projections $G_p(V)\overset{\pi}{\leftarrow}S(\alpha)\overset{\pi}{\to}\mathbb{F}(\alpha)$ ([5]–[16]). Let ℓ be a positive definite Hermitian form on $G_p(V)$. The associated g universal Chern form on g (V) is denoted by g [p]–([16]). Then g = g = g [p] is the 2-form of the Fubini-Study metric g on g (V) induced by g such that

$$D(p,n) = \text{deg } G_p(V) = \int_{G_n(V)} \omega_p^{d(p,n)}.$$

On the flag manifold $\mathbb{F}(\alpha)$ there exists a volume element ω_{α} invariant under the actions of the unitary group such that $\int_{\mathbb{F}(\alpha)} \omega_{\alpha} = 1$ ([16, 5.1]). Define $c(\alpha) = \tau_* \pi^* \omega_{\alpha}$. If $s \in \mathbb{Z}$ [1,n-p], let

$$a_{p}^{s} = (n - p - s, n - p, ..., n - p) \in \mathfrak{S}(p,n).$$

Define $\mathfrak{D}_{p,n}^s = \mathfrak{S}(\alpha_p^s)$. According to [16, 5.4],

(3.1)
$$c(\alpha_{p}^{s}) = c_{s}[p].$$

Let ϕ be a strongly g-pseudoconvex exhaustion function of X. Let $U_1 \subseteq U_0$ be the largest open set on which θ_g is positive. Then θ_g defines a Kähler metric, α_g , on U_1 . Let (Y,α) be an n-dimensional Hermitian manifold with associated 2-form ω . Assume $f\colon X \to Y$ is meromorphic. Let σ_j , $0 \le j \le m$, be the j^{th} -elementary symmetric function of the (continuous) eigenvalues of $f^*\omega \mid U_1 - I_f$. Then

(3.2)
$$\sigma_{j} \theta_{g}^{m} = {m \choose j} \theta_{g}^{m-j} \wedge f^{*} \omega^{j} \quad \text{on } U_{1} - I_{f}.$$

Let $\eta(r) = A_g(r) - A_g(c_0)$. The map f is said to be balanced in codimension p with respect to (n_g,n) if and only if there exist $c \in \mathbb{R}$ (1,2) and a continuous, increasing $\beta : \mathbb{R} \ [r_1,\infty) \to \mathbb{R} \ (0,\infty) \ (r_1 \geq c_0)$ such that $\eta\beta/u$ has weak growth and

(3.3)
$$\sigma_{n-1}^{c} = O(\beta_{\alpha}\sigma_{n}) \quad \text{on } U_{1} - X[r_{1}].$$

The map f is said to have distortion of type (ρ,p) with respect to (n_g,n) if and only if $\rho: \mathbb{R} [c_0,\infty) \to \mathbb{R} (0,\infty)$ is increasing, absolutely continuous such that u/ρ^{p-1} is a growth function for (f,ω^p) and

(3.4)
$$\sup_{\|\mathbf{v}\|_{\mathbf{x}}=1} \| df(\mathbf{v}) \|_{f(\mathbf{x})} = O(\rho_{\varphi}) \quad \text{on } \mathbf{U}_1 - \mathbf{I}_f.$$

(Here v is a tangent vector to U_1 at x.) As an example, let X be an algebraic variety in \mathbb{C}^p , $\varphi(z) = 1 + \|z\|^2$ and $g(r) = -\log r$. Let $f: X \to Y$ be holomorphic. If with respect to (n_g,n) , f is quasi-conformal, then f is balanced in codimension p $(2 \le p \le n)$; if df has bounded norm on $U_1 - X[r_1]$, then f has distortion of type (1,p') for $1 \le p' \le n$ (cf. Wu [20, III], Griffiths [7, AII]).

THEOREM 3.1. Take $s \in \mathbb{Z}[1, n-p]$. Assume (I) and let $f: X \rightleftharpoons G_p(V)$ be a meromorphic map. Assume every branch of X contains a point $x \notin I_f$ such that $\operatorname{codim}_x \Sigma_{b,f} = s$ for some $\Sigma_b \in \mathfrak{D}_{p,n}^s$. Assume one of the following:

- (a) s = 1, and either (i) X is rational relative to (φ,g) or (ii) φ is g-semiparabolic.
- (b) φ is g-pseudoconcave and $\theta_g^m \not\equiv 0$ on U_0 .
- (c) φ is semi-regular, strongly g-pseudoconvex, X is rational relative to (φ,g) and f has distortion of type (ρ,s) with respect to $(n_g,n_{(p)})$.

Set $(\tilde{g}, \tilde{w}) = (g, u)$ for (a)-(i), (b), (c), and $(\tilde{g}, \tilde{w}) = (0, u_1^{q+1})$ for (a)-(ii) (where q = m - s). Then $d(f, \mathfrak{D}_{p,n}^s) = 0$ relative to $(c_s[p], \sigma, \tilde{g}, \tilde{w})$ for every φ -admissible sequence σ .

Proof. By [19, 1.4], f is almost adapted to $\mathfrak{D}_{p,n}^s$. In view of (3.1), (2.5), and Theorems 2.2, 2.3, it remains to prove the case of (c). Let $h=(s-1)\log \max(1,\rho)$. Then $w=e^{g-h}$ is a growth function for $(f,c_s[p])$. By (3.2), (3.4), if $r>r'\geq c_0$,

$$\begin{split} D_f^{s-1,h}(r,r',\Lambda_{G_p(V)}) &\leq \text{ const. } D_f^{s-1,h}(r,r',\omega_p^{s-1}) \\ &= \text{ const. } \int_{X[r',r)} e^{-h_\phi} \sigma_{s-1} \theta_g^m = O(1). \end{split}$$

Therefore Theorem 2.2 concludes the proof.

Remark. The family $\mathfrak{D}_{p,n}^s$ may also be indexed in the admissible sense by $G_{n-p-s}(V)$ (see [16, p. 29] [19, 1.1]). The above conclusion remains valid for this index set. $\mathfrak{D}_{p,n}^1$ is the set of polar divisors in $G_p(V)$ ([4, p. 10]).

Let $W \to Y$ be a semi-ample holomorphic \mathbb{C}^k -bundle over a complex space Y ([16]). Assume $\eta: Y \times V \to W$ is a semiamplification with dim V = n + 1 > k. The meromorphic classification map $\phi_V: Y \rightleftharpoons G_p(V)$ (p = n - k) is holomorphic on Y_∞

where η is ample and $S_W = Y - Y_{\infty}$ is thin analytic. In terms of a positive definite Hermitian form ℓ on V, a quotient metric is defined on $W | Y_{\infty}$. To each $b \in \mathfrak{S}(p,n)$, a Chern form $c_W(b) \in A_{\infty}^{p_1,p_1}(Y_{\infty})$, $p_1 = s_b$, is assigned ([16]). The Giambelli's Theorem ([16, 7.5]) implies that

(3.5)
$$c_{w}(b) = \varphi_{v}^{*}(c(b)) \quad \text{on } Y_{w}.$$

Take $\alpha \in \mathfrak{S}(p,n)$. Given $b = (E_0, ..., E_p) \in \mathbb{F}(\alpha)$, the Schubert zero set $S_w(b,\alpha)$ is defined [5] [17]) by

$$S_{W}(b,\alpha) = \bigcap_{j=0}^{p} \{y \in Y : \dim \eta_{y}(E_{j}) \leq a_{j}\}.$$

Let X be a complex space of dimension m and $f: X \rightleftharpoons Y$ a meromorphic map. Assume every branch of X contains a point $x \notin I_f$ such that $f(x) \in Y_{\infty}$ and, for some $b \in \mathbb{F}(\alpha)$,

$$q = \dim_{x} S_{w}(b,\alpha)_{f} = m - s_{\alpha} \ge 0.$$

Then $\phi_V \cdot f \mid X^0 - S_{W,f}$ extends meromorphically to X ([17, 4.5]); the extended map \hat{f} is almost adapted to $\mathfrak{S}(\mathfrak{a})$ ([19, 1.4]). Assume (I), (IV), and dim $S_{W,F} \leq q-1$. Let $w \colon \mathbb{R}[r_0,\infty) \to \mathbb{R}[0,\infty), -\infty \leq r_0 \leq c_0$, be continuous. In view of [17, 4.5], define the valence of $S_W(\mathfrak{b},\mathfrak{a})$ for $\mathfrak{b} \in \mathbb{F}(\mathfrak{a})_{X[r],f}$ (where $r > c_0$) by

$$N_{f,w}^{\alpha}(\mathbf{r}, \mathbf{c}_0, \mathbf{b}) = \int_{\mathbf{c}_0}^{\mathbf{r}} N_{f}(\mathbf{X}(\mathbf{t}), \mathbf{S}(\mathbf{b}, \alpha), \theta_{g}^{\mathbf{q}}) \mathbf{w}(\mathbf{t}) d\mathbf{t}.$$

Let $\Delta(\alpha) = \{ \mathfrak{b} \in \mathfrak{S}(p,n) : a_j \leq b_j, \ j = 0, ..., p, \ |\alpha| + 1 = |\mathfrak{b}| \}, \ s = s_{\alpha}.$ For $\mathfrak{b} \in \Delta(\alpha)$, $p_1 = s_{\mathfrak{b}}$, define $D_f^{p_1,w}(r,r',\mathfrak{b}) = D_f^{p_1,w}(r,r',c_w(\mathfrak{b}))$, etc., as in (2.2). Define

$$T_{f,w}(\mathbf{r},\mathbf{r}',\alpha) = \int_{\mathbf{r}'}^{\mathbf{r}} D_{f}^{s}(t,-\infty,\alpha) w(t) dt \qquad (\mathbf{r} > \mathbf{r}' \geq c_{0}).$$

(The existence of the above integrals follow from (3.5) and (2.3)). Then (2.4) and (3.5) yield the Crofton Formula for $\mathfrak{S}_{W}(\mathfrak{a}) = \{S_{W}(\mathfrak{b},\mathfrak{a})\}_{\mathfrak{b} \in \mathbb{F}(\mathfrak{a})}$:

$$T_{f,w}(r,c_0,\alpha) = \int_{F(\alpha)} N_{f,w}^{\alpha}(r,c_0,b) \omega_{\alpha} \qquad (r > c_0).$$

THEOREM 3.2. Assume one of the following holds; in (b)-(d) assume $(\theta_g, c_w(\mathfrak{A}))$ satisfies (V) with q = m - s, and in (c)-(d) $w = e^y : \mathbb{R} \ [c_0, \infty) \to \mathbb{R} \ (0, \infty)$ is a growth function for $(f, c_w(\mathfrak{A}))$:

- (a) s = 1, and either (i) X is rational relative to (φ,g) or (ii) φ is g-semiparabolic.
- (b) φ is g-pseudoconcave.

(c) φ is semi-regular, g-pseudoconvex, h = g - y is increasing, absolutely continuous, and along some φ -admissible sequence σ ,

$$D_f^{s-1,h}(\mathbf{r},\mathbf{c}_0,\mathfrak{b}) = o'(T_{f,w}(\mathbf{r},\mathbf{c}_0,\mathfrak{a}))$$
 for each $\mathfrak{b} \in \Delta(\mathfrak{a})$.

(d) φ is (g,y)-pseudoconvex of degree q+1 (where y is C^1), and along some φ -admissible σ ,

$$D_{f,y}^{s-1}(r,c_0,b) = o'(T_{f,w}(r,c_0,a)) \quad \text{for each } b \in \Delta(a).$$

Define (\tilde{g},\tilde{w}) for (a)-(c) as in Theorem 3.1; set $(\tilde{g},\tilde{w})=(g,w)$ for (d). Then $d(f,\mathfrak{S}_{W}(\alpha))=0$ relative to $(c_{W}(\alpha),\sigma,\tilde{g},\tilde{w})$. (In the cases (a), (b), σ is an arbitrary φ -admissible sequence.)

Proof. As in [17], let $\{\lambda_b\}_{b\in\mathbb{F}(\alpha)}$ be an invariant singular potential such that $\mathrm{dd}^c\lambda_b = \omega_a$ on $\mathbb{F}(\alpha) - \{b\}$ ([9]). The associated integral average, Λ_a , is invariant under the actions of the unitary group. It follows from Matsushima's Theorem ([10] [17]) that

$$\tau_* \pi^* \Lambda_{\alpha} = \sum_{\mathfrak{b} \in \Delta(\alpha)} \gamma_{\alpha \mathfrak{b}} c(\mathfrak{b}) \qquad (\gamma_{\alpha \mathfrak{b}} = \text{const.})$$

Thus (3.5), (2.5) and Theorems 2.2, 2.3 conclude the proof.

In the next two theorems assume the following:

(A): $L \to Y$ is a holomorphic line bundle over a complex space Y; (V,η) is a semi-amplification of L with dim V = n + 1 > 1. Take $p \in \mathbb{Z}[0,n-1]$. Let $\mathfrak{E}_p = \{E_L[b]\}_{b \in G_p(V)}$ ([15]). Assume (I), (IV). Let $f: X \rightleftharpoons Y$ be a meromorphic map. Assume every branch of X contains a point $x \notin I_f$ with $f(x) \in Y_\infty$ such that $q = \dim_x E_L[b]_f = m - p - 1 \ge 0$ for some $b \in G_p(V)$.

Let $c(L, \ell)$ denote the Chern form defined by a quotient metric on $L|Y_{\infty}$. Let $\Phi: Y \to \mathbb{P}(V^*)$ be the dual classification map associated to (V, η) ([15, p. 28]). Then

$$c(L, \ell) = \Phi^* \omega_0 \quad \text{on } Y_{\infty}.$$

Let $w: \mathbb{R}[r_0,\infty) \to \mathbb{R}[0,\infty)$, $-\infty \le r_0 \le c_0$, be continuous. For $p_1 \in \mathbb{Z}[0,m]$, define $D_f^{p_1,w}(r,r',L) = D_f^{p_1,w}(r,r',c(L,\mathbb{Z})^{p_1})$, etc., as in (2.2). Assume f is safe of order p+1 ([15, p. 38]. Define

$$T_{f,w}^{p}(r,r',L) = \int_{r'}^{r} D_{f}^{p+1}(t,-\infty,L) w(t) dt \qquad (r > r' \ge c_0).$$

Let $\alpha_{0,p'}$ be the Schubert family defined by $\mathbb{P}(V^*) \stackrel{\tau}{\leftarrow} \mathbb{F}_{0,p'} \stackrel{\pi}{\rightarrow} G_{p'}(V^*)$,

p'=n-p-1. Then $\Phi\circ F$ is almost adapted to $\alpha_{0,p'}$; and for a generic $b\in G_p(V)$, $S_{L,F}$ contains no branch of $E_L[b]_F$. Thus, in view of [15, 4.21], for each fixed $r>c_0$, define the valence of $E_L[b]$ by

$$N_{f,w}(r,c_0,E_L[b]) = \int_{c_0}^r N_{\phi \circ F}(X(t),E[b],\theta_g^q) w(t) dt$$

for almost all $b \in G_p(V)$.

According to [14, p. 132], there exist constants $d_{\mathbf{p'j}} \geq 0 \ (0 \leq j \leq p+1)$ such that

(3.7)
$$\Omega_{\mathbf{p}'\mathbf{i}} := (\omega_{\mathbf{p}'}^{\mathbf{d}(\mathbf{p}',\mathbf{n})+\mathbf{j}-\mathbf{p}-1})_{\mathbf{p}(\mathbf{V}^*)} = \mathbf{d}_{\mathbf{p}'\mathbf{i}}\omega_{\mathbf{0}}^{\mathbf{j}}$$

where $d_{p',p+1} = D(p',n)$. Therefore (2.4), (3.6), (3.7) and [13, 2.7] yield the Crofton Formula for \mathfrak{E}_p :

$$T_{f,w}^{p}(r,c_{o},L) = \frac{1}{D(p,n)} \int_{G_{p}(V)} N_{f,w}(r,c_{o},E_{L}[b]) \omega_{p}^{d(p,n)} \qquad (r > c_{o}).$$

Theorems 2.2, 2.3 imply the following:

THEOREM 3.3. Assume one of the following holds; in (b)-(d) assume $(\theta_{\sigma}, c(L, \ell)^{p+1})$ satisfies (V) with q = m - p - 1, and in (c)-(d)

$$w = e^y : \mathbb{R} [c_0,) \to \mathbb{R} (0,\infty)$$

is a growth function for $(f,c(L,\ell)^{p+1})$:

- (a) p = 0, and either (i) X is rational relative to (φ,g) or (ii) φ is g-semiparabolic.
- (b) φ is g-pseudoconcave.
- (c) φ is semi-regular, g-pseudoconvex, h = g y is increasing, absolutely continuous, and along some φ -admissible sequence σ ,

$$D_f^{p,h}(r,c_0,L) = o'(T_{f,w}^p(r,c_0,L)) \qquad (r \to \infty).$$

(d) φ is (g,y)-pseudoconvex of degree q+1 (where y is C^1), and along some φ -admissible sequence σ ,

$$D_{f,v}^{p}(r,c_{0},L) = o'(T_{f,w}^{p}(r,c_{0},L))$$
 $(r \to \infty).$

Define (\tilde{g}, \tilde{w}) as in Theorem 3.2. Then $d(f, \mathfrak{E}_p) = 0$ relative to $(c(L, \ell)^{p+1}, \sigma, \tilde{g}, \tilde{w})$. (In the cases (a), (b), σ is an arbitrary φ -admissible sequence.)

THEOREM 3.4. In addition to (A), assume Y is non-singular, (V,η) is an amplification, $\omega = c(L, \ell) > 0$, and p > 0. Let n_y be the Hermitian metric on Y defined by ω . Assume φ is strongly g-pseudoconvex, and one of the following holds with respect to (n_g, n_y) :

- (a) f is balanced in codimension p + 1.
- (b) X is rational relative to (ϕ,g) , ϕ is semi-regular, and f has distortion of type $(\rho,p+1)$.

Then $d(f, \mathfrak{E}_p) = 0$ relative to $(c(L, \ell)^{p+1}, \sigma, g, u)$ for some ϕ -admissible σ . (In the case (b) this σ is arbitrary.)

Proof. By (3.2) and (3.3), (a) implies that

$$[D_f^p(r,r',L)]^c \leq \text{const.} \eta(r)\beta(r)D_f^{p+1}(r,r',L)$$

for $r > r' >> c_0$. Hence (3.6), (3.7) and Corollary 2.4 yield the desired result. The case of (b) follows from Theorem 3.3 (as in Theorem 3.1).

The above proof yields:

THEOREM 3.5. Let (Y,n) be an n-dimensional compact, Hermitian manifold with 2-form ω . Assume (I), (IV), and $f: X \to Y$ is a meromorphic map such that every branch of X contains a point $x \notin I_f$ with $\operatorname{rank}_x f = n$. If n > 1, assume φ is strongly g-pseudoconvex and f is balanced in codimension n with respect to (n_g,n) . If n=1, assume X is rational relative to (φ,g) . Then there is a φ -admissible φ such that relative to (ω^n,φ,g,u) , $d(f,\mathfrak{A}) = 0$ for the family \mathfrak{A} of points in Y.

REFERENCES

- 1. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962), 193-259.
- 2. R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta. Math. 114 (1965), 71-112.
- 3. S. S. Chern, The integrated form of the first main theorem for complex analytic mappings in several complex variables. Ann. of Math. (2) 71 (1960), 536-551.
- 4. ——, Holomorphic curves and minimal surfaces. Carolina Conf. on Holomorphic Mappings and Minimal Surfaces (Chapel Hill, N.C., 1970, pp. 1-28. Dept. of Math., Univ. of North Carolina, Chapel Hill, N.C., 1970.
- 5. M. J. Cowen, Hermitian vector bundles and value distribution for Schubert cycles. Trans. Amer. Math. Soc. 180 (1973), 189-228.
- 6. I. M. Dektyarev, *Problems of value distribution in dimensions higher than unity.* Uspehi Mat. Nauk 25 no. 6, 53-84 (1970) (Russian Math. Surveys, Vol. 25, no. 6 (1970), 51-82.)
- 7. P. Griffiths, Two theorems on extensions of holomorphic mappings. Invent. Math. 14 (1971), 27-62.
- 8. P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math. 130 (1973), 145-220.
- 9. J. J. Hirschfelder, The first main theorem of value distribution in several variables. Invent. Math. 8 (1969), 1-33.
- 10. Y. Matsushima, On a problem of Stoll concerning a cohomology map from a flag manifold into a Grassmann manifold. Osaka J. Math. 13 (1976), 231-269.
- 11. K. Stein, Maximale holomorphe und meromorphe Abbildungen. II. Amer. J. Math. 86 (1964), 823-868.
- 12. W. Stoll, Die beiden Hauptsätze der Wertverteilungstheorie bei Funktionen mehrerer komplexer Veränderlichen. I. Acta Math. 90 (1953), 1-115.

- 13. ——, About the value distribution of holomorphic maps into the projective space. Acta Math. 123 (1969), 83-114.
- 14. ——, Value distribution of holomorphic maps into compact complex manifolds. Lecture Notes in Mathematics, Vol. 135. Springer-Verlag, Berlin-New York, 1970.
- 15. ——, Value distribution on parabolic spaces. Lecture Notes in Mathematics, Vol. 600. Springer-Verlag, Berlin-New York, 1977.
- 16. ——, Invariant forms on Grassmann manifolds, Ann. of Math. Studies 89. Princeton Univ. Press, Princeton, N.J. 1977.
- 17. ——, A Casorati-Weierstrass theorem for Schubert zeroes in semi-ample holomorphic vector bundles. Memoire dell' Academia Nazionale dei Lincei, 15 (1978), 63-90.
- 18. C. Tung, The first main theorem of value distribution on complex spaces. Memoire dell' Academia Nazionale dei Lincei, to appear.
- 19. ——, Equidistribution theory in higher dimensions. Pacific J. Math, (to appear).
- 20. H. Wu, Remarks on the first main theorem in equidistribution theory. II., III. J. Differential Geometry 2 (1968), 369-384; 3 (1969), 83-94.

Department of Mathematics Columbia University New York, N.Y. 10027.