PSEUDOCONVEXITY AND VALUE DISTRIBUTION
FOR SCHUBERT ZEROES

Chia-Chi Tung

The distribution of zeroes of holomorphic sections in a Hermitian vector bundle
was first studied using characteristic forms by Bott and Chern [2], and later
by Cowen [5], Griffiths-King [8] and Stoll [15] [17]. In the general setting, let
f: X — Y be a holomorphic map (where X, Y are complex spaces); assume in Y
a reasonable set of subvarieties, U = {S,},cn, is given. One wishes to describe
the typical behavior of the fiber S, = f7'(S,), b € N. Assume X carries a pseudo-
convex (respectively, pseudoconcave) exhaustion function; i.e., a proper, C” map
¢: X — R whose Levi form L(¢) = dd°p = 0 (respectively, L(¢) = 0) off a compact
set. If {S, ;} is zero dimensional, suitable growth conditions or geometric properties
of f imply that S,,# § for almost all S, € ¥ (e.g. [3][5] [6] [7] [14] [20]).
If {S,,} has positive dimension, in order to prove the same an additional closed,
nonnegative form measuring the volume of S, ; was usually required ([9] [14]
[17] [19]). In place of the latter hypothesis, one may assume there is a closed
form 6 € A" (X) such that outside a compact set, 6 =0, 6 = L(¢) and 6™ £ 0
(m = dim X). In terms of this 6 the Casorati-Weierstrass type theorems can be
established even in the case L(¢) has eigenvalues of different signs. It is unknown,
however, if such a 6 exists for a given ¢. If ¢ is strongly logarithmic pseudoconvex
(in the sense of Griffiths-King-Stoll [8] [15]), the natural choice of 8 is of course
L(¢). In this case, (under certain conditions) one can prove the equidistribution
property: the valence of a generic S, grows to infinity over suitable sequences
of open sets at the same rate as the characteristic of f ([19,4.9]). Taking into
account also the 0-convex exhaustion function of Andreotti-Grauert [1], a unified
notion of pseudoconvexity which admits equidistribution seems to be of interest.
To this end, the g-pseudoconvex, (g,y)-pseudoconvex as well as the g-pseudoconcave
exhaustion functions are introduced in Section 1.

The equidistribution theorems are first proved for an admissible family % in
Y (Section 2). These can be applied to the case of Schubert zeroes of sections
in a semi-ample vector bundle over Y (Section 3). The results obtained generalize
those of Chern [3, p. 537] [4, 4.8], Cowen [5,7.1], Stoll [15,13.3,13.4] [17,4.6]
and Wu [20, pp. 86-88].

1. EXHAUSTION FUNCTION AND G-PSEUDOCONVEXITY

For the basic notations the reader is referred to [19]. All complex spaces are
assumed reduced, pure dimensional and countable at infinity. Let X be a complex
space of dimension m > 0. Let ¢: X— R [—o,0) be an exhaustion function; i.e.,
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an upper-semicontinuous map such that the sets X [r] = {x € X:¢ (x) =r} are
compact for all r =0 and ¢ is C” off some X [c,]. The exhaustion function
¢.is called semi-regular if ¢ is unbounded and the set of critical points of
¢|X,s — X[r,] has measure zero for some r, =c,. For example, if X is non-
compact and there is a compact set K C X such that either ¢ has isolated critical
points in X, — K or ¢ is real analytic on X, — K, then ¢ is semi-regular.

LEMMA 1.1. Assume ¢ is semi-regular. Let { € A2™(X) with T = {. Assume
h:R [cy,®) — R is continuous. Set h, = hoo. Then for large r, = c,, the function

Al = { is absolutely continuous on R [r,, ) and
X(r)

(1.1) S h, (= S h(t)A’ (t)dt (r>r,).
: X[xg.r)

To

Proof. Take a positive form x € Al "™ 1 (X). At first assume {= 0. There
is a measurable function Q: X — X [¢’] — R [0, ), for some ¢’ = ¢,, such that

{=Qde Ad°¢nx almost everywhere on X — X{c’]

(cf. [12, 5.37]). For r > r, > ¢, Fubini’s Theorem implies

(e[ ([ arens)a
X [rg,r] ro dx(t)

This proves that A is absolutely continuous onR [r,,%). Now the Jordan decomposi-
tion of {|X,., vields the general case. The absolute continuity of A implies (1.1).

reg

Assume g:R [c,,0) =R (c,= 0) is of class C® with [le®[] = [le®]ri\c,..y —
Define

(1.2) £, =L +g,deand’¢ onX—-XJc]. *

The exhaustion ¢ of X is called g-pseudoconvex (respectively, g-pseudoconcave)
if and only if £, = 0 (respectively, £, < 0) on U, =X,,, — X[c,]. There exists a
closed form 8% € A" (X) such that

(1.3) 8 |X = X[e;] =u,&,

for some ¢, = ¢,. Here u = e® is uniquely determined. Without loss of generality
assume ¢; = ¢,. If ¢ is g-pseudoconvex, define 6, = 0}; if ¢ is g-pseudoconcave,
define 6, = —0; . The exhaustion ¢ is called strongly g-pseudoconvex if and only
if £; > 0 at almost all points of U,.

The following example shows that the g-pseudoconvexity generalizes the 0-con-
vexity of Andreotti-Grauert [1]. For z = (z,,...,z,) € C", let ||z]|*> = 2 Z,Z;.
1=1

Define ¢(z) = log(og||z||?) if ||z|| > 1, and ¢ = —o otherwise. Assume n > 1. Let
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E={zeC":z,=..=z_,,=0}, B={z€ C":|z||= 1}, and v: E— C "be the in-
clusion. Then +*L(g) < 0 on E — B. With g(r) = r + €, (1.2) implies
dd*| ) .
= T onC" — B.
llz]| *og]| 2|

Thus the exhaustion ¢ of C" is (strictly) g-pseudoconvex but not 0-convex.

A complex space X (of dimension m) is said to be rational relative to (¢,g)
if and only if ¢ is a g-pseudoconvex exhaustion of X such that 67 #0 on U,
and

A )= S 0" =0(1) (r— ).

X(r)

For instance, if w: X —.C® is a proper holomorphic map of strict rank m with
algebraic image, then X is rational relative to ¢ = 1 + ||=||% g(r) = — log r.

If y,z:R [c,,0)— R are of class C' and if 0,0, are defined on X — X]Jc,]
by (1.3), then for each q € Z[1,m],

(1.4) 0¥ A (8))97 = (8%)®  off X[c,]

where v = (y + (@ — 1)z)/q. A g-pseudoconvex exhaustion ¢ of X is called (g,y)-
pseudoconvex of degree q if y: R [c,,2) — R is of class C' such that

(1.5) 6* A0 '=0  off a compact set.

An exhaustion function ¢ of X is called c. g-convex ([19]) if g: R (0,0 — R
is increasing of class C?, if £ .,=0on X — X[0], and if X[0] has measure zero.
If ¢ is c.g-convex, define u, = ¢ %, and

o, =@u,),§&, onX-X[0].

A c.g-convex exhaustion ¢ is (0,y,)-pseudoconvex of degree q with y, = —qg, for
each q € Z [1,m]; in fact, (1.4) implies

(1.6) 00IA0*, =0l =0 onX-—X[c,].

—qg u;

An exhaustion ¢ of X is called g-semiparabolic if ¢ is a c.g-convex with 07 # 0
and if o, = 0 off a compact set.

2. EQUIDISTRIBUTION FOR ADMISSIBLE FAMILIES

The following result generalizes the calculus lemma of Wu [20, II, p. 379];
the proof draws on an idea of Dektyarev [6, p. 69].

LEMMA 2.1. Let h,q;:R [ry,0)— R [0,%), j = 1,2, where h is positive, increas-
ing, absolutely continuous, and q;, hq; are locally integrable. Let E C R [r,,)
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be a set of measure zero. Assume
2.1) Lim inf 4./, /lla.]7, = 0.
Then
lim inf ||ha, |5, /I ha, I}, = 0.

Proof. Assume ||q,||;, # O (otherwise the lemma is trivial). Then (2.1) implies
that ||q,||;, — . Define )

T

G(r,c) = S (a; —cq)®h(®)dt  (r>r,,¢c>0).

To

Suppose there exist ¢ >0 and r’ = r, such that G(r,c) >0 for all r>71', r € E.
Then for such r,

g, ( )(t) dt + O(1) G0 + S Gt )h’(t) dt >0
1~ ¢q, = ,C .
1 h(r) h(t)®

- r -

This clearly contradicts (2.1).

Throughout this section, the general assumptions (I)-(V) shall be in force. (I)
X is a complex space of dimension m with at least one non-compact branch. (II)
The family A = (S, } <y is strictly admissible in a complex space Y and is defined

T iy
by Y «M — N ([19]); the index set N is a compact, connected complex manifold

of dimension k > 0. (III) f: X — Y is a meromorphic map almost adapted to U
([19]). Let s = codim S,,q = m — s. (IV) ¢: X - R [—x,0) is an exhaustion function
of one of the following types: g-pseudoconvex, g-pseudoconcave, or g-semiparabolic.

Let ‘"X € X XY be the graph of the holomorphic correspondence associated
to f ([11]). Let P:'X—» X, F:’X— Y be the projections. There is a largest
open set X°C X such that P:P7'(X°)— X° is bihomorphic. Assume
w: R [ry,0] = R [0,00), —0=< r,=< c,, is continuous. Take b€ Ny .60 T > ¢ ([19,
Section 1]). Define the counting function, respectively, valence of S, ([19, 2.3,
4.1]) forr =t =c, by

N, (X(0),5,,60) = S ('8 (6, =P*0,)
Sb,fn'X(t)

r

L N, (r,c,S,) = S N (X(1),S,,09 w(t) dt.

o

If £ € ASP(Y), 0 =p =<m, and y:R [r,,0)— R is of class C', define
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Df, (r,r',§) = X 05 A 07 A f¥E
X|[r’,r)

(2.2) DY (r,x',€) = S e o0 P A f*E r>r =r,)
X[r’,r)
D? (r,r’,£) = DP°(r,r’, ),

where 0} € A;I(X) (see (1.2)-(1.3)). If € A5"" (N) withp’ —k +s=p €Z [0,s],
define 1y = 7«7 *n. Let wy be a C” volume element on N normalized so that

S wy = 1. Define Q = (wy)y. For r >r’ = ¢,, the integral
N

T, (r,r’,Q) = S D (t,—,Q)w (t)dt

(2.3)

T

= 0(1) + X D3 (t,co,Q)w(t)dt (r’ fixed)

r’

exists ([19, 4.1]). T;, (r,r’,Q) is called the characteristic of f for A in respect to
(wy,W). By [19, 2.3, 4.1], the Crofton Formula holds:

(2'4) Tf,w(ryco’ﬂ) = S Nf,w(r’CO)Sb)(’-)N (I' > cO)'
N

Assume (V) If q>0 and if ¢ is not g-semiparabolic, either (i) 67 # 0 on
X — X[co] or (ii) 62 A f*Q # 0 on X® — X[c,]. Observe that if 6;'# 0 on an
open set U, C U,, then 6, > 0 on U,. Hence (i) implies (ii) by [19 2.4}, if
q=0, thenf*Q#OonU ﬂ X°([19, 24])

Let £ € A?P(Y) be nonnegative and w > 0. Then w is called a growth function
for (f,£) if and only if there exists a continuous a:R [cy,0) — R(0,) such that
law|:, = o and DZ(r,c,,§)/a () is increasing in r. If p = s, for such w, o [19,
4.3] yields

Tew (r,C0,8) . Di(r,cq,8)
_— hm—-—-—— .

(2.5)
lewll, e alr)

Let o = {r;} be a ¢-admissible sequence, that is, a strictly increasing sequence
tending to infinity such that each X(r;) is a Stokes domain ([19, Section 4]).
For each b € N°! = n N, (5. Spr has pure dimension q (if not empty) ({19,

Section 1]). Suppose ¢ is elther g-pseudoconvex or g-pseudoconcave. Let

A = A(Q,0,8,W)
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bethesetofallb € N — N!” and allb € N ! for which there exists no subsequence
{r;} of o with rj— oo such that (in terms of §,) N, (r},c,,S,)—> ~and

] Nf,w (rj'sCO!Sb)
1im =1
jme Ty (r],c0,Q)

The map f is said to have zero U-defect, d(f, ¥A) = 0, relative to (Q,o,g,w), if the
defect set A has measure zero.

Take a singular potential {\,} < n such that dd°\, = wyon N — {b} ([19, 2.5]).
Let A denote the integral average of {\,},cn; then A € A5 " '(N) and A =0
([14, 6.3]).

THEOREM 2.2. Assume w = e”:R [cy,%)— R (0,0) is a growth function for
(f,Q2) and one of the following holds:

(a) ¢ is (g,y)-pseudoconvex of degree q + 1 (where y is C'), and for w= A or
for some positive qn € AF™"*"1(N),

(2.6) D, (r,comy) = 0/ (Tg, (1,¢0,Q2))  (r — )

Y

(Here “o’” means the o-relation holds for some @-admissible sequence o).

(b) ¢ is semi-regular, h = g — y is increasing, absolutely continuous, and for
some v € ATV (N) as above,
2.7) D (r,comy) = 0 (Tg, (1,6, Q) (r — ).
Then d(f,¥A) = 0 relative to (Q,0,g,W), where w = w for (a), w = u for (b). (In the
second case, o is a suitable g-admissible sequence.)

Proof. Since f is almost adapted to %, the F.M.T. (relative to suitable bumps)
([18, 9.1.5] [19, 2.6]) remains valid for x = 63. Thus [19, 4.4, 4.5] are applicable
in the present case. Let G(r) = ||w|,. Then L(G,) =0 off a compact subset of
X. Hence (a), (1.5) and [19, 2.2, 4.5] yield the desired result.

Now assume (b). By (1.1), for r, >> ¢,

r

Dy o y) = S e DI (oo my) b (r> ).

To

Therefore (2.5), (2.7) and Lemma 2.1 imply that
D:_l (r,co,my) = o (Tf,u(r) Co,2)) (r — o).

Then [19, 4.5] concludes the proof.

Remark. In view of (1.6) and (2.5), [19, 4.9] follows from Theorem 2.2 (a)
by setting w = e "8 o = e® and O = Q,.

THEOREM 2.3. Assume one of the following holds:

(a) ¢ is g-pseudoconcave.
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(b) X is rational relative to (¢,g8), Y is compact and s = 1.

(c) o is semi-regular, g-pseudoconvex with g(r) — «, and
D) (r,¢o,my) = 0(DE(r,c,Q)) (¢ — )

for m = A or some positive n € A5 *T1(N).
Let o be an arbitrary ¢-admissible sequence. Then d(f, %) = 0 relative to (Q,c,g,u).
Proof. Let G(r) = ||eg||’;0. Then (a) implies

LG, AB;=08r0=<0 on X — X [¢,].

Hence [19, 4.4] and (2.5) yield the result. If Y is compact and s =1, A, is a
bounded function on Y. Thus (b) (and also, clearly (c)) implies (2.6) which holds
with y = g.

A continuous function p: R [¢,,0) — R (0,) is said to have weak growth if p
is increasing and ||1/p||;, — ® as r — oo,

COROLLARY 2.4. Assume ¢ is g-pseudoconvex. Assume there exist a constant
¢ > 1 and a function p of weak growth such that one of the following holds:

I dt <
(a) [S D:“(t,co,AY)-—-——] = O (T, (1,4, 2)).
c p(t)
Ds—l , ,A c
(b) D ®eo bl G b e, 0)).
p(r)u(r)

Then there exists a ¢-admissible sequence o such that d (f,%) = 0 relative to (Q,0,g,u).

Proof. In view of Theorem 2.3, assume D; ' (ry,co,Ay) > 0 for some 1, > c,.
Let a(r) = ||1/p]|%,. Define D(y) = Dy *(a™" (y),¢,,Ay) for y > 0, and

Q(y) = D(y)(ID|I})*

for y > a(r,). Condition (a) yields
D' (r,¢o,Ay) = const. Q(a(r) Ty, (r,c,,Q)  (r>>r,).

Since Q € L' [y’,») for large y’, there exists a ¢-admissible sequence o = {r;}
such that Q(a(r;)) — 0. Thus (2.6) holds (with y = g) for o. The case of (b) is
similar (cf. [19, 4.11]).

PROPOSITION 2.5. Assume wy,, wy, are cohomologous fundamental forms
of Kéhler metrics on N. Define Q, = (wﬁ,l)y. Assume one of the following:

(a) ¢ is g-pseudoconcave, o = {1;} is an arbitrary ¢-admissible sequence, and
W =u.

(b) y:R [cy,) — R is of class C', ¢ is (g,y)-pseudoconvex of degree q + 1, w = e’
is a growth function for (f,Q,), and there exist a positive n € A " *(N) and
a ¢-admissible sequence o = {r;} for which (2.6) holds (with Q = Q). Then
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T (T, Co 2 7)
(2.8) lim —> 27 =
j—»MTf_w(rj,co,Qs)

Proof. There exists a singular potential {A,},.y such that A, > 0 and
dd°\, = wy, on N — {b} (see [19, 2.5]). The proof of [14, AIl, 6.8] shows that
A > 0 on N. If ¢ is g-pseudoconcave, [19, (3.3)] yields

D:‘—l(rjacosAY) = 0(1) (j— ).

Now under hypothesis (a) or (b), (2.8) can be proved in the same way as in [19,
4.5(2)].

3. EQUIDISTRIBUTION FOR SCHUBERT ZEROES

Let V denote a complex vector space of dimension n + 1 > 1. The Grassmann
manifold G (V) of projective p-planes has dimension d(p,n) = (p + 1)(n — p). To
each symbol a = (a,,...,a,) € ©(p,n) and flagb € (a), the associated Schubert

p

variety S(b,a) has dimension |a| = 2 a;. Define s, =d(p,n) —|a|. The set
j=0
S(a) = {S(b,a)} ek 18 strictly admi;sible in G_(V) relative to the projections
T T
G, (V) «S(a) - [F(a) ([6] [16]). Let Zbe a positive definite Hermitian form on

V. The associated j* universal Chern form on G_(V) is denoted by c; [p] ([16]).
Then w, = ¢, [p] is the 2-form of the Fubini-Study metric », on G,(V) induced
by / such that

P
Gp(V)

D(p,n) = deg G, (V) = S 0l
On the flag manifold F(a) there exists a volume element w, invariant under
the actions of the unitary group such that S w,=1 ([16, 5.1]). Define

F (a)
cla) =1m*w,.If s €Z [1,n — p], let

at=(@m-p—-s,n—p,..,n—p)E & pn).
Define ®? = ©(a;). According to [16, 5.4],
(8.1) c(ay) = c,[p].

Let ¢ be a strongly g-pseudoconvex exhaustion function of X. Let U, C U,
be the largest open set on which 6, is positive. Then 8, defines a Kahler metric,
ng, on U,. Let (Y,~) be an n-dimensional Hermitian manifold with associated
2-form . Assume f: X — Y is meromorphic. Let o;, 0 = j < m, be the j*-elementary
symmetric function of the (continuous) eigenvalues of f*w | U, — I;. Then



PSEUDOCONVEXITY AND VALUE DISTRIBUTION 251

m . .
(3.2) o; 07 = ( ) )9;""/\ f*w’ on U, —I,.
J
Let m(r) = A (r) — A (c;). The map f is said to be balanced in codimension p

withrespectto(~,,~)if and only if there exist ¢ € R (1,2) and a continuous, increasing
B:R [r,;,%) = R (0,) (r, = ¢,) such that n§ /u has weak growth and

(3.3) o,,=0B,0,) onU, — X|[r,].

The map f is said to have distortion of type (p,p) with respect to (»,,~) if and
only if p: R [cy,%) — R (0,») is increasing, absolutely continuous such that u/p®™!
is a growth function for (f,w") and

(3.4) ngugl ldf (V) |l ¢y = O(p,) onU, —I,.

(Here v is a tangent vector to U, at x.) As an example, let X be an algebraic
variety in C®, ¢(z) =1 + ||z||2 and g(r) = —logr. Let f: X — Y be holomorphic. If
with respect to (z,,~), f is quasi-conformal, then f is balanced in codimension
p (2 =p = n); if df has bounded norm on U, — X [r,], then f has distortion of
type (1,p’) for 1 = p’ = n (¢f. Wu [20, III], Griffiths [7, AII]).

THEOREM 3.1. Take s € Z[1,n — p]. Assume (I) and let f: X= G_(V) be a
meromorphic map. Assume every branch of X contains a point x & 1, such that
codim, =, ; = s for some 2, € D . Assume one of the following:

(@) s =1, and either (i) X is rational relative to (¢,g) or (ii) ¢ is g-semiparabolic.
(b) ¢ is g-pseudoconcave and 6 # 0 on U,.

(c) ¢ is semi-regular, strongly g-pseudoconvex, X is rational relative to (¢,g)
and f has distortion of type (p,s) with respect to (= 4,~ ).

Set (g,w) = (g,u) for (a)-(i), (b), (c), and (g,%) = (0,u" ") for (a)-(ii) (whereq = m — s).
Then d(f,D},) = 0 relative to (c, [p],o,8,W) for every ¢-admissible sequence c.

Proof. By [19, 1.4], f is almost adapted to D} . In view of (3.1), (2.5), and
Theorems 2.2, 2.3, it remains to prove the case of (c). Let h = (s — 1) log Max(1,p).
Then w = e® " is a growth function for (f,c, [p]). By (3.2), (3.4), if r > 1’ = ¢,,

s—1,h ’ s—1,h ’ s—1
DI (@, r »Ag ) = const. Dy (1" 0,7 )

= const. S e_h"’cs_lﬁ;" = 0(1).
X [r’.x)

Therefore Theorem 2.2 concludes the proof.

Remark. The family ©; may also be indexed in the admissible sense by
G, _p—s (V) (see [16, p. 29] [19, 1.1}]). The above conclusion remains valid for this
index set. ©, , is the set of polar divisors in G, (V) ([4, p. 10]).

Let W— Y be a semi-ample holomorphic C *-bundle over a complex space Y
([16]). Assume m: Y X V— W is a semiamplification with dim V=n + 1 > k. The
meromorphic classification map ¢y : Y= G_ (V) (p = n — k) is holomorphic on Y,



252 CHIA-CHI TUNG

where m is ample and Sy, = Y — Y, is thin analytic. In terms of a positive definite
Hermitian form # on V, a quotient metric is defined on W|Y_. To each b €
& (p,n), a Chern formecy, (b) € AZVP1(Y,,), p; = sy, is assigned ([16]). The Giambel-
li’s Theorem ([16, 7.5]) implies that

(3.5) cw(d)=¢3(®)) onY,.

Take a € © (p,n). Givenb = (E,, ...,,E_) € F (a), the Schubert zero set S, (b,a)
is defined [5] [17]) by

) 34
Swi(b,a) = n {y € Y:dimny (E;) =< a;}.
i=0

Let X be a complex space of dimension m and f: X =Y a meromorphic map.
Assume every branch of X contains a point x € I, such that f(x) € Y_ and, for
some b € F (a),

q=dim,Sy((b,a);=m-—s,=0.

Then ¢, * f| X° — Sy extends meromorphically to X ([17, 4.5]); the extended map
f is almost adapted to & (a) ([19, 1.4]). Assume (I), (IV), and dim Swr=q—1.
Let w: R [r,,0) = R [0,0), —0 < 1, = ¢,, be continuous. In view of [17, 4.5], define
the valence of Sy (b,a) for b € [F(a)x,,; (where r > ¢;) by

r

N2, (1,0, b) = S N; (X (t), S (b,a), 09) w () dt.

Co

Let A(a) = {b € ©S(pn):a; = b;,j =0, ..,p, |a] + 1 = |b]|}, s = s,. For
b € A(a), p, = sy, define D" (r,x’,b) = D7 (r,r’,c (D)), etc., as in (2.2). Define

r

T, (5,1 a) = S Dit,—oa)w(t)dt (r>1 =c,).

r

(The existence of the above integrals follow from (3.5) and (2.3)). Then (2.4) and
(3.5) yield the Crofton Formula for ©, (a) = {Sy (b,a)} ycr@):

Tew (1,0,a) = S N%., (1,¢,b) 0, (r > c,).
F(a)

THEOREM 3.2. Assume one of the following holds; in (b)-(d) assume (8,,c (U))
satisfies (V) with q = m — s, and in (c)-(d) w =e”:R [c,,%) — R (0,%) is a growth
function for (f,cy, (A)):

(a) s = 1, and either (i) X is rational relative to (¢,g) or (ii) ¢ is g-semiparabolic.

(b) ¢ is g-pseudoconcave.
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(c) ¢ is semi-regular, g-pseudoconvex, h = g — y is increasing, absolutely contin-
uous, and along some g-admissible sequence o,

D " (r,c,,b) = o’ (T, (r,c,a))  foreachb € A (a).

(d) ¢ is (g,y)-pseudoconvex of degree q + 1 (where y is C'), and along some
¢-admissible o,
D%, (r,ce,0) = 0 (Ty,, (r,co,a))  for eachb € A (a).
Define (g,W) for (a)-(c) as in Theorem 3.1; set (g,w) = (g,w) for (d). Then

d(f,©y (a)) = 0 relative to (cyw(a),0,8,W). (In the cases (a), (b), o is an arbitrary
¢-admissible sequence.)

Proof. Asin [17], let {\,} ,c¢ @, be an invariant singular potential such that
dd°\, = 0w, on [F(a) — {b} ([9]). The associated integral average, A,, is invariant
under the actions of the unitary group. It follows from Matsushima’s Theorem
([10] [17]) that

TeTEA, = z Yau €(D) (Yap = const.)

b € A(a)

Thus (3.5), (2.5) and Theorems 2.2, 2.3 conclude the proof.
In the next two theorems assume the following:

(A): L—> Y is a holomorphic line bundle over a complex space Y; (V,q) is a
semi-amplification of L with dimV=n+1>1. Take p€ Z[0,n—1]. Let
€, = (EL[b]}bEGp(V, ([15]). Assume (I), (IV). Let f: X=Y be a meromorphic
map. Assume every branch of X contains a point x & I, with f(x) € Y_ such
that q =dim,E [b];=m —p — 1= 0 for some b € G_ (V).

Let c¢(L, ) denote the Chern form defined by a quotient metric on L|Y,. Let
®: Y — P(V*) be the dual classification map associated to (V,n) ([15, p. 28]). Then

(3.6) c(L,/) = d*w, onY,.

Let w:R [ry,%9) — R [0,0), —0 =< r, < ¢,, be continuous. For p, € Z[0,m], define
DY (r,r’,L) = D'V (r,r',c(L,/)"1), etc.,, as in (2.2). Assume f is safe of order
p + 1 ([15, p. 38]. Define

r

T, @r',L) = S D2* (t,—oo,L) w(t) dt (r>1r"=c¢y).

r

w
Let a,, be the Schubert family defined by P(V*) — F,, — G, (V*¥),

7

p° = n — p — 1. Then ®oF is almost adapted to a,,.; and for a generic
b € G,(V), Sy contains no branch of E, [b] . Thus, in view of [15, 4.21], for
each fixed r > ¢,, define the valence of E, [b] by
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r

Nf,w (r:co’EL [b]) = S (N¢.°F (/ X(t)pE [b] a,egq) W(t) dt

o

for almost all b € G, (V).
According to [14, p. 132], there exist constants d,;=0 (0= j=p + 1) such
that

- d(p’,n)+j—p—1 — j
(3.7) Qp'j' - ((!)p' )P(v.) - dp'j(l)JO

where d .., = D (p’,n). Therefore (2.4), (3.6), (3.7) and [13, 2.7] yield the Crofton
Formula for € :

T?,w (r;co :L) =

X N, (@,¢0,Er [bD0 ™ (x> c,).
Dm) )o,w

Theorems 2.2, 2.3 imply the following:
THEOREM 3.3. Assume one of the following holds; in (b)-(d) assume
(6,,c(L, 2)*™) satisfies (V) with ¢ =m — p — 1, and in (c)-(d)
w = ey:]R [CO:)'_) R (0,00)

is a growth function for (f,c(L,Z)""):
(a) p = 0, and either (i) X is rational relative to (¢,g) or (ii) ¢ is g-semiparabolic.
(b) ¢ is g-pseudoconcave. '
(c) ¢ is semi-regular, g-pseudoconvex, h = g — y is increasing, absolutely contin-
uous, and along some ¢-admissible sequence o,

D& (r,co,L) = o' (TL, (r,c0,L)  (r— o).

(d) ¢ is (g,y)-pseudoconvex of degree q + 1 (where y is C'), and along some
@-admissible sequence o,

D?, (r,co,L) = o' (TF, (r,co,L))  (r — o).

Define (g,%) as in Theorem 3.2. Then d(f,€ ) = 0 relative to (c(L, )" o, B W).
(In the cases (a), (b), o is an arbitrary ¢-admissible sequence.)

THEOREM 3.4. In addition to (A), assume Y is non-singular, (V,qm) is an
amplification, o = c¢(L,/) >0, and p> 0. Let », be the Hermitian metric on Y
defined by w. Assume ¢ is strongly g-pseudoconvex, and one of the following holds
with respect to (»4,~):

(a) f is balanced in codimension p + 1.

(b) X is rational relative to (¢,8), ¢ is semi-regular, and f has distortion of
type (p,p + 1).
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Then d(f, €,) = 0 relative to (c(L, )" a,8,u) for some g-admissible . (In the case
(b) this o is arbitrary.)

Proof. By (3.2) and (3.3), (a) implies that
[D? (r,x',L)] °= const.q (¥)B (x)DF**(x,r’,L)

for r > r’ >> ¢,. Hence (3.6), (3.7) and Corollary 2.4 yield the desired result. The
case of (b) follows from Theorem 3.3 (as in Theorem 3.1).

The above proof yields:

THEOREM 3.5. Let (Y,~) be an n-dimensional compact, Hermitian manifold
with 2-form w. Assume (I), (IV), and f: X — Y is a meromorphic map such that
every branch of X contains a point x & 1, with rank f=n. If n > 1, assume ¢
is strongly g-pseudoconvex and f is balanced in codimension n with respect to
(2g>~). If n = 1, assume X is rational relative to (¢,g). Then there is a ¢-admissible
o such that relative to (»",o,g,u), d(f,%) = 0 for the family ¥ of points in Y.
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