AN L, ANALYTIC FOURIER-FEYNMAN TRANSFORM

G. W. Johnson and D. L. Skoug

0. INTRODUCTION

In [1] Brue introduced an L, analytic Fourier-Feynman transform. In [3]
Cameron and Storvick introduced an L, analytic Fourier-Feynman transform. In
this paper we study an L, analytic Fourier-Feynman transform for 1 =p = 2.
The resulting theorems extend the theory substantially (even in the cases p=1
and p = 2) and indicate relationships between the L, and L, theories.

Before giving the basic definitions we fix some notation. R™ will denote
n-dimensional Euclidean space, C the complex numbers and C* the complex numbers
with positive real part. C,(R”) will denote the C-valued continuous functions on
R™ which vanish at «. Wiener space, C [a,b], will denote the R-valued continuous
functions on [a,b] that vanish at a. Integration over C [a,b] will always be with
respect to Wiener measure. If Y and Z are Banach spaces, L(Y,Z) will denote
the space of continuous linear operators from Y to Z.

In this paper, as in [3], the term Wiener measurable will always mean measurable
with respect to the uncompleted Wiener measure; that is measurable with respect
to the o-algebra of Borel sets in C [a,b].

Definition. Let F be a functional such that the Wiener integral

(0.1) ) JO) = X FO\%x)dx

C [a,b]

exists for almost all real A\ > 0. If there exists a function J* (\) analytic in the
half-plane C* such that J(\) = J*(\) for almost all real A > 0, then we define
this essential analytic extension of J to be the analytic Wiener integral of F over
C [a,b] with parameter A and we write

0.2) g Fx)dx =J*(\) for\ € C™.

C [a,b]

Notation. For A € C* andy € C [a,b] let

anwx

(0.3) (T\F)y) = S F(x + y)dx.

C [a,b]

Terminology. We shall say that two functionals F and G are equal s-almost
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everywhere if for each p > 0, F (px) = G (px) for almost all x € C [a,b]; in other
words, F (x) = G (x) except for a scale-invariant null set. We denote this equivalence
relation by F = G. The need for considering this equivalence relation is discussed
in section 1 of [3]; also see the comments at the end of this introduction.

Notation. Given a number p such that 1 =p o, p and p’ will always be
related by 1/p + 1/p’ = 1.

Definition. Let 1 <p = 2. Let {H_} and H be measurable functions such that
for each p > 0,

(0.4) lim S |H, (py) — H(py)| " dy = 0.
C [a,b]

n—o

Then we write

(0.5) Lim. (w*)H, ~H

n—o

and we call H the scale invariant limit in the mean of order p’ of H_ over C [a,b].
A similar definition is understood when n is replaced by a continuously varying
parameter.

Definition. Let q be a nonzero real number. For 1 <p <2 we define the L,
analytic Fourier-Feynman transform of F, which we denote by T(") F, by the formula

(0.6) (T F)y) = {_l,fnq (W) (T, F)(y)

AECT

whenever this limit exists (recall that T, F is given by (0.3)). Let F be a functional
on Wiener space such that (T, F)(y) exists in C* for s-almost every y. We define
the L, analytic Fourier-Feynman transform of F, which we denote by TS) F, as
that functional (if it exists) on Wiener space such that

(0.7) (TP F (@) = Jim (T, F)()
reCt

for s-almost every y. We note that for 1=p=2, TP

everywhere.

F is defined only s-almost

Remarks. (i) In view of (0.6) it would seem natural and desirable to define
TS’ F by requiring that for each p > 0

(0.8) Jim [ess sup |(T, F)py) ~ (TS F)(py)|]1 = 0.
rEeCt

Unfortunately (0.8) doesn’t even hold for any p > 0 for a functional as simple
as F (x) = x;_,4, x(b)).

(ii) T®F agrees with the L, analytic Fourier-Feynman transform as defined
by Cameron and Storvick by equation (0.3) on page 3 of [3].
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(iii) Our definition of Tf:) F is more restrictive than that given by Brue in
1972 in that we require (0.7) to hold s-almost everywhere rather than just a.e..
However, for all the functionals F which Brue considered, we are able to show
that Tfll’ F exists in this stronger sense.

Next we briefly describe the type of functionals F for which we will establish
the existence of the L, analytic Fourier-Feynman transform T(")F Let n be a
positive integer and let a=t,<t;<..<t,=b. For 1=p <2 let & ® be the
space of functionals F of the form F(x) = f(x(t,), ..., x(t,)) s-almost everywhere

where f € L, (R™) and f is Borel measurable. In section 1 we obtain the existence
of TP F for F in. ®,

Next let A, = {(t;,..,t)]a=t, <t,; <..<t,=<b}. For 1=p=2 and
r € (2p/(2p — 1),®] let L (A, XR™) be the space of all C-valued functions f
defined and Borel measurable onA, XR" such that f (tl, . tn, y oo *)isin L, (R™)
for almost all (t,,...,t,) € A, and [If &y, ooos ts ey )] is in L (A,). Let Y:f’:
be the space of functionals F of the form

F®) = X (n) S ft,, ..., t;x (), ..., x(t,))dt, ... dt

s-almost everywhere wheref € L (A, X R, ). In section 2 we show that T (‘”F exists
for F in & ff”, In section 3 we bulld a larger space % by using sums of functlonals
chosen from each of the spaces .#'") and show that T® F exists for F in &#®.
Finally in section 4 we show that 1f ® is an entire function of order less than
2p and if 0 (t,u) is in L, ([a,b] X R) then Tfl‘”F exists for the functional

b
F(x)= (I)(S B(t,x(t))dt).

At this time we indicate briefly how our results relate to previous theorems.
In the case p = 2, the situation studied by Cameron and Storvick, our results
are slightly stronger; whereas they require f(t,, ..., t,; u;, ..., u,) € L, (A XR")

we require f(t,, ..., t,;u,, ..., u,) € U L, (A, X R”).In particular we may have
r>4/3

f(t,, ....,t;u;,...,u,) € Loy (A, XR") =L,(A, X R"). In the case 1 <p <2 our

results are of course new. In the case p = 1, the situation studied by Brue, we

obtain the existence of T{’F for a much larger class of functionals F.

Finally we want to comment briefly on the need for considering the equivalence
relation =. In [3; pp. 6 and 7], Cameron and Storvick exhibit two functionals
F and G such that F(x) = G(x) almost everywhere but (T F)(y) # (T,G)(y) on
a set of positive Wiener measure. It is easy to see that for all p € [1,2],

(TP F)y) # (TP G)(y)

on a set of positive Wiener measure. However the transformation T® preserves
equivalence classes based on the relation = as we see in the following theorem
which is a restatement of Theorem 1 of [3; p. 5] in our setting.
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THEOREM 0.1. Let q be a non-zero real number and let 1 < p < 2 be given.
LétF, andF, be Wiener measurable functionals such thatF, = F,. Then the following
statements hold:

G) If Tfl") F, exists then Tf;” F, exists and Tff)Fl =~ Tff ’F;.
anwx

(ii) If for s-almost every y, S F,(x + y)dx exists for A € C", then the
. Jclap

corresponding analytic Wiener integral of ¥, exists for s-almost every y and we

have

anw)‘ ﬂnwk
(0.9) S F,x+ydx= S F,x+y)dx forallx € C".

C[a,b} C[a,b]
(iii) For s-almost every y
(0.10) , F,(px +y) = F, (px + y)

for almost all p > 0 and almost all x € C [a,b].

1. THE TRANSFORM T® APPLIED TO FUNCTIONALS F CONTAINED IN.o&/ ®

We begin this section by developing three preliminary lemmas that play key
roles throughout this paper.

Lemma 1.1. Let1 < p < 2. Let n be a positive integer and let
a=t,<t, <..<t,=bh.

Given a nonzero complex number A with nonnegative real part and f in L, (R"),
let

(1.1) K, f)w,, ..., w,) =A%y S (n) S fu,,...,u,)
) N [(u; —u;_,) — (w; — w;_,)] 2
du, ... d
exp ( 9 Z tj _ tj_l ) u, u,,

wherey =~y () = [2w)"(t, —a) ... (t, — t,_;)] —1/2 ThenK, isin L(L,(R™),L, (R"))
and

(1.2) 1K, ] = (N2 ) @7P7P,

Furthermore when p = 1, K, f is in C,(R").

Remarks. (i) When n is odd we always choose \"/? with nonnegative real part.
(ii) When 1 <p =<2 and ReX = 0 the integral in (1.1) should be interpreted in
the mean just as in the theory of the L, Fourier transform [7]. (iii) K, f is also
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a function of (t,, ..., t,); however in this section we will be considering the t;s
as fixed and so we will suppress reference to them.

Proof. We will first treat the extreme cases p = 1 and p = 2. The intermediate
cases 1 < p < 2 will be handled by interpolation via the M. Riesz convexity theorem.

p = 1: The result is clear in this case since for all (w,, ..., w,),
| )W, o W) =< N2 | £]]
p = 2: This case was established by Cameron andlstorvi(‘:k in Lemma 1 of

[3].

1 < p < 2: Fix \ # 0 such that ReX = 0. In the terminology of the M. Riesz
convexity theorem as given in [7; Theorem 1.3, p. 179] we have shown that K,
is of type (1,) with (1,00) norm dominated by [A] ®/2 and of type (2,2) with
(2,2) norm dominated by 1. Applying the convexity theorem we have that K,
is in L(L,,L,) with

”K}‘” < (I}\'nlzy)l—zlp' (1) 2/p _ (l)‘l n/27) (2-p)/p

which establishes (1.2). _
Furthermore when p = 1, a standard argument shows that K, f is in C,(R").

LEMMA1.2. Letl <p =<2, and qbeanonzerorealnumber, and letf € L, (R").
Then

(1.3) K f —K_; fll,—=0 as\— —iqthroughC".

—iq
Proof. First consider the substitutions

= e B o S and W, = Wi T Wim1 ji=1,2 n
J /tj _ tj—l b ) /tj _ tj_l H 3 AR ] .
Then u—zv —t,_, u, and w—z\/ —t,_, wi for j=1,2,.

Making these substltutlons on the right hand side of (1.1) we obtain

K, H)(w,, .., w,) = K, HVt, —aw,, .. 2 Vit —t,_, W)

A n/2 o il n
()7 e v

) N
exp (—;Z [u} —w/] 2) duj ... dup,

j=1

which, as A — —iq (using [5; Lemma 1.2, p. 100]) converges inL,, (R") as a function
of (wy, ..., wl) to the function
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3 n/2 oo © n
( lq) S (Il) X f(“ tl_au’la ’2 v tk_tk—l u’k)
2% w ® =1

exp( Z[u - wi] )dul... u,

A A—u, A—u,_,
= lim (—qi) ™%~y S S S f(u,,...,u,)

A—>0

i —A —A—u; —A—u,
i [(wi—u_,)— W —w._,)]?
exp(q—E[ - i : =)l )dun...du1
2 1 ) t] - tj—l
A A
= lim (—qi) ™%y X (n) S f(u,, ..., u,)
Ao —A ~A
i [(uy—u_y) = (w; —w;_ )12
exp(q—z Ly, =2 - =] )dun...du1
2 i tj - tj—l

= (K_;f)(wy, ..., W),

where the limits with respect to A are taken in the L -norm.
LEMMA 1.3. Letf € L,(R") and let K, f be given by (1.1). Then
(i) as elements of C,(R"), K, f converges weakly to K_, f as \ - —iq through
cT,
(ii) K, f converges pointwise to K_; f in R™ as A - —iq.

’ Proof. (ii) is a direct consequence of the Dominated Convergence Theorem.
To establish (i) let p € M (R"), the dual of C,(R"). We need to show that

Ihm S K, )wy, ..., wddp (wy, ..., w,)
Rl’l

A——iq

(1.4) -
= S (K—iqf)(Wh ceey Wn)dlb (Wls LA ] Wn}.
RB

But this follows quite easily using the Dominated Convergence Theorem once
one substitutes for K, f and K_; f in (1.4) using (1.1).

Definition. Let n be a positive integer and let a =t, <t, <...<t,=b. For

1=<p<ow let .o® be the space of functionals F which can be expressed in the
form

(1.5) F((x) =f(x(t,), ..., x(t,))

s-almost everywhere on C [a,b] where f € L, (R") and f is Borel measurable. Let
2 & be the space of functionals F which can be expressed in the form (1.5) s-almost
everywhere on C [a,b] with f Borel measurable and in C, (R").
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In our first theorem we show that T F exists for F in.o/ .

THEOREM 1.1. Let1 = p < 2, let q be a nonzero real number and let F € &7
be given by (1.5). Then the L -analytic Fourier-Feynman transform of F, TP F
exists, is in.Z "’ and is given by the formula

(1.6) (TP F) ) = K_; )y (t1), - ¥ ().

Proof. We first note, using the Fubini Theorem, that f Borel measurable implies
that K, f is Borel measurable for each A € C7; this in turn assures us that K_, f
is Borel measurable. In addition, using Lemma 1.1, we see that K_; fis inL_ (R").

We will use Morera’s Theorem to show that for each y € C [a,b],

&K, £)(y (t,), ..., y (t,))

is an analytic function of A in C ™. First an application of the Dominated Convergence
Theorem shows that (K, f)(y(t,), ..., y(t,)) is continuous in C*; an appropriate
dominating function is obtained almost exactly as in the following argument and
so the argument will be omitted here. Now let A be a triangular path in C”.

We need only show that (K, )y (t;), ..., y (t,)) d\ = 0. But this will clearly

A
follow from the Cauchy Integral Theorem if we can justify moving the integral
with respect to N\ inside the other integrals defining K, f (see equation (1.1)). Let
D=sup{|]A]:A € A} and E = inf {ReX:\ € A}. Then the function

n s — Wy ) — t.) — t‘—l 2
D“’zvlf(ul,...,u,,)lexp{(—E/:a)Z[(u’ W) — () — v (t40))] }

=t

dominates (K, f)(y(t,), ..., ¥ (t,)) and is integrable with respect to u,, ..., u, and
A. Thus the use of the Fubini Theorem is justified and we have established that

S F (x + y)dx = (T, F)(y)

C [a,b]

exists throughout C* and equals (K, f)(y(t,), ..., y(t,)) for s-almost every y in
C [a,b].

To establish the existence of Tg” F we will need to consider twocases; (a) 1 <p <2
and (b) p=1.

(a) Fix 1 <p = 2. To show that Tf;’)F exists and is given by (1.6) it suffices
to show that for each p > 0

lim S | (K, £)(pY (1), - pY (82)) — By D)y (&), ..., y (£,))] 7 dy = 0.
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S | K\ )y (t,), .. py (£,)) — Ko D)(py (t,), ..., py (£,))| 7 dy
C [a,b]
= (v/p") S (n) S |(K, )y, ..., u,) = K Dy, ...y w,)|*

n — 1. 2
exp {(—1/2p2) 2 u} du, ... du,
i=1

7 V-1

= (v/p"IEKE(, ony ) = B D)y ooy )Y

which goes to zero as A— —iq through C* by Lemma 1.2. Hence for 1 < p < 2, Tff) F
exists, belongs to .o 2’ ), and is given by (1.6).

(b) Let p = 1. In this case the fact that T{" F exists and is given by (1.6) follows
easily from Lemma 1.3.

Next we obtain an inverse transform theorem for F in.o®.

THEOREM 1.2. Let1 = p =< 2, let q be a nonzero real number and letF € o7
be given by (1.5). Then for each p > 0 (recall that T, is defined by (0.3))

1.7) lim S IT: T\ F (py) — F (py)|°dy = 0.
A— —iq Cla,b] '
rAECH

Furthermore,

(1.8) T T, F — F s-almost everywhere as\ - —iq.

Proof. We first note that for all A\ in C* (see pages 524 and 525 of [2] where
integrals similar to those below are evaluated),

KK, £)(vy, ooy v,) = [A] 7Y S (n) S

-0

exp {(—X/z) PO Wj—tl )_—t(Vj ~ el }

[S (H)S f(ul,...,un)exp{(—)\/2)2 [(u"_uj‘lt):iwj"wj—l)] }

J i—1

du, ... dul] dw, ... dw,

= |A|"v? X (n) S f(u,, ..., un)[g (n) g

- g [ i~ Wiog) — (Vj_vj—-l)]2
exp{(—)\/2)2 = t,—t }
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2wy — wily) — (g — )] ?
exp {(—)\/2) 2 [, - ; . i~ W)l dw, ... dw, |du, ... du,
1 R !

IRI“ © o l:'ﬂ(t J 1)]
= fuy, ...,
(2'“')“(1;1 - a) cen (tn - tn—l) S_m (n) S (u u )]._I Reh

exp {(—I)\|2/4Re)\) 2 [y, — j—tlz)——t( Gl /ZVR }dun oo duy

= *d)vy,y .0y V)

where
n _(vj _ Vj_l)z
bV, e, V) = (2w (t;, — t;_,)] "% exp { ,
51;1 S 2(t — t)
‘ 1 v v,
e="V 2ReX /\|, and &, (v,, ..., vn)E—n—cb(-—l—, ,——)
€ € €
Now

S (n) S bd(vyy .., vy)dv, ...dv, =1 and

d(vy, ., v ) >0 for all (v, ..., v,)

and so using [7; Theorem 1.18, page 10} we obtain that .
(1.9) ||f* &, — f]],— 0 ase— 0 (i.e, as A — —iq).

But (1.7) now follows easily from (1.9) and the observation that for each p > 0

g |Tx T, F(py) — F (py)|"dy
Ca,b]

—o0

= (y/p“)"g (n) X (KK D)V ooy Vi) = £ vy, oy v)IP

-1 (vj_vj—1)2 } )
exp \— —— ¢t dv, ... dv,
{292 Z t— '

1

= ('Y/pn) S (n) S I(f* d)t:)(vl’ ceey Vn) - f(Vl, seey Vn)lp

__1 n (VJ . Vj—I)Z }
exp { — ————dv,...dv,
P {292 2 t—t_ '

1

= @/eNIf+d, — £ ,.
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Next using [7; Theorem 1.25, page 13] it follows that the function

KK )V, ooy v,) = (E*,) (V55 ey V)

converges pointwise to the function f(v,, ..., v,) ase— 0 (i.e, as A - —iq). (There
is a little work involved in showing that the hypotheses are satisfied.) Hence
for each p > 0 and for almost all y in C [a,b]

Ti T\ F (py) = K; K, f (py (t,), ..., py (t,))
= (f* ¢, )(py (t,), ..., py (t.)) = £ (py (t,), ..., ¥y (t.)) = F(py)

which establishes (1.8) and concludes the proof of the theorem.

Remark. In [1], Brue, for a more restricted class of functionals F, showed
that T?), T F = F. Actually he only considered the case q = 1 but clearly his results
are valid for all real q # 0. Inorder to obtain this result he put additional assumptions
of f guaranteeing that (K, f)(w,, ..., w,) would be in L, (R"). That 1s to say, he
restricted F so that TS’ F would be in.oZ ("’ rather than only in ¢’ and thus

it made sense to apply T to the functional TOF. If for 1= p<2 we would

put additional assumptions on f guaranteeing that K, f)(w,, ..., w,) would be in
L,(R"), then T® F would be in /" from which it follows that T‘f;Tg’)F F.

However for p=2 p’ =2 and so for F in Z® we see, using Theorem 1.1, that

TOF is in 2. Thus we have the following Theorem.

THEOREM 1.3. (Thedrem 3 on page 16 of [3].) Let q be a non-zero real number
and let F be in o ®. Then T? T®F = F.

—q°q

2. THE TRANSFORM Tff’ APPLIED TO FUNCTIONALS F CONTAINED IN.#®

For n=1 let A,= {(t,,...,t);a<t, <..<t,=<b}. For 1=p=w and
l=r=owlet L, (A, XR") be the space of all C-valued functions f defined and
Borel measurable on A, X R" such that f(t,,...,t,; -, ..., -) is in L (R"®) (In case
p=oo we require f(t,..., t,,, sy ') to be in C,(R").) for almost all
(ty, ..., t,) € Ay and ||f(,, ..., b5 -, .y )|, isin L (A,). For f€ L, (A, X R") let

1/r
2.1) Nn(f)E||f||pr={§ (n)S||f(t1,...,t,,;-,...,~)||;dt1...dt,,} .

n

Forn = 1,let. ") be the space of functionals F such that for somef € L, (A, X R")
2.2) F(x) = S (n) S £(byy ooy b3 X (B, ooy X (8,)) Aty ... dt
Ja,

for s-almost all x. The function f is called a defining kernel for F. For notational
purposes we will let & 3’1 denote the constant C-valued functionals.

Remarks. (i) In what follows we will have 1 = p=<2andr € (2p/(2p — 1), ]
and p’ and r’ will satisfy 1/p+ 1/p’=1and 1/r + 1/r’ =1 as usual. -
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(ii) In the case p =2, our basic assumption on f will always be that

f(t,,....t,;uy,...,u,) € U L, (A, X R"). In particular we may have

r>4/3
ft,,...,t5u,...,u) € Ly,(A, XR") =L, (A, XR").
In order to show that T’ F exists for F in &7, it will be useful to first establish

two lemmas.

LEMMA 2.1. Let 1=p=2andr € (2p/(2p — 1),]. For f € L, (A, X R")
and ReA =0, A # 0, let

)ty oy bty Wy oeny W)

oo oo

= \"/2y S (n) S fit, .., tsuy, .ouy)
(2.3) o o

° [(uj - uj—l) - (Wj - Wj——l)] z
exp {(—x/z) > '}du1 ... du,.

i=1 t =t
Then for all Re\ = 0, A # 0 and almost all (t,, ..., t,) € A,,
IOty .ty 0, ., ) € Ly (RY)
(as before in the case p = 1, J, f € C,(R™)) with
(2.4) ||(IaE) (g5 oo b3 o5 ey ] = IMPEDZNEPRIIER,, ot e e

In addition for allReA =0, A\ #0and1=p <2

2pr
2p+1r(2 —p)

(2.5a) Jf € L,, (A, XR") forall a <

while for p = 2
(2.5b) J,f € L, (A, XR").

Remarks. (i) In case ReX = 0 and 1 < p < 2 the integral in (2.3) is of course
interpreted in the mean.

(i1) For fixed (t,,...,t,) € A,, J, ), ..., t,; Wy, ..., w,) = (K, g)(w,, ..., w,)
where K, is given by (1.1) and g (w,, ..., w,) = f(t,, ..., t,; W, ..., W,).

Proof. In view of (ii) above, Lemma 1.1 immediately implies that J, f is in
L, (R") and satisfies (2.4). In the case p =1, it is again easy to see that J_f
is in C,(R™). Also (2.5b) follows immediately from (2.4). Thus all that remains
to be established is (2.5a). So we fix p € [1,2) and note that the function
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[ 1 ](2'_‘13)/29
,Y(2—p)/p =
2m)" (t, —a) ... (t, — t,_,)

belongs to L, ;o . (A,) for all ¢ € (0,2p/(2 — p) — 1). In addition
[y ;..o tas 0y ooy )], € L (A,) by assumption. Next we recall that if f, € L, (R")
and f, € L, (R") then f,f, € L, (R®) where 1/k =1/s, + 1/s,. Thus for each

'y‘z“"”"llf(tl, ces bty ey -)IIPE L. (A"),
where
1 2p—e(2—p)+r(2—
k=1/r+ _% e(2—p)+r(2—p
2p/(2—p) —¢ r [2p — €(2 — p)]

Now using (2.4) and letting ¢ — 0 yields (2.5a).
LEMMA 2.2. Let 1=p=2 and r € (2p/(2p — 1),»]. Let F € .#®. be given

n,r

by (2.2) with defining kernel f. Let J, f be given by (2.3). Then for s-almost every

anw,

y the analytic Wiener integral (T, F)(y) = S F(x + y)dx exists and is given
C[a,b]

by

(2.6) (T, F)(y) = S (n) S Dty ..ty (), ..,y () dt, ... dt,.
by

In addition for 1 <= p <2 and each p > 0,

1/p
(T F)p )| wpr= { g [(T F)(py) | d.v}
Cla,b]

I>\I n(2—p)/2p Nn (f) i o 1/x’
= e (n) \ vy /°dt, ... dt,
p Ay

’ (n+1)/r’
l}\ln(Z—p)/2p 1\1n (f)(b _ a) n(l—r'/2p) /¢’ |:I- (1 _ _;__)]
P

’ 1/x’
G (2n)“/2p{r [(n + 1)(1 . )]}
2p

where T" denotes the Gamma function.

(2.7)

Remark. In case p =1, p’ = o and in (2.7) we mean
”(T)\F)(p('))“w,mE Sup I(TAF)(PYH-
y€C[a,b]

Proof. For A > 0, one obtains equation (2.6) by a fundamental Wiener integra-
tion formula and use of the Fubini Theorem. Then, much as in the proof of Theorem
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1.1, one shows that the right hand side of equation (2.6) has an analytic extension
throughout C ™.

Next we will establish (2.7) for 1 < p =< 2. The proof for the case p = 1 is similar,
but somewhat easier. In (2.8) below, the first inequality follows from Minkowski’s
inequality for integrals [6, p. 271], the third from (2.4) and the fourth from Hoélder
and (2.1).

{

=

(2.8)

<

1/p’
g |(T\ F)(py)| dy}.
C1ia,b]

o 1.
.ol
e

p’ 1/p’
dy}

1/p
I )y, ..., t; py (), ..o, py ENIT dy] dt, ... dt,

S (n) S Dy oo b pY (Ey), oo py (80)) dE, .. dE,

i

S (n)s [T )ty ooy b 0y, ooy 1)
P —e —

1 n (uj__uj—l)2} ]I/po
expy—— ——— ¢ du, ... du, dt, ... dt,
D { 297 z — 1 1

1

" S (n) S ’Yl/p'”(J)\f)(tu o bas s )| dEy L dty
An

I)‘I n(2—p)/2p

= S (“)X VPN Ry veos b3 7 eens ] Ay . by
An

p

I |n(2 pP)/2p ' 1/r’
=——-N, (f)[S (n) X TP dt, ... dt,,]
P A

n

But (see [5, pp. 106-107] for the key equality)

(2.9)

X (n) X ~y /Pdt, ... dt,
An

= (2m) ™/ g S ’ S [(t, —a) ... (t, — t,_,)] ~/*dt, ... dt,

a a a

b—a |7/ (® (t ta
S[ ] S S S [t — @) oo (ta — t, )b — £,)] 77/ dt, ... dt,

(2m)* a

[ b—a :|rl/2p (b _ a)n—(n+1)x’/2p l:r (1 . i) :|n+1
B )" 2p
P[(n + 1)(1 — —r—)]
2p

a a

from which (2.7) follows easily.
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THEOREM 2.1. Letl=p=<2andr € 2p/(2p — 1),x]. Let F € 5’“” be given

by (2.2) with defining kernel f. Then for all real q # 0, the L, analytic Fourter—Feyn—
man transform T“” exists s-almost everywhere and is given by

(2.10) (T®PF)(y) = S (n) S (J_qu)(t oty y (), .,y () dt, L dt
An

where J, f is given by (2.3).

Proof. Case 1: 1 <p = 2. First we note that by Minkowski’s inequality for
integrals [6, p. 271]

SCMM

S (n) S (D)L, .o b5 pY (£y), ooy pY (E,)) —

P’

i D)y, s taspy (£), . py (E))] dt, ... dt, | dy

(2.11)
= S (n) X [ X |IA D)ty ooy to; pY (£1)s ooy Y (£2))
Ap C[a,b]

1/p
— g E)tyy ooy b Y (Ey), o Y G D dy] dt, ... dt,

for all p>0 and A\ € C*. To establish (2.10) it suffices to show that for each
p > 0 the limit as A\ > —iq (Re\ > 0) of the left side of (2.11) is zero; we will
show that the limit of the right hand side is zero using the Dominated Convergence
Theorem. The use of the Dominated Convergence Theorem is justified by (1) and
(2) below.

(1) Using Lemma 1.2 it is easy to see that for almost all (t,, ..., t,) € A,

A—> —iq
AEct

lim |5 )ty s ..oy ta5 Y (L), oo pY (£,))
C [a,b]

— T Dy, coos a3 pY (), <oy pY (6,))]7 dy = O.

(2) To obtain a dominating function we note that for all A € C* such that
IA] < |q] + 1 we have using (2.4),

[ S [T )y ooy bt ¥ @), oony Y (£2)) —
C [a,b]
1/p
T_iq )ty ons tas Y (81, ooy pY E Y dy]

= [—; S (n) S |J, )ty s ooy tosuy, o 1y) —
p

—00

T _ig )y ooy b3 g,y ey U™

—iq
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1 n (uJ . uj“1)2 } ]1/}).
exp du, ... du,
{ 2P2 E t =t '

j=1

1/p’
<

Y
- [”(fo)(tl’ vy tn’ Ty eeey ')”p'
P

n/p’

@i E)Eys v bas s eees ] ]
2 (gl + 11"/
<

=
[

’Yl/p“f(tli srey tn; Ty oeeey ')”p

which is in L, (A)) since /P € L, (A,) and |[f(ty, ooy tas 5 oo )], € LA L),
Case 2: p = 1. In this case we show that for each p > 0 and almost ally € C [a,b]

A——iq
reCt

= S ) S (TiaD)lrs oo b pY (£, .y pY (£,)) it .. dit.
AIl

lim S (n) S D)ty oo b5y (£), - py (£,)) dE, .. di,
An

Again this follows by use of the Dominated Convergence Theorem. To obtain a
dominating function we note that for A € C” satisfying |[\| < |q] + 1 we have,
using (2.4),

I(J)\ )¢y, ..., t; py (t), ..., pY (tn))l
= ||\ D&y o tas s e Nl
= [|q] + 1] n/Z'Y”f(tl’ T e |

which is in L, (A,) since vy € L. (A, ) and |[£(t,, ... .5 -5 -0y |1 € L, (A,).

COROLLARY 1 TO THEOREM 2.1. Letl<p<2 andr € (2p/(2p — 1),0].
Let F € &Y. be given by (2.2) with defining kernel f. Then for all real q # 0,
2pr
2p+1r(2 —p) '
COROLLARY 2 TO THEOREM 2.1. Letp=2andr € (4/3,0]. Let F € ¥

n,r

be given by (2.2) with defining kernel f. Then T F belongs to &) for all real
q#0.

If we choose r = +o in Corollary 2 above we have the situation studied by
Cameron and Storvick in [3].

COROLLARY 3 TO THEOREM 2.1. Theorem 4 on page 21 of [3].

COROLLARY 4 TO THEOREM 2.1. Under the hypotheses of Theorem 2.1,
foreachp>0andl=p=<2

n{2—p)/2p Nn (f) ) 1/r’
TP F)p (D] wp = lal” ; {S (n) Sv’ /P dt, ---dt.,}
A

/
p™’?

TPFisin ) foralla € |1,

n
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) ’ I', (n+1)r’
lal "=/ N, (E)(b — a)" /> [r (1 - —2;)]

) rl 1/x’
P Cw)PIT | (n+ |1 ——
2p

THEOREM 2.2. Letl<p=2andr € (2p/2p — 1),»]. Let F € T be given
by (2.2) with defining kernel f. Then for all real q #0

(2.12) lim S |T; T, F(py) — F(py)|"dy =0 foreachp>0
A= S clab) '
reCH

where T, is given by (0.3).
Proof. Forp>0and ReA >0

(T5T,\F)py) = S (n) S (J3d D)y, oo 65 PY (E1), .. py (E,)) dE, .. dE,
An
for almost all y € C [a,b]. Thus for p > 0 and ReA >0
(T; T, F)(py) = S (n) S sy, o) ta; pY (Ey), -y py (E,)) d8, ... dE,
Aﬂ

for almost all y € C [a,b]. But by use of Theorem 1.2 and its proof we obtain
that for almost all (t,, ..., t,) € A, and each p > 0

(2.13) Al_i.lfliq I D)t o b pY (b)), ooy pY (82)) = £(8y, - £5 pY (£1), ..y pY (E))

rect
and
(2.14) Alim. S |J5 d, £) (¢t ..os £ pY (£1), ..y pY (£0))
—7 ) clab)
rect

- f(t1) resy tn; PY(tJ, seey py(tn))|"dy =0

for almost all y € C [a,b].
Again by Minkowski [6, p. 271] we see that

1/p
{ S |'T T\ F (py) — F(py)lde}
C[a,b]

U

S (n) S [T D)y, ooy tas pY (£1), ooy pY (E))
An
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p 1/p
dy}

= S (n) S { S I(JXJAf)(tu v b py (ty), oy PY(tn))
Ay Ca,b]

— £y, oyt pY (£)), ooy py (£ )] @, ... dt,

i/p
—f(t,, ..., ty; py (ty), ...,py(tn))|pdy} dt, ... dt,

which goes to zero as A - —iq by use of the Dominated Convergence Theorem.
This, however, establishes (2.12). A dominating L, (A) function is the quantity

(2'Y1/p/pn/p)”f(t1) seny tn; ') ""')”P'

Thus the proof of Theorem 2.2 is finally complete.

In the case p = 2 we can however obtain a stronger inverse transform theorem

. . (2) 2) s . . (2) : (2)
since for F in &, T.”F is again in &, and so it makes sense to apply T ]
to it.

THEOREM 2.3. Let p=2 and r € (4/3,»]. Let F € #® -be given by (2.2)

n,r

with defining kernel f € L, (A, X R"). Then for all real q # 0, T®. T?F = F.

Again if we choose r = +o in Theorem 2.3 we have the situation studied by
Cameron and Storvick in [3].

COROLLARY TO THEOREM 2.3. Theorem 5 on page 23 of [3].

3. THE TRANSFORM T APPLIED TO FUNCTIONALS F CONTAINED IN ¥

For 1=p=<w and 1=r=ow let " be the space of functionals F such
that there exists a sequence {F,} with F, € #¥ having corresponding kernel
f, € L. (A, X R") such that

(3.1) F~>F,
0
and
(3.2) IN.E)]Y*=0m" /2"y agn— o

We shall call {F,} a defining sequence for F and {f } a corresponding kernel
sequence.

The following two lemmas play an important role in establishing the existence
of TP F for F in &#®.

LEMMA 3.1. Let 1=<p=2 and r € (2p/(2p — 1),]. Let F € &) be given
by (2.2) with defining kernel f. Then for each p > 0 we have
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| 1/p
IIF(p(‘))llw,pE{S IF(pX)lde}
C[a,b]

1/x
= (Nn(f)/p"/p){x (n) S Yt ... dt’n}

I', (n+1)/x’
N, (f)(b — a)"*>/=/" [I‘ (1 - )]
2p
=
rl 1/x )
p"/P (2w)"/2p{r [(n + 1)(1 - )]} .
2p
Proof. Proceeding as in the proof of Lemma 2.2 we obtain
1/p
{ S IF (px)| "dx}
Ca,b]
p 1/p
-{] ]
C [a,b]

1/p
= S (n) S {S £y, ..., £t px (), ...y px(tn))lpdx} dt, ... dt,
Ay Ca,b]

=S (D)S{(v/p")g (n)x [£(ts, ooy 3 Uy s e )P
AV —oo —o0

n (u. —u._ )2 1/p
exp [(—1/2&)2—1——’—1——] dul...dun} dt, ... dt,
=t

J

P

(3.3)

S (n) S £ty oony 6,3 pX (L), ooy pX (£,)) dt, ... dt,

= p_n/p S (n) S Tl/p”f(tly ceny tn; IEIREEY) .)”Pdtl dtn
An

1/x’
= p_"/pNn(f){S (n) S ~*/Pdt, ... dtn}
A

n

which in view of (2.9) establishes (3.3).

LEMMA 32. Letl<p=2andr € (2p/(2p — 1),»]. Forn=0,1,2,... let F,
be in & (,f”r with defining kernel function f, € L (A, X R") satisfying (3.2). Then
for all p > 0 we have

(3.4) > HFa o (D]l <,
n=0

and the series

(3.5) > Fa(ox)
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converges absolutely for: almost all x € C [a,b] and converges in the L,(C [a,b])
mean. Moreover for s-almost every y and almost every p > 0

o

(3.6) \ 2 S |F.. (px + y)| dx < 0.
Cla,b]

n=0

Proof. To establish (3.4) we will use (3.3), Stirling’s Theorem and the root
test. We first recall that for positive z sufficiently large 1/T (z) < 2¢” Vz / V2w z-
Thus for n sufficiently large,

’
2e(n+1)(1—r’/29) \/(n + 1)(1 — i_)
1 2p

r rl (n+1)(1—rx" /2p)
I‘[(n+ 1)(1——)] (2ﬂ)1/2|:(n+ 1)(1—-——)]
2p 2p

Hence using (3.3) we obtain that for n sufficiently large and each p > 0.

HFa (D] wpl °
(n+1)/r’
[Nn (fn)l/n (b . a) (1-r"/2p)/x’ l: (1 _ __):l 1/nr’ e(ﬂ+1)(1—r'/2p)/nr'

(n+1){(1—r'/2p)/nr’ —1/2nr’
I:)llp (217)1/2p+1/2nr’ [(n + 1)( 2 )]

[ (n+1)/nr’
g |7 [F( ;p )] >
- n \tn

n(l—r /2p)/t’ pllp (2,") 1/p+1/nr')/2 (Il + 1) (-r’/p)/2nr

w{(=H(-2)) ]

1" ((n+1)(1—x' /2p)—1/2)/nr’
2p _
N, (f)] /"

which goes to zero as n— o since (3.2) implies that a2 0 as n— oo,
n

Thus, by the root test, (3.4) is established.

The absolute convergence of the series (3.5) follows easily from the observation
thatfor1=p=2

-]

3.7) > S IFa (px) dx = > [|Fo (0 (D s
C [a,b] 0

0
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= 2 “Fn(p('))”w,p <%,

We still need to establish (3.6). Since the translation theorem for Wiener integrals
does not allow us to proceed directly from (3.4) to (3.6) we need to examine the
corresponding kernels of the functionals F, (px + y). Let

F*(x) = S (n) S £(t,, ..., b3 X (t,), ..., X(t,)) dt, ... dt,

for all x for which the integral exists. For each'y € C [a,b] and p > 0, let
H,x)=F; (px +y)

so that

Ja¥

H_ (x) = S (n) S hy (6, ...y b3 X (ty), ..o, X (£,)) dt, ... dt,,

where

h, (t,,...,t;;u;,...,u)=£f(t, .., t.;pu, +y(t,), ...,pu, +y(t,)).

But f, € L, (A, X R") implies that h, € L. (A, X R") and a direct calculation
shows that

Na (h,) = [|Bollpe = 0PI, ] = 07" Ny (£)-

Thus H, € .72’,1 and so H_, with defining kernel h, satisfies the hypotheses of
this lemma. Hence using (3.7) we obtain that for eachy € C [a,b] and p > 0

> X H, (x)|dx = > S |F* (px + y)] dx < oo,
n=0 C|a,b] n=0 C[a,b]
But F* = F,_ and so (3.6) follows from (0.10).
COROLLARY TO LEMMA 3.2. Under the hypotheses of Lemma 3.2, the

functional F defined by the formula F = 2 F_ belongs to .
(0]

THEOREM 3.1. Letl <p =2 andr € (2p/(2p — 1),»]. Let F € .#® be given
by (3.1) with corresponding kernel sequence {f,)} satisfying (3.2). Then for all real
q # 0, the L, analytic Fourier-Feynman transform Tfj”F exists and is given by

(3.8) TPF =D TPF,.
n=0
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/

Proof. Since F = 2 F, and since (see Lemma 2.2) for s-almost every
o

anw,

y € C[a,b] the analytic Wiener integral (T, F,)(y) = S F,(x + y)dx exists,
C(a,b]
it is quite easy to see that for s-almost every y € C [a,b] the analytic Wiener

anw,

integral (T, F)(y) = S F (x + y) dx exists and satisfies the equation

C[a,b]
(3.9) (LB =D (T,F,)0)

for Re\ > 0. First we will consider the case 1 < p =< 2. In this case in order to
show that T® F exists and is given by (3.8) it will suffice to show that

© o p’
(3.10) Jim S > (TF)py) — >, (TP F,)py)| dy=0
rec+ C [a,b] 0 (/]

for each p > 0. Next we observe that

(3.11) { S
C{a,b]

> T F) 0 () — (TPF, ) ()]

P’ 1/p’
dy}

’
w,p

S M E)ey = S (TPF,)ey)

[\ o

= > ITF)e () = (TP F) o ()|

Next, using (2.7) and Corollary 4 to Theorem 2.1, we see that (for all A € C™
such that |\| <1 + |q|) the series on the right hand side of (3.1)) is dominated
by the series

>, UNIEF) e (Dl + 1T Fadlo (]

, , I" (n+1)/r’
[1+|q|]™® /2PN _(f,)(b — a)"*—*/2P/r [F (1 - 2_)]
p

) rr 1/xr’
p™? 2m)M*IT| m+ 1)1~ .
2p

But, as shown in the proof of Lemma 3.2, this series converges. Hence, since
for each n,

oo
=2
0

Jim [(TF)e () = (TPF) e (Dl =0,

reCH
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it follows that

Jim > I Fa)e () = (TPF)(p (Dl = 0.

- 0
rect

Thus (3.10) is established and so Tfl") F exists and is given by (3.8).

The case p = 1 is handled in a similar way by showing that for each p > 0

lim > (T, F)ey) = Y (T F,)(py)
] (¢}

A—>—iq
rect

for almost all y € C [a,b].

COROLLARY 1 TO THEOREM 3.1. Letl=p<2andr € (2p/(2p — 1),»].
Let F e ™. Then for all real q#0, TPF belongs to % for all

a€ll, .
2p+r(2-—p
COROLLARY 2 TO THEOREM 8.1. Letp=2andr € (4/3,]. LetF € #?.
Then for all real q # 0, T’ F € 2.

THEOREM 3.2. Letl=p=2andr € (2p/(2p — 1),»]. LetF € .5”}"’ be given
by (3.1) with corresponding kernel sequence {f,} satisfying (3.2). Then for all real

q#0

(3.12) lim S T T, Fpy) — F (py)|°dy =0 for eachp > 0.
A ) el
AECH

Proof. First we observe that

1/p
{ S |Tx Ty F (py) — F (py)| ”dy}
C[a,b]

U

>, LT Fale () = Falp ()]

o

S [T5 T, Fa (py) — F, (oy)]

o

o 1/p
dy}

(3.13)

w,p

=S TS T Fap () = Fa p () e

But the series on the right hand side of (3.13) is dominated, uniformly in A\,
by the convergent series
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rl (n+1)/r’
2N_(f,)(b — a)"*—*"/2/*’ [r (1 - -—)]
2p

g {rlaen(-3)]}
pP2m)*IT | n+ 1|1 ——
2p

Hence, since for each n,

lim ||T;T,Fa(p () = Fo(p(:Nl]p =0,

A— —iq
rECT

it follows that

Jim D NI TF () = Fualp (Dl =0,
rect
which establishes (3.12).
THEOREM 3.3. Letp=2and r € (4/3,]. Let F € #P. Then for all real
q#0, T?F € #&. In addition, T?, T?F = F.

—q~q

Again if we choose r = + in Theorem 3.3 we have the situation studied by
Cameron and Storvick in [3].

COROLLARY TO THEOREM 3.3. Theorem 6 on page 26 of [3].

4. THE TRANSFORM T¥ APPLIED TO ENTIRE FUNCTIONS OF INTEGRALS

THEOREM 4.1. Let 1=p=2andr € (2p/@2p — 1),x]. Let (z) = D a"z"

(¢}
be an entire function of order less than 2p and let 0 (t,u) € L. ([a,b] XR). Let

b
(4.1) Fx)=® [ S 0 (t,x (t)) dt].

a

Then F € #® and so the L, analytic Fourier-Feynman transform T;"’ F exists
for all real q # 0. In addition '

A— —iq
recCH

(4.2) lim S |T; T, F (py) — F (py)|Pdy = 0 for eachp > 0.
C[a,b]

Proof. In view of Theorems 3.1 and 3.2 we need only show that F € &P,

First note that we can write F (x) in the form F (x) =“2 F,(x) where for each n,
0
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F,(x) = S (n) S f.(t, ..., t s x(,), ..., x(t,))dt, ... dt,
B

and f, (t,, ..., t,; u;, ..., u,) = a, n! H 0 (t;,u;). We need to show that the sequence

1
{f,} satisfies (3.2). That is to say that [N_(f,)] "= Om“ "/??/") as n— o,
But

N, (f) = |[fall o

n 1/r
= H (n) S |an|’(n!)rn ||B(tj,-)||;dt1...dtn]
- n 1/r
= |a,|n! S (n)Sl_[”e(tj,-)u;dtl...dtn:l

1 b b . 1/r
= laalnt| =\ @ | 1106, ll7de, . s,

= |a, | 0] |5

= |a, [}/ [N, (0)]"
so that
(4.3) [N, (£)1'" = |a,|" ()" "N, ).

Next since ® is an entire function of order less than 2p, there exists an ¢ > 0
nlogn

os (1)
(4]
*\lal

But by Stirling’s formula, for sufficiently large n,n! < (n/e)" Vv 2wn e/**". Thus,
using (4.3), we obtain

—n/(2p—e)

such that for sufficiently large n, <2p—¢,and so |a,|<n

1/y

[N, (£,)] /" < {e™" (2mwn) /™ &/ N, (0)},

n1/(2p-5)

so that

[Nn (fn)] 1i/n {e—/r’ (2’1Tn) 1/nr’ e1/12n2r’ N1 (B)}

n(l—r /2p) /T n /2p(2p—¢)

which goes to zero as n — o since 0 < ¢ < 2p. Hence
IN,E)] V" =0@" /")  asn—>w

and the proof is complete.
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Again in the case p = 2 we obtain a stronger inverse transform theorem.

THEOREM 4.2. Let p=2 and r € (4/3,x]. Let ®(z) be an entire function
of order less than 4 and let 6 (t,u) € L,_([a,b] XR). Let

b
F(x)=® (S 0 (t,x (t) dt).

a

Then T F exists for all real q # 0, T?F € &2, and TETPF = F.

Once again if we choose r = +» we have the situation studied by Cameron
and Storvick [3].

COROLLARY. Theorem 7 on page 29 of [3].
Remark. Note that for all p € {1,2], Theorem 4.1 applies to functionals of

b
the form exp( 0 (t,x (t)) dt ); there is considerable interest in function space

a

integrals of functionals of this type.
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