THE FUNDAMENTAL GROUP OF THE MODULUS SPACE.

David B. Patterson

1. THE MAIN RESULT

A surface of finite type (g,n) is a compact Riemann surface of genus g with
n punctures. The space of all conformal equivalence classes of surfaces of type
(g,n) is the modulus space X . C. Maclachlan [10] proved that the modulus space
of a compact surface (with no punctures) is simply-connected. In this paper we
extend his result and determine the fundamental group of the modulus space
for every surface of finite type.

THEOREM. For a surface of finite type (g,n), the fundamental group of the
modulus space X is the cyclic group of order 5 if g =2 and n = 4(mod5) and
is the trivial group for all other surfaces of finite type.

2. REDUCTION OF THE PROBLEM TO A STUDY OF
THE MAPPING CLASS GROUP

We can describe the topological structure of the modulus space of a surface
of finite type (g,n) by using the Teichmiuller space T,. (See the survey article
of L. Bers [2] for the definition and properties of these spaces.) The points of
T, are equivalence classes of orientation-preserving homeomorphisms of a fixed
Riemann surface S, of type (g,n) onto another surface of the same type. (Two
such homeomorphisms f and f’ are equivalent if there exists a conformal map
h such that f"'hf’ is homotopic to the identity map of S, .) The Teichmiiller
space T, has the structure of a finite-dimensional complex manifold. The group
of all homotopy classes of orientation-preserving homeomorphisms of the reference
surface S, onto itself is the mapping class group or Teichmiller modular group
M,,. The mapping class group M, acts in a natural way as a properly discontinuous
group of homeomorphisms of T, and the modulus space X, is the quotient space
of T, by the action of M,. The elements of finite order in the mapping class
group M, generate a normal subgroup F_ that plays a crucial role in the theory.

PROPOSITION 1. The fundamental group of the modulus space X  is isomorphic
to the quotient group M_/F_.

Proof. Following Maclachlan’s method, we use the representation of X  as
the quotient of T, by the action of M_. Since the Teichmiiller space of a surface
of finite type is simply-connected, it follows from a theorem of M. A. Armstrong
[1] that the fundamental group of X, is isomorphic to the quotient of M, by
the subgroup generated by elements that fix a point of T,. It is well known that
every element of finite order in M, has a fixed point. (See J. Nielsen [13] or
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S. Kravetz [8].) Since the group M, acts as a properly discontinuous group, the
stabilizer of a point in T, is a finite subgroup. It follows that every element
that fixes a point of T, has finite order.

Remark on the Notation. In order to simplify the notation for the various
spaces and groups associated with surfaces of type (g,n), we have suppressed the
dependence on the genus g.

- 3. THE STRUCTURE OF THE MAPPING CLASS GROUP M,

Let S, be a fixed compact surface of genus g, and let P, = {p,,....p,} be a
set of n distinguished points or “punctures” on S,. Let S, =S, — P, be the
corresponding punctured surface. A self-map of S, is an orientation-preserving
homeomorphism of S, that leaves the set P, invariant. Note that we do not require
that each point of P, be fixed, but only that the set P, be mapped onto itself.
If f and g are two self-maps of S, then f is isotopic to g on S, if there is an
isotopy between f and g that keeps each of the points of P_ fixed during the
deformation. Using this terminology, we can describe the mapping class group
M, as the group of all self-maps of S, modulo those self-maps isotopic to the
identity of S . We will denote the isotopy class in M, of a self-map f of S, by
[f] .. Note that each self-map of S, also determines an isotopy class [f], in M,.

We shall now review some basic facts about generators and subgroups of M.
(See [3], [5], [7] and [9]) An important type of generator is a twist 7, about
a simple closed curve A on the surface. Informally, we can describe a twist as
follows: cut the surface open along the curve A, twist one end a full turn, then
reattach the surface along A. We must, however, specify the direction in which
the twist is to be made. When the surface is cut open, the orientation of the
surface determines an orientation on each end or boundary curve. We require
that the twist be in the direction indicated by the induced orientation on the
end. Note that the twist 7, depends on the orientation of the surface, but not
on the orientation of the curve. Moreover, two curves that are isotopic determine
the same twist (isotopy class).

Each self-map of S, induces a permutation of the n punctures that depends
only on the isotopy class of the self-map. Let M7 denote the subgroup of elements
that fix each of the punctures. For surfaces S, and S, of the same genus there
is a natural homomorphism ¥, of M_ onto M, that maps [f}, onto [f],. Let
K, denote the kernel of ¥_, and let K* = K, N M?. The groups K, and K} are
the subgroups of M_ and M} ,respectively, represented by self-maps of the punctured
surface S, that are isotopic to the identity on the closed surface S,.

The subgroup K} is generated by elements called &-twists [3] or spins [5].
Each spin has the following form. Let A and B be two nonseparating, simple
closed curves that bound a cylinder containing a single puncture. The isotopy
class in M_ of T,75' is a spin. (See the footnote on p. 158 of [5].) The spin
generators of K* together with a finite number of twists about nonseparating
curves generate M_; therefore twists about nonseparating curves generate the
subgroup M?. The full group M, is generated by these twists together with any
set of elements that induce all possible permutations of the punctures.
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4. ELEMENTS OF FINITE ORDER ON A PUNCTURED SURFACE

To proceed, we need to construct finite self-maps of a punctured surface with
certain geometric properties. Here we discuss how to deform a finite self-map
of the closed surface into a finite self-map of the punctured surface with similar
properties. Let h be a self-map of the closed surface S,. A h-invariant subset
of S, is a set invariant under the action of the cyclic subgroup (h) generated
by h. A set is h-invariant if and only if it is a union of (h)-orbits.

Let Q be a subregion of S, and r a nonnegative integer. We will say that
h is compatible with Q and r if Q contains a h-invariant subset of r points. If
h is compatible with Q and r for all r, then we will simply say that h is compatible
with (. Now consider a permutation p of the set of integers {1,2,...,n}. We will
say that h is compatible with Q and p. if the region Q contains a h-invariant
set of points {q,, ...,q, } such that h(q;) = q,,(1=i=<n).

We can express these compatibility conditions in terms of the number
N, =N,(h,Q) of (h)-orbits of length k completely contained in the region Q.

The map h is compatible with Q and n if and only if n = z km, for integers m,
k=0

satisfying 0 = m, = N, . Similarly, the map h is compatible with Q and p if and
only if the number of k-cycles in the permutation p is less than or equal to N,
(1 =%k =n).

The next two lemmas deal with the deformation of finite self-maps of the
closed surface into finite self-maps of the punctured surface. If Q is a subregion
of Sy, let r(£2) denote the number of punctures lying in Q.

LEMMA 1. Let h be a finite self-map of S, and A a closed subset of S, disjoint
from the set of punctures P,. If h is compatible with Q and r = r(Q) for each
component Q of S, — A containing r punctures, then there exists a finite self-map
h of S, isotopic to h on S, and equal to h on A N h™*(A).

Proof. Let Q,,Q,,...,Q, be a list of the components of S, — A that contain
at least one puncture. Let r; =r();) be the number of punctures lying in
Q;(1 =i=Kk). Since h is compatible with Q; and r;, the region €, contains a
h-invariant set Q; of r; points. Take a self-map f; of S;, isotopic to the identity
on S, and equal to the identity on the complement of Q,, such that

P, N Q) =Q;.

If we set f = f,f, ... f,, then the map h = f~'hf has the desired properties.

LEMMA 2. Let h be a finite self-map of S, and n a permutation of the set
of integers {1,2,...,n}. If h is compatible with S, and p., then there exists a finite
self-map h of S,, isotopic to h on S,, such thath, (p;) =p,, (L =i=n).

Proof. Since h is compatible with S, and p, there is a set of points {q,,...,q,}
on S, such that h(q;) = q, (1 =i =n). If we take a self-map f, isotopic to the
identity on S, such that f(p;) = q; (1 =i =< n), then the map h, = f'hf has the
desired properties.
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5. THE STRUCTURE OF THE QUOTIENT M, /F,

We now consider the quotient of M by the subgroup F, generated by elements
of finite order. If two elements w and w’ of M, define the same element of the
quotient group M, /F_, we will say that w and o’ are congruent modulo F,_,. Our
primary goal is to show that the group M, /F, is cyclic, that is, the group is
generated by a single congruence class.

Consider now two twists 7, and 75 about curves A and B. If » is the isotopy
class of a self-map f of S, such that f(A) =B, then wr,0 ' =175. (See [5] or
[9].) If, in particular, the map f has finite order, then 7, will be congruent to
75 modulo F, (since w is congruent to the identity). Thus we observe that two
twists 7, and 15 are congruent if there is a finite self-map of S, that maps one
curve onto the other. Using this observation, we can show that any two twists
are congruent.

LEMMA 3. If A and B are two nonseparating, simple closed curves on the
surface S,, then the twist about A and the twist about B are congruent modulo
F

n*

Proof. Since a twist depends only on the isotopy class of the curve, we may
assume that A and B intersect transversely in a finite number of points. The
proof is by induction on the number r = | A N B| of points of intersection.

Casel.r = 0: Assume that the curves are disjoint. Since neither curve separates
the surface, the surface S, — A U B obtained by removing both curves is either
a (connected) surface of genus g — 2 with four boundary curves or a disjoint union
of two surfaces of genera g, and g, (g, + g, + 1 = g), each with two boundary
curves. By pasting the surface together along the boundary curves, we see that
the original surface with the two distinguished curves is homeomorphic to one
of the two topological models in Figure 1. In either case, the surface has an involution
h that interchanges the two curves. Now apply Lemma 1 to the map h and the
set A = A U B. Since, in either case, each component of S, — A contains at least
one fixed point of h, we see that h is compatible with each component of S; — A.
It follows from Lemma 1 that there exists a finite self-map h of S, equal to
hon ANh™*(A) = A U B. Since h is a finite self-map of S, that maps A onto
B, the twists about A and B are congruent.

Case 2. r =1: Now assume that the curves intersect at only one point. If
the surface has genus at least 2, then we can find a third nonseparating curve
C disjoint from both A and B. (To see this, note that the set A U B has a regular
neighborhood N homeomorphic to a torus with one boundary curve. The complement
of N is a surface of genus at least 1 that contains nonseparating curves.) By
the previous result, the twists about A and B are both congruent to the twist
about C; therefore the two twists are congruent.

Since there are no nonseparating curves on a sphere, the only remaining case
is a surface of genus 1, a torus. Represent the torus as the unit square

{xy:0=x=1,0=y=1}

with its opposite sides identified. For the curves A and B, we take the vertical
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Figure 1

and horizontal line segments through the point (1/4,1/4). The positive rotation
of order 4 about the center of the square represents a finite self-map h of the
torus that carries A onto B. Set A = A U B and apply Lemma 1 as before. The
complement of A has a single component ) that contains two orbits of length 1,
one orbit of length 2, and an infinite number of orbits of length 4. The map
h is compatible with Q; therefore there exists a finite self-map h of S equal to h
onA N h™'(A) = A. Since h maps A onto B, we see that the two twists are congruent.

Case 3. r = 2: Now assume that A and B intersect at r points and that the
result is true for each pair of curves that intersect in fewer than r points. It
suffices to show that there exists a third nonseparating curve C that intersects
both A and B in fewer than r points. The argument given here is based on one
used by J. Birman to show that the mapping class group is generated by twists

[4].
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(a) (b)
Figure 2

We can construct a curve with these properties as follows. Let p be a point
of intersection. Assign an orientation to both A and B and move along A in the
positive direction until you reach the next point of intersection q. The curve B
crosses A at each point of intersection in a definite direction. There are two
possibilities. In the first case (Figure 2a) the directions are the same and in the
second case (Figure 2b) the directions are opposite.

In the first case, we construct the new curve C shown in Figure 2a. The curve
C starts at a point p’ near p, runs along but slightly to the right of B until
it reaches a point q’ near q, then returns to p’ by crossing both A and B once.
Since the curve C intersects B at only one point, it must be a nonseparating
curve. The curve C has the desired properties, since [B N C| =1 and

[ANC|<|ANB|=r.

In the second case, we construct the two new curves C, and C, shown in Figure
2b. The curve C, starts at a point p’ near p, runs along but slightly to the right
of B until it reaches a point q’ near q, then returns to p’ without crossing either
A or B. The curve C, is constructed similarly on the other side of A. Since| BN C;| =0
and |A N C;| <|A N B| (1 =i=2), each of the curves C, and C, has the desired
properties provided that it is a nonseparating curve. We claim that at least one
of these is a nonseparating curve. The curve B is homoldogous to the sum of C,
and C,. If both C, and C, were separating curves, then both of these curves
would be homologous to zero and, hence, the curve B would also be homologous
to zero. This, however, is impossible, since B is a nonseparating curve.
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LEMMA 4. For a punctured surface S, of genus at least 1, each permutation
of the punctures is induced by an element of the subgroup F ..

Proof. We only need to consider the case when n = 2. A surface of genus
at least 1 has an involution h with at least four fixed points. Set m =n if n
is even and m = n — 1 if n is odd. Let . be the permutation (12)(34) ... (m — 1 m)
and v the permutation (34) ... (m — 1 m). (If m = 2, set v equal to the identity.)

Since the map h is compatible with both permutations, it follows from Lemma
2 that there exist finite self-maps h, and h, of S, isotopic to h on S,, such
that h  (p;) = p, and h,(p;) = p,; (1 =i=n). The isotopy class of h h, is an
element of F_ that interchanges p, and p, and fixes each of the remaining punctures.
Since transpositions generate the full permutation group, it follows that each
permutation of the punctures is induced by an element of F,. We have actually
proven a slightly stronger result. Since the map h  h, is isotopic to h? the identity,
on S,, it follows that each permutation of the punctures is induced by an element
of the subgroup K, N F,.

PROPOSITION 2. For a surface of genus at least 1,

(a) the quotient M /F_ is a cyclic group generated by the common congruence
class of twists about nonseparating curuves,

(b) the homomorphism ¥_ of M, onto M, induces an isomorphism of M_ /F,
onto M, /¥ (F.), and

(c) the order of M_/F, divides 12 if g =1, divides 10 if g =2, and is 1 if
g = 3. '

Proof. Thegroup M, is generated by twists about nonseparating curves together
with any set of elements that induce all possible permutations of the punctures.
Since, by Lemma 4, the elements of F_, induce all possible permutations, we see
that M, is generated by twists and the elements of F,. The elements of F, are
all trivial in the quotient M, /F, and, by Lemma 3, all twists about nonseparating
curves lie in the same congruence class; therefore the quotient M, /F,, is the cyclic
group generated by this single congruence class.

To prove part (b), we first show that K, C F_. The subgroup K} is generated
by spins, each of which is the product of a twist and an inverse of a twist. Since
two twists about nonseparating curves are congruent modulo F,, it follows that
each spin is congruent to the identity modulo F_, and, therefore, K* C F . Now
take an element w € K, . The proof of Lemma 4 shows that there is an element
{ € K, N F,_ that induces the same permutation of the punctures as w does. It
follows that { 'w € K*; hence w € {K} C F,.

The homomorphism ¥, of M, onto M, followed by the natural projection of
M, onto the quotient M, /¥ _(F,) is a homomorphism of M, onto M, /¥ (F,) with
kernelequalto K F, .Since K, C F ,thekernelisF, ;therefore M, /F, isisomorphic
to M,/¥_(F,) as stated in part (b). Simsce the group M,/¥ (F,) is an abelian
quotient of M, its order divides the order of the commutator quotient groupM,/Mj.
The group M,/Mj has order 12 if g = 1, order 10 if g = 2, and order 1 if g = 3.
(See [12], [4], and [14].) From these two results, we see that the order of the
quotient group M, /F, is as stated in part (c).
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6. THE GROUP M, /F,

We can now determine the group M, /F, for all surfaces of finite type.
Case 1. g = 3: Proposition 2 shows that the group M_/F_ is trivial.

Case 2. g =0: For a surface of genus g = 0, we use the presentation of M_
glven in [11]. The group M, is generated by elements o,,0,, ...,0,_,. The element
& = 0,0,...0,_, has order n — 1 and the element § = 0,0, ... 0,_, has order n;
therefore the generator o,_, = &' lies in F_. Since each of the other generators
is conjugate to o,_,, the group M, is generated by elements of finite order. Hence
the quotient M /F_ is also trivial if g = 0.

For a surface of genus 1 or 2, we shall use the following technique to determine
the order of M, /F, . Using the isomorphism established in Proposition 2, we may
replace the group M, /F,_ by its isomorphic image M,/ ¥ _(F,). Let 7 denote the
cyclic generator of the quotient group M,/V¥_(F,) corresponding to the common
congruence class modulo ¥ _(F,) of twists about nonseparating curves. If

= %1 %2 Ek
W= T Ty ... Ty

is an element of M, expressed as a product of twists 7,, then its image in the
quotient M, /¥ (F ) is (g, + e, + ... + ) 7. If o lies in ¥_(F,_), then its image is
0. Thus each element in ¥, (F,) determines a relation (g, + e, + ... + g )7 =0
in the quotient.

To determine whether an element lies in ¥ (F,), we shall use the following
Lemma.

LEMMA 5. Ifh is a finite self-map compatible with S, and n, then the isotopy
class of h lies in ¥_(F,).

Proof. Apply Lemma 1 to the map h and the set A = §J. There exists a finite
self-map h of S, isotopic to h on S,. The class [h], is an element of F, whose
image under the homomorphism ¥, is [h],.

We need to know the properties of some elements of finite order in M. Consider
the system of nonseparating curves {A;} (1 =i =<2g+ 1) shown in Fig. 3. Let
7; denote the twist about the curve A; (1 =i = 2g + 1). The elements a = 7,7, ... 75,
and B = 1,7, ... Ty, are the isotopy classes of finite self-maps h, and h, respec-
tively, with the properties listed in Table 1.

Table 1
orbit structure:
isotopy self- N, is the number
class map order of orbits of length k.
a h_ 41g + 2 N,=1,N,=1,N,,,=1,N, ,=»
B h, 2g + 2 N, —2N =1, Ny, =0

For a surface of genus 1, we can construct h, and h, explicitly and verify
their properties. (Note that § = 7, 7,7, can also be written as 7,7,7,.) For a surface
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Figure 3

of genus 2, the elements a and B have the following simple interpretations. We
can represent the surface as a two-sheeted covering of the sphere branched over
six points. There is a natural homomorphism from the mapping class group of
the surface onto the mapping class group of the sphere with six punctures. (See
[6].) The map h_ is the lift to the covering surface of a rotation of order 5 on
the punctured sphere, while h, is the lift of a rotation of order 6. (The fifth
power of h_ is a covering transformation; therefore h _ has order 10, not 5.)

Case 3. g =1: Consider the element h_ with the properties listed in Table
1. Since an integer n can be written as 1m, + 2m, + 3m; + 6m; (0 =m, = 1,
0=m,=<10=m,; =<1, 0=my), it follows from the discussion in section 3 that
h_ is compatible with S; and n. Using Lemma 5, we see that « is in ¥ (F,).
A similar argument shows that B is also in ¥, (F_). Since « is a product of two
twists and B is a product of three twists, we obtain the relations 27 =0and 37 =0
in the quotient M, /¥ (F,). Taken together these relations imply that 7= 0;
therefore the group M, /¥ (F,) is trivial.

Case 4. g = 2: According to Table 1, the element B2 is the isotopy class of
an involution hz that has two orbits of length 1 and an infinite number of orbits
of length 2. Clearly the map hz is compatible with S, and n; therefore the element
B® lies in ¥_(F.). Since B® is the product of 15 twists, we obtain the relation
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157 = 0 in the quotient group. Moreover, since the order of the quotient divides
10, the relation 107 = 0 also holds. Taken together these relations imply that
57=0.

Now o is the isotopy class of self-map h? of order 5. From Table 1, we see
that h? has three orbits of length 1 and an infinite number of orbits of length
5. Now an integer n can be written as Im;, + 5m; (0 = m, = 3, 0 = m,) if
n # 4 (mod 5); therefore the map h? is compatible with S, and n and, hence, o®
lies in ¥_(F,) if n # 4 (mod 5). The element o” is a product of 8 twists; therefore
we obtain the additional relation 8 ¥ = 0 if n # 4(mod 5). This relation together
with the previous ones show that the quotient is trivial if n # 4 (mod 5).

Assume now that n = 4(mod 5) and consider the original group M /F,_ . We
shall show directly that this group is not trivial. First we show that M does
not contain elements of order divisible by 5. Each element of finite order in M,
is the isotopy class of a conformal self-map of the surface S, [8]; therefore, if
there were an element of order 5, then we could find a conformal self-map h
of the closed surface S, that leaves the set of n punctures invariant.

The Riemann-Hurwitz formula for Riemann surfaces states that, if the surface
S is a branched cover of a surface S’, then the genus g of S, the genus g’ of
S’, the number of sheets k, and the branch number b satisfying the equation:

2-2g=k(2-2g’)—0D.

If we apply the formula to the natural covering of S, over the quotient surface
S,/ (h), we obtain:

—2=5(2—-2g') —b.

Since the only branching occurs at the m fixed points of h (each of which has
branch order 4), the branch number is 4m. Since g’ and m are nonnegative integers,
the only solution is g’ =0 and m = 3. Therefore the only orbits of h are the
three orbits of length 1 and the infinite number of orbits of length 5. Since the
map h must permute the n punctures in these orbits of length 1 or 5, the integer
n is of the form 1m, + 5m, (0 = m, = 3,0 = my). This is impossible if n = 4(mod 5);
therefore M |, has no elements of order 5. Moreover, the group M, has no elements
of order divisible by 5.

Since the commutator quotient group of M, is a cyclic group of order 10, there
is a homomorphism of M, onto Z,, the cyclic group of order 5. If we precede
this homomorphism by the homomorphism ¥_ 6 of M, onto M,, we obtain a
homomorphism ®_ of M onto Z,. Let L, denote the kernel of the homomorphism
@, . If w is an element of finite order in M,, then the order of its image @, ()
divides both the order of w and the order of the image group Z;. Since the order
of w is not divisible by 5, the order of its image @, (w) must be 1 and, therefore,
o is in the kernel L. It follows that the subgroup F, is contained in L, ; therefore
the index of F, in M, is divisible by 5 (the index of L, in M,). On the other
hand, we know from our previous work that the order of M_ /F, divides 5;
consequently we see that M, /F, has order 5 if n = 4 (mod 5).

We summarize these results in Proposition 3. The main Theorem follows
immediately from Propositions 1 and 3.
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PROPOSITION 3. The group M _/F,_ is a cyclic group of order 5 if g =2 and

n = 4(mod 5) and order 1 otherwise.

Remark. We can modify the proof above to show that the quotient of M

by the subgroup generated by involutions is trivial for surfaces of genus g = 3.
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