THE PICK INTERPOLATION THEOREM
FOR FINITELY CONNECTED DOMAINS

M. B. Abrahamse

Let D be the open unit disk, let z,, ...,z, be distinct points in D, and let w,, ..., w,
be complex numbers. A theorem of Pick asserts that there is an analytic function
¢ on D satisfying [&(z)] =1 for z in D and ¢(z;) = w; for i = 1,...,n if and only

if the matrix

is nonnegative (positive semidefinite); moreover, the interpolating function & is
unique if and only if the determinant of this matrix is zero [16]. The purpose
of this paper is to generalize this theorem with D replaced by a finitely connected
domain in the plane.

To state the general result, let R be a bounded domain in the plane whose
boundary consists of p + 1disjoint analytic Jordan curves, let 3R denote the boundary
of R, let p be a nonnegative Borel measurable function on dR which is bounded
and bounded away from zero, let p be the measure du(z) = p(z)d|z|, and let

= {(ay,...,a ) |ap | =1fork =1,...,p} be the p-torus. For o in A, there is a
Hardy space H (R) of multiple- valued analytic functions on R which are mod-
ulus automorphlc of index a. These spaces arise in questions on factorization
[25], invariant subspaces [18], [23] [24], subnormal operators [2], and extremal
polynomials [26]. The space H? (R) can be viewed as a closed subspace of L?(p)
and, using the norm in L%(p), the jpace H2(R) is a functional Hilbert Space over
R. Thus, there is a kernel function k*(s,t) on R X R such that for f in H2 (R)
f(t) = (f, k) where k; (s) = k*(s,t).

THEOREM. Let z,,...,z_ be distinct points in R and let w,,...,w_ be complex
numbers. There is an analytic function & on R satisfying |b(z)] =1 for z in R
and ¢ (z;) = w, fori=1,...,n if and only if the matrix

[(1 = w;w;) k*(z;,2;)]

is nonnegative for each o« in A. The interpolating function ¢ is unique if and
only if the determinant of this maitrix is zero for some o.

Note that if R is the unit disk and if p = 1, then A consists of one point
and the one kernel function involved is the Szegb kernel k(s,t) = (2w) '(1 — st) ™.
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It follows that the interpolation theorem of Pick is a special case of the theorem
above. Also, it should be noted that the kernel functions k* do depend upon the
weight function p. However, the interpolation criterion of the theorem, that the
matrix [(1 — w;W;) k" (z;2;)] is nonnegative for each «, is independent of p.

Some historical observations may help to place this theorem in perspective.
The problem of determining conditions on points z,, ...,z in the disk and on points
Wy, ...,W, such that these values can be interpolated by an analytic function on
the disk bounded by one is known as the Nevanlinna-Pick interpolation problem.
The solution mentioned above due to Pick appeared in 1916 [16] while a rather
different solution due to Nevanlinna appeared in 1919 [15]. Since that time, several
proofs and extensions of the Pick theorem have been found using different blends
of function theory and functional analysis [6], [7], [12], [13], [14], [19], [22].

For multiply connected domains, the Nevanlinna-Pick problem was considered
by certain authors in the 1940’s. The papers of Garabedian [8] and Heins [10]
relate geometric properties of the set of n-tuples (w,, ..., w_) which can be interpolated
to the question of uniqueness of the interpolating function. Furthermore, the
interpolating function is described geometrically in the case when it is unique.
Also, an early paper of Heins shows that the Nevanlinna-Pick problem on an
annulus is equivalent to a corresponding Nevanlinna-Pick problem on the disk
obtained by means of a universal covering map [9].

The theorem in this paper gives intrinsic necessary and sufficient conditions
for existence and uniqueness of an interpolating function on a finitely connected
domain. Here, the term intrinsic means that the condition depends on the points
Zyy...s2, and w,,...,w, and on the kernel functions k* which are natural to the
domain R. Explicitness and computability are lacking in these conditions because
the kernel functions k® are not known explicitly. The only positive result along
these lines is when R is the annulus r < |z| <1 and p = 1. In this case k°(s,t)
can be computed in terms of the orthogonal basis {z*"":n an integer} where

e?™* = q; one obtains k® (s, t) = (2w) " 2 s*trgetr(1 4 Pty

Finally, it should be noted that a normal families argument extends the
interpolation theorem of Pick to a theorem on the existence of an analytic extension
of a function on an arbitrary subset of the disk [7, Chapter XI], [13]. As was
pointed out to the author by Marvin Rosenblum, the same proof applies in this
case and one obtains the following theorem: a function f on a subset K of R
extends to an analytic function on R bounded by one if and only if the function
(1 — f(s) f (t)) k*(s,t) is positive definite on K X K for each « in A.

The proofs in this paper are modeled after those for the unit disk due to Sarason
[19]. The existence assertion of the theorem is proved in Section 2 after an
introductory section on the H?2(R) spaces. The uniqueness assertion is proved in
Section 3 and Section 4 presents an example which exhibits the need for considering
the spaces H? (R) rather than just the Hardy space H?(R).

The author would like to thank Donald Marshall for simplifying the proof
of the main theorem. In a private communication to the author, Marshall formulated
Lemma 5 in Section 2 and indicated how it contains the essential ingredients
of a somewhat lengthy development in an earlier draft of this paper.
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1. THE HILBERT SPACE H? (R).

Let C,, ...,C, be pairwise disjoint analytic cuts in the region R such that the
complement in R of the union C = U {C,:k=1,...,p} is simply connected. For
k =1,...,p, let U, and V, be open sets in R such that U, N V, =§ and

U, NC=C, =4V, N C.
One way to obtain the cuts C, and the open sets U, and V, is to carry out the

construction explicitly for an annulus with concentricslits and then map conformally
to the domain R [4, Chapter 6, Theorem 10].

Figure 1.

For a = (a,,...,a,) in the p-torus A, let H_(R) be the set of complex functions
f on R such that f is analytic on R\ C, for z in V, and w in C,, the function
f satisfies lim f(z) = f(w), and, for z in U, and w in C,, the function f satisfies

Z2— W

lim f(z) = o, f(w). Thus, the space H_(R) is a space of complex functions on R

Z—W

which are analytic except for certain systematic jump discontinuities across the
cuts C,,...,C,. If o is the identity in A, that is, if « =(1,1,..,,1), then H_(R)
is the space H(R) of all analytic functions on R.

If fis in H_(R), then f can be extended by analytic continuation to a multiple-
valued analytic function F on R which has a single-valued modulus. Such a
multiple-valued function is said to be modulus automorphic and it is easily verified
that any modulus automorphic function on R can be obtained in this way. Thus,
the function f in H_(R) is single-valued with discontinuities across the cuts and
it uniquely determines a multiple-valued function F on R without discontinuities.
One refers to the function f in H_(R) as being modulus automorphic, although
this is a slight abuse of the language. The connection between f and a is indicated
by saying that the index of f is a, denoted Index (f) = a.
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If f and g are modulus automorphic of index a and if a and b are complex
numbers, then it is immediate from the definitions that af + bg is modulus
automorphic of index «, hence, the space H_(R) is linear. Furthermore, if f and
g are modulus automorphic, then so is fg and Index (fg) = (Index f) X (Index g).
It follows from this equation that H_(R) is a module over H(R).

The space H?(R) consists of all functions f in H_(R) such that |f|® < u with
u harmonic on R. For o = (1,1, ...,1), the space H? (R) is the usual Hardy space
H?(R) which has been studied in depth [1], [3], [11], [17], [18], [20], [26].
The following lemma establishes a close relationship between H2 (R) and H?(R);
it is proved in many places, for example [1, Proposition 1.15].

LEMMA 1. There is a function E_ in H_(R) such that E_H? (R) = H2 (R).
The function E_ is bounded, bounded away from zero, and can be continued
analytically across any point of the boundary of R which is not an endpoint of
one of the cuts C,.

It follows from Lemma 1 and known facts about H*(R) [17] that a function
f in H2(R) determines via non-tangential limits a boundary function f* in L*(u).
An inner product is defined on H?(R) by setting (f,g) = (f*,g*). The following
lemma is a consequence of Lemma 1 and the corresponding assertions for H?(R)
[17], [26].

LEMMA 2. The space H2 (R) is a Hilbert space and the function f— f(t) is
a bounded linear functional on HZ (R) for every t in R.

In light of Lemma 2 and the Riesz representation theorem for bounded linear
functionals on a Hilbert space, there is for each t in R a function k{ in H2(R)
such that f(t) = (f,k{ ). The kernel function for H2(R) is the function on R X R
defined by the equation k*(s,t) = k{ (s). The space {f*: fin H? (R)} shall be denoted
H2 and the space {f*: fin H*(R)} shall be denoted H®. In the following sections,
no distinction will be made between a function f in H2 (R) and its boundary function
f* in H2. Thus, for instance, the kernel function k{ shall be considered both
as a function in H2(R) and as an element in H2.

2. EXISTENCE OF AN INTERPOLATING FUNCTION

The existence proof makes use of the following three lemmas. Lemma 3 is
an elementary result which is valid in general functional Hilbert spaces [21, proof
of Lemma 4]. Lemma 4 is well known, see for example [1, Theorem 1.7]. Lemma
5 is the key factorization result needed in the proof. This lemma stems from
the inner-outer factorization for a function in H?(R) due to Voichick and Zalcman
[25]. A closely related lemma was established by the author in [1, Lemma 4.4].
Let P_ be the orthogonal projection from L?(u) onto H and let .# * be the orthogonal
complement of a subspace .# in L?(u). Let H” be the subspace of L”(p) consisting
of boundary functions of bounded analytic functions on R; a function in H” shall
also be viewed as an analytic function on R.

LEMMA 3. For ¢ in H*, P_(dk?) = d(t) k.
LEMMA 4. The linear manifold H>* N L”(p) is dense in H**.
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LEMMA 5. Let w be an invertible function in L™(p). If f is in (WH?)* N L” (),
then there is an o in A such that f = gh with g in HZ, h in (wH?2)*, and

lf]=1g|*=|h|*
Proof. Suppose that f is in (WH?)* N L*(n). Since (WH?)* = w 'H?*, the
function f satisfies S log |f|d|z] < o [1, Theorem 1.7 and Theorem 1.18]. It follows

that there is an a and an outer function g in H? with |g|® = |f| [1, Theorem
1.12]. Set h =f/g. Since |h|*=|f]|*/|g|? = |f|, it remains to show that h is
orthogonal to wH2. Since g is outer and in H2 N L (), the space gH?® is a dense
linear manifold in H> [25, Theorem 3]. Thus, it is sufficient to show that h
is orthogonal to wgH?. For this, take k in H?. Since f is in (wWH?)*,

0 = (f,wk) = (f/g wgk) = (h,wgk)

and this completes the proof of the lemma.

THEOREM 1. Let z,,...,z, be distinct points in R, let w,,...,w_, be complex
numbers, and let A be a nonnegative real number. There is an analytic function
¢ on R satisfying |b(z)] = A for zin R and &(z;,) =w, for i=1,...,n if and only
if the matrix

is nonnegative for each o in A.

Proof. Assume that ¢ is in H” and that F = {z,,...,z,}. For s in F, let C,
be a complex number and set

(1) k=> Ck:.

The following two calculations are elementary; equation (3) uses Lemma 3.

@) I&l® = ) C,C.k (s, 1).
3 IP @] = C,Cd(5) Ok (s,b).

Assume further that ¢(z;) = w; for i =1,...,n and let .#_ be the set of functions
k as defined by Equation (1). Equations (2) and (3) show that the assertion

) IP. @K = A*|k|®

for all k in .#_ is equivalent to the assertion
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(5) [(A* — w; W;) k* (z;,2;)] = O.

If$]| = A, then (4) is evidently true, which implies (5) and this proves one direction
of Theorem 1.

To prove the converse, assume (5) for each a in A and let ¢ be a polynomial
such that &(z;) = w; for i = 1,...,n. The discussion above shows that the validity
of (5) implies that of (4). Let w be the polynomial w(z) = (z — z,) ... (z — z_), let
g be in H2, and let h be in (wH?)*. It is easily verified that

(6) H?=4#7_ ®wH?

and it follows from (6) that k = P_(h) is in .#_. Hence, by (4),

(7) = |(h,$g)| = (P, (h),dg)|

S $ghdp
= |(k,dg)| = |(P, (¢ k),g)|
= [P, @K)|lgl=Alkllgl = Alhljg]

Assertion (7) and Lemma (3) imply that

(8) = Al fl,

Xd-)fdu

for all f in (wH?)* N L”(n). It follows from (8) and the Hahn-Banach Theorem,
that there is a function ¢ in L” () such that ||§|.. = A and

(9) S dfdp = X Pfdu

for all f in (wH?)* N L”(u). In particular, the function ¢ — ¥ is orthogonal in
L*(n) to (WH?)* and therefore there is a function m in H? with ¢ — ¢ = wa. It
follows that y(z;) = ¢(z;) = w, for i = 1,...,n and this completes the proof of the
theorem.

3. UNIQUENESS OF THE INTERPOLATING FUNCTION

Let z,,...,z, be distinct points in R, let w,,...,w, be complex numbers, and
assume that there is an analytic function ¢ on R with ¢(z;)) =w, fori=1,...,n
and | (z)] = A for z in R. This section considers the uniqueness of the function
. A theorem of Garabedian asserts that if ¢ is unique, then ¢ extends analytically
across the boundary of R, |4 (z)] = A for z in the boundary of R, and the number
of zeros of ¢ in R (counting multiplicities) is less than n + p [8, Theorem 4;
9]. Theorem 2 below gives a criterion for uniqueness. This theorem generalizes
a result for the unit disk due to Pick [7, Chapter XI], [14], [16]. The proof
of Theorem 2 makes use of the following lemma due to Widom [26, Theorem
7.3].
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LEMMA 6. For z and w in R, the function o — k°®(z,w) is continuous on
A.

THEOREM 2. The interpolating function is unique if and only if
det [(A® — w;w;) k%(z;,2;)] =0

for some «.

Proof. Let M_ be the matrix [(A® — w;W;) k*(z;,2;)]. The assumption that an
interpolating function exists implies by Theorem 1 that M_ = 0 for each a. Suppose
that det M_ # O for each «. Then each M is an invertible positive matrix and
the function o« — M _ is continuous by Lemma 6. Since the p-torus A is compact,
it follows that there is an € > 0 such that M_=¢ I for each o where I is the
n X n identity matrix. Let A be the matrix [k®(z;,z;)]. Then each A _ is a positive
matrix and the function o — A _ is continuous by Lemma 6. The compactness
of A implies the existence of a 8 > 0 such that eI = §A_ for each «. Thus, one
obtains M, = 8A, for each a. This implies that M_ — 3A_ = 0 which says that
[(A® — 3 — w;Ww;) k®(z;,2;)] = 0. Theorem 1 implies the existence of a function ¢

in H” with ||¢]|. =V A* —8 and &(z;) = w, for i = 1, ...,n. Thus, if
w(z)=((2z—2,)..(2—1z,),

then for each B with |B| <A —V A% -3, the function ¢ = + B w/|w|.. satis-
fies |¥|l. = A and ¥ (z;) = w; for i = 1,...,n. Hence, the interpolating function is
not unique.

Conversely, let ¢ be a function in H” with |||, = Aand ¢ (z;) = w;fori=1,...,,n
and assume that det M, = 0. It follows that there are complex numbers C, not
all zero such that

(10) > C,0.(1- ()b )k (s,t) = 0.

Ifk = > C,ks,then (2), (3), and (10) say that

(11) P, bK)|* = A%||k|>

Since ||¢].. < A, one has |P_(dKk)||*> = ||dk||® = A®||k||* and this combined with (11)
implies that dk = g with g in H2. Since the function k cannot vanish on a set
of positive measure [1, Corollary 1.19], one has the representation ¢ = g/k which
shows that ¢ is unique. This completes the proof of Theorem 2.

As for the unit disk [19, Proposition 5.1], the proof of Theorem 2 shows that
if the interpolating function ¢ is unique, then |$| = A dp-almost-everywhere and
¢ = g/k with both g and k in the space .#_, the set of linear combinations of
the kernel functions k7 ,...,k; . It is possible to use these facts to deduce that
¢ is continuous across the boundary of R and has less than n + p zeros in R,
thus recovering the aforementioned theorem of Garabedian. This analysis requires
a careful look at functions in .#, and will not be carried out here.
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4. AN EXAMPLE

Let k (s, t) be the kernel function k° (s, t) witha = (1,...,1).Ifp = 1 (dp.(z) = d|z]),
then k is the Szeg6 kernel function for R and it is known that there are points
z, and z, in R with k(z,,z,) = 0 {5, Chapter VII]. Given such z, and z, and
given complex numbers w, and w,, the matrix [(1 — w;W;) k (z;,2;)] is the diagonal

matrix
[(1 — | w,1?) k(z,,2,) 0 ]
0 (1—|w2|2)k(zz,z2) .

Since k(z,,z,) and k(z,,z,) are positive, this matrix is nonnegative if and only
if Jw,| = 1 and |w,| = 1. This condition is clearly not sufficient to guarantee the
existence of an analytic function ¢ on R with ¢ (z,) = w,, d(z,) = w,,and |d(2)| = 1
for all z in R, for example, consider w, = 0 and w, = 1. This example shows that
it is not enough to consider only the Szego kernel as in the case for the unit
disk.

One can inquire about what subsets A, of A are sufficient for Theorem 1,
that is, for which A, is the existence of an interpolating function equivalent to
the nonnegativity of the matrices [(1 — w,w;) k®(z;,2;)] for a in A,. Theorem
1 asserts that A, = A has this property. Lemma 6 implies that these matrices
are continuous in « and therefore any dense set A, of A has this property. The
example above is a case where A, contains exactly one point and A, does not
have the property. The author conjectures that density of A, in A is needed; if
A, omits a non-empty open subset of A, then the theorem fails.
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