DISCRETE QUADRATURE AND BOUNDS ON t-DESIGNS
Charles F. Dunkl

The theory of Chebyshev systems on discrete sets has a close relationship with
the linear programming bounds of coding and design theory. We will sketch the
idea of representing measures, as developed by Krein and Rehtman [11], and
then consider specific examples related to some classical discrete orthogonal
polynomials. One of the main problems is to find the maximal mass at a given
point among all representing measures, dually to minimize the values of a positive
functional on a certain set of polynomials. The common solution to these problems
provides a lower bound for the cardinality of t-designs.

Calculations with orthogonal polynomials lead to exact results in the continuous
case, but generally give only bounds in the discrete case. This is because in the
discrete case the extremal nonnegative polynomials do not have to be squares
as they essentially are in the continuous case. The exception to this is when the
appropriate orthogonal polynomial has all of its zeros on the discrete set, making
it extremal. It was Lloyd [12]) who noticed this phenomenon in connection with
perfect codes.

We will discuss the relationship between generalized t-designs (Delsarte [3])
in finite homogeneous spaces, and representing measures with maximal mass at
a given point. We are able to give exact solutions for t = 1,2,3 for an arbitrary
positive functional. We also state the bounds obtainable from orthogonal polynomials
(these are due to Schoenberg and, Szegé [15]). For certain parameter values of
the classical discrete distributions we can construct the desired representing
measures explicitly, which situation corresponds to “equality in the Singleton
bound,” as Delsarte [2,p.54] has named it.

The paper is organized as follows:

1. Representing measures and extremal polynomials: an outline of the existence
and properties of such measures, the characterization of extremal nonnegative
polynomials, and the relations between the two concepts.

2. Orthogonal polynomials: the results of the continuous-type theory."

3. Principal representations for n = 1,2,3: specific constructions for arbitrary
positive functionals on spaces of polynomials of these degrees.

4. Finite homogeneous spaces: the definition of a t-design and its relationship
to representing measures.
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5. Examples: positive functionals corresponding to the binomial and the hyper-
geometric distributions, and their g-analogues; the associated homogeneous spaces;
specific bounds and conditions for equality.

1. REPRESENTING MEASURES AND EXTREMAL POLYNOMIALS
Fix a finite subset Q of real numbers of the form {a,,a,,...,ay} with
O0=a,<a;<a,..<ay.

For each n = 0,1,...,N let V_ be the space of real polynomials of degree less than
or equal to n, considered as functions on (. Here is a list of some notations
and definitions:

V.={p€V,:p@@=0,(a € Q)
D, : the dual space of V_;

D! ={bd€D,:d(p) =0, (p € V))}, the dual cone of positive functionals; a
functional ¢ € D} is called strictly positive if p € V!, p # 0 implies
& (p) > 0, otherwise is called singular.

M, : the set of positive measures on Q (naturally isomorphic to Dy);
p; = pnfa}, fory, € M,,0=j=N;

spt p = {a € Q: n{a} > 0}, the support of p € M_;

3, is the element of M, with mass 1 at a, O elsewhere, a € Q;

deg p is the degree of the polynomial p;

Z(p) is the set of real zeros of p € V;

LC(p) is the leading coefficient (highest power) of p € V.

1.1 Definition. Let E G Q and define the index of E (denoted ind E) to be
min{degp:p# 0, p € V5, Z(p) D E}. Further let p € V; with Z(p) D E and
deg p = ind E; then say that E is of upper or lower type according to LC(p) being
negative or positive, respectively.

A set cannot be of both types, for if there exist p,, p, € V5 with LC(p,) =1,
LC(p,) = —1, degp, = degp, = ind E, Z(p,) DO E, Z(p,) D E, then the polynomial
p, + p. is a nonzero element of Vy, vanishes on E and has degree less than ind E,
a contradiction. This definition and the following ones on representing measures
are due to Krein and Rehtman [11]. Another presentation of their work can be
found in the book [10] of Karlin and Studden.

The following statements can be easily proved. To calculate the index of a
set, consider E as a union of “intervals,” that is, subsets of Q of the form
{a;, a;,,, ..., a;} which are separated by at least one point of Q. A maximal interval
of E of cardinality m contributes m to the index if m is even or the interval
contains a, or a,, and contributes m + 1 otherwise. The set E if of upper type
exactly when the maximal interval containing a is of odd cardinality. The index
is an increasing set function. For E C Q, there exist p € V5 with degp = ing E
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and Z(p) = E, (not necessarily unique; the set {a,, a,, a5} is the zero set of

(x —a,)’(x — a,)(x — a,), (x — a,)(x — a,)*(x —a;) and

(X - al(x - az)(x - a3)2:

all in V).
Any ¢ € D} can be extended to an element of Dy, that is, there exist p € M,

such that &(p) = 2 i;p(a;), p € V,.. Such a measure is said to represent ¢b. We

want to find representing measures whose supports have minimal index. Indeed
i is called a canonical representation if ind, (spt p) =n + 2, and principal if
ind (spt p) =n + 1. -

1.2 LEMMA. Let & € D} and let p. represent ¢, then ind (sptp) = n if and
only if ¢ is singular, and in this case p. is unique.

Proof. Indeed ¢ is singular if and only if there exists p € V,,p #0 such
that 0 = ¢ (p) = 2 i;p(a,), if and only if Z(p) D spt p. For the uniqueness, let

E = Z(p) (where d;(p) =0,p#0,p € V)) and let a € E, then there exist q € V
with Z(q) = E\\{a} (by the above remarks) and

é(q) = q(a)n{a) for any p representing ¢.

The fundamental theorem for strictly positive functionals (Krein and Rehtman
[11]) is that there exist exactly two principal representing measures for each
such functional, one supported by a set of upper type (called “upper principal”),
and the other by a set of lower type (called “lower principal”). We will outline
the steps leading to this result (proofs can be found explicitly in, or adapted from,
Ch. 7 in Karlin and Studden [10]).

Fix & € D}, and for each a € Q define p(a) = inf{d(p) : p € V., p(a) = 1}. Note
that 0 = p(a) = $(1), and the inequality p(a) p(a) = &(p) holds for all p € V.

1.3 THEOREM. p(a) = sup{p{a}:pn € M, and p represents ¢}.

Proof. If \ represents ¢, then & (p) = Z p;p(a;) = p{a}p(a) forallp € V.

i
Conversely the functional ¢ = ¢ — p(a) 3, is positive, thus can be represented by

v € M_, but then v + p(a)d, represents ¢& and has mass greater than or equal
to p(a) at a.

1.4 THEOREM. Under the above hypotheses, there exists p € V. such that
p(a) = 1 and &(p) = p(a), (and thus p(a) > 0 for all a € Q if ¢ is strictly positive).

Proof. If ¢ is strictly positive, use an appropriate sequence of polynomials
and the local compactness of V.. If ¢ is singular, deal directly with the unique
representation of ¢ (see 1.2).

Henceforth fix ¢ strictly positive in D] .



84 CHARLES F. DUNKL

1.5 THEOREM. For each a € ) there exists a unique canonical representation
w of & with n{a} = p(a).

Proof. Consider the positive functional ¢ = ¢ — p(a)d,. By 1.4 there exists
p € V! with p(a) = 1 and &(p) = p(a), but then Y(p) = 0, and so Y being singular
is uniquely represented by v € M, with ind (sptv) =n and sptv C Z(p) (thus,
v{a} = 0), Then . = v + p(a)d, represents ¢ and is supported by spt v U {a} which
has index less than or equal to n + 2 (consider p(x)(x — a)’) and index equal to
n + 1 if a is an endpoint (consider xp(x) or (ay — X)p(x)).

1.6 COROLLARY. Foranyp € VI with p(a) = 1, equality in &(p) = p(a) occurs
exactly when Z(p) D (spt w)\{a}, where p. is the representing measure constructed
in 1.5.

The above procedure gives the construction of the upper principal representation
if n is odd and a = 0 or ay, or if n is even and a = ay, and the lower principal
representation if n is even and a = 0. If n is odd, the way to obtain the lower
principal representation is to use the given construction on the set

Q, = {aj: aj+1’ LARE | aN}

with a=a;,,, where j=max {i:p € V., p(a,) =0,i=r = N implies ¢(p) = 0}.
Notice that the principal representation having maximal mass at a, is the upper
one (the reason for the name), but the one with maximal mass at 0 is either
the upper (n odd) or the lower (n even) one. Because we will be concerned mostly
with the representation with maximal mass at 0, we will name it the O-principal
representation.

The corollary showed the relation between a certain extremal problem for
polynomials, and canonical representations. Under the assumption that ¢ has been
extended to be a positive functional on V,_,,, here is another extremal problem
related to principal representations.

1.7 THEOREM. Let u be a principal representation of &, then spt p C Z(p*)
where p* solves: minimize &(p) subject to p € V., ,, LC(p) =¢, where e =1 if

is lower, e = —1 if . is upper, and spt p. is the minimal zero set of such polynomials
%

p*.

Proof. Let p(x) = ex"*' + p,(x) with p, € V,, then
b(p) = ebE&™) + d(p,) = ed ™) + > b, (a;)

= eb (™) + > wplay) - > epal™

i

> ¢ (¢(xn+1) - IJaJ ;1+1)

with equality exactly when Z(p) D spt . Since p. is principal there exists p* € V., ,
with sptu = Z(p*).
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We now give a description of extremal positive polynomials. Since V. is a
cone we consider the extreme rays, that is, polynomials p € V. such thatp = p, + p,
with p,, p, € V,. implies p, = cp for some ¢ = 0. For use in the description we

let P(a;, ..., a;; a;,, ..., ;; X) (or just P) denote the polynomial

f] x—a,) H (x—a; )x—a_,,),
k=1 m=1

where a; < a; <..=a; anda; <a;, ... <a; <ay.NotethatP € A2

RS

1.8 THEOREM. The extreme rays in V. are exactly the following sets of
polynomials:

a) for n odd,

cle(ail, ey 5 585,...8;3%) ¢>0,r+s=(n-1)/2

¢, (ay — x)P(x), c,>0,r+s=(Mn-1)/2;

b) for n even,
¢, P(x), ¢, >0,r+s=n/2

¢, X (ay — x)P(x), ¢, >0,r+s=(n/2 — 1.

i

Proof. To show that these are extreme, let p have one of these forms and
suppose p = p, + p, with p,, p, € V.. Let f be one of the following factors

(x—a;)°% (x—a; )x—a;,)x (ay— X),

which divides p, then p/f is a positive polynomial and p/f = p,/f + p,/f. Since
f=0 on QG we see that p,/f is finite on Q and so f divides p,. Now p/f has
lower degree than p, but is of the same form, so that by induction p, is a scalar
multiple of p.

For each r = 0,1,2,...,n let E_ be the set of polynomials which can be expressed
as positive linear combinations of polynomials of the above type and of degree
r. We want to show E, = V. By the distributive law the set of products E_.E_ C E,_,
(forr + s =n),and 1 € E_ for all rbecause 1 = (1/ay)(x + (ay — x)) € E,. Observe
x—c=X+(—c) EE forc=0, and d—x=(d — ay) + (ay — x) € E, ford = a,
thus E, = V;. This also shows (x — ¢)* + d*> € E, for ¢ = 0 or ¢ = a, and real d. The
other main type of element of V; is (x — c)(x — d) where

a;=c=d=a,,, forsomej=0,1,..., N+ 1,

but
x—c)x—d) =alx—a,)+ Blx — a,)(x — a,,;) + v(x — a;,,)%

where



86 CHARLES F. DUNKL

= (a;,, — O)a;,, — d)/(a;,, — a;)?,
B = [lc— a)a,, —d) + - a)a,, — )] /(a;,, — )%
v = (c—a)d — a;)/(a;,, — &)
and so (x — c)(x — d) € E,. We will say a polynomial satisfies (E) if p € E_ where
r = deg p.
Let p € V,, then by the fundamental theorem of algebra p = p, p, p; where

P =[] -y [T 0i-%, p0) =[x =0 +ch,

Yi <0 Yi>anN

ps(x) =¢ H x—-y)

O=y;=ay

(the y;’s are the real zeros of p) and each factor is in V. By the above remarks
p, and p, satisfy (E), so we need to consider p,. Divide out all possible factors
of the form (x — y;)(x — y,.) (an element of E,) where

a8, <y, =y, <a, forsomej=0,1,...,N -1,

leaving a polynomial p, € V. having at most one zero (a simple one) in each
open interval (a, a;,,) and all other zeros on Q. We will show p, satisfies (E)
by inductively showing for each j =0, 1, ..., N that p, = f; g; with f;, g, € V, g;
satisfies (E) and f(x) > 0 for x < a;. At j = N the result is proven since fy satis-
fies (E). To begin the induction suppose p,(x) = x" q(x), q(0) # O, then set

go(x) = X', f (x) = q(x) for r even,
or go(x)=x""", o(%) = xq(x) for r odd. Assume now that f;,g; have been con-

structed and suppose f(x) = (x — a;)’q(x), q(a;) # 0.

Case 1. p, (thus q) has no zeros in (a;, a;,, ), then set
gj+1(x) =8g; (x)(x — aj)r’ fj+1(x) = Q(X) if r is even,

or g;,,(x) = g; (x)(x — a; ) +1(X) = (x — a;) q(x) if r is odd.

Case2. p,(thus q) has one zero (a sign change) at ¢ € (a,, a;,,).Since q(a;,,) = 0
either (i) q(a;) <0 and r is odd, or (ii) q(a;) >0, r is even and q(a;,;) = 0. In
case (i) put g;,,(x) = (x — a;)" (x — ¢)g; (x), in case (ii) put

g(x) =x—a)x—c)x—a,,)g R,

and define f;,; accordingly.
This completes the induction, and the proof.

The theorem shows that the extremal problems in Theorems 1.4 and 1.7 have
solutions of the above specified form. It is obvious for 1.4; for 1.7 supposep € V.

n+1
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minimizes ¢ (p’) among all p’ with LC(p’) =1 and suppose p = p, + p, with
LC(p,) > 0, LC(p,) <O, p,,p, € V.,,, but then LC(p,) = 1 — LC(pz) > 1 and

so ¢(p,/LC(p,)) = $(p,) = ¢(p).

For the rest of the paper we will be concerned with the 0-principal representation
(maximal mass at 0). For any subset E of Q of cardinality n + 1, there exists
a unique measure v (not necessarily positive) supported by E that represents ¢,
with v{a} = ¢(p) where p is the unique polynomial of degree n which vanishes
on EX\{a} and has p(a) = 1, for each a € E. If in addition ind E=n + 1 and
v{a} = 0 for all a € E, then v must be one of the two principal representations.
An important special case is described in the following, whose proof is obvious.

1.9 PROPOSITION. Let s (x) =1}y (1 —x/ay_;) and for i=0,1,...,n -1,
let s, (%) = (x/ay;) - i 0;u ((x — an_;)/ (an_; — an;)), then p(0) = &(s,) with
equality exactly when &(s;) =0 fori=0,1,...,n — 1. In this case the O-principal
representation p. s supported by {0, ay_, .15 8n_ni2s -+ An) WIh py_; = &(sy),

p‘O = d)(sn)‘
Following Delsarte [2, p.54], we call p(0) = &(s,) the Singleton bound.

2. ORTHOGONAL POLYNOMIALS

The results of this section are mostly due to Schoenberg and Szego [15] (see
also [10,p.115]) who developed these procedures to calculate p(a) for an arbitrary
point in an interval (the continuous problem). Applied to the discrete case these
will give upper bounds for p(a).

Throughout, ¢ is a fixed strictly positive functional and n is fixed less than
N. Recall that p(0) = inf{d(p): p(0) = 1, pE V! } and also n{0} = p(0) where p is
the O-principal representation of ¢. Among the appropriate polynomials in V
are the squares

p’(x),degp=n/2 and

<

p’(x)(1 — x/ay), degp =n/2 — 1, p(0) = 1.
Minimizing ¢(p®) and ¢(p®(x)(1 — x/ay)) leads to orthogonal polynomials. To

state the results we introduce four families of discrete orthogonal polynomials
on ().

2.1 Definition. 'The systems of polynomials which are orthonormal with respect
to the strictly positive functionals

p-dw;p), W) =1 w,(x) =x%x, w;x) =(1—x/ay), w,(x) =x(1 —x/ay),
and normalized so that the values at zero are positive, will be denoted by

{p1,k}f:=oy {pz k }k =0 {pa k}k —0> {p4,k }1?;-02

respectively.
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2.2a THEOREM. Letn = 2m. The polynomial p of degree less than or equal
to m which minimizes $(p®) and has p(0) =1 is P2/ P2.:m(0). The corresponding
value of b is

(2 Pi,; (0)* )_ = p(0),

and equality occurs exactly when p, ., has all m zeros on Q. In this case the 0-principal
(lower) representation is supported by Z(p,,,) U {0}.

2.2b THEOREM. Let n = 2m + 1. The polynomial p of degree less than or
equal to m which minimizes $((1 — x/ay)p(x)?) and has p(0) =1 is Psm/Pam(0).
3 m —1

The corresponding value of ¢ is 2 Ps J(O)z = p(0), and equality occurs exactly
j=0

when p, ., has all m zeros on Q. In this case the 0-principal (upper) representation

is supported by {0,ay} U Z(p,,.).

Proof. We discuss only 2.2a. The first two statements depend on simple
orthogonality ideas, and the Christoffel-Darboux formula. From 1.6 we see that
d((pam/ p2'm(0))2) = p(0) exactly when p,,, vanishes on spt n\\ {0} where p is the
O-principal representation of ¢, but ind (spt n) = 2m + 1 so spt p must contain
at least m + 1 points. Conversely if Z(p,,) C Q then, as in ordinary Gaussian
quadrature, there exists a measure v € M, supported by S = {0} U Z(p,,,) which
represents ¢. Now ind S = 2m + 1, (hence = 2m + 1) and S is of lower type, being
the zero set of x p, ()%, hence v is the lower principal representation of ¢.

We point out that p, ,(x) is a multiple of (p, ;,,1(X) P;,n(0) = P1m(X) Py 1n41(0)) /X
and p, ., is similarly expressed in terms of p, .., and p; ...

Generally, the value of p(0) is not obtained by the above methods, and indeed,
knowledge of the zeros (that is, the intervals [a;, a;,,) containing sign changes)
of p, ., or p, ., is not very helpful in finding the supports of 0-principal representations.
The part of the theorem dealing with the zero sets of polynomials and equality
in the bounds is a generalized Lloyd’s theorem [12].

3. PRINCIPAL REPRESENTATIONS FOR n = 1,2,3

Thoughout we fix a strictly positive functional ¢ defined on V. Define an
associated functional § by ¥(p) = ¢ (p(x)(1 — x/ay)), p € Vy_,, and let

by = b)), Uy = $(x') = &= by /an,  §=0,1,2, ...
3.1 PROPOSITION. The O-principal representation p for n =1 is supported
on {0, ay} and has p, = §; = &y — &,/ an,n, = ¢,/ ay.
Proof. The extremal polynomial p in V; which has p(0) = 1is 1 — x/ay.

3.2 THEOREM. The O-principal representation i for n =2 is supported on
{0, a;, a;,,} where a; < ¢,/d, = a; + r < a;,, (the definition of r) and is given by
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p(0) = py = &, — (4’?/‘1’2)(1 + r(aj+1 —8; — r)/(aj aj+1)),
K = (a5, — a5 — 1) b,/ (5,1 — &) ay),
M1 = rd:’l/((aj+1 - aj) aj+1)‘

Proof. By Theorem 1.7 we need to minimize ¢(p) wherep € V; and LC(p) = 1.
By the extreme point theorem 1.8, p must have the form

x(x — a;(x — a;,,) or x(x — a;)°, some j.
If p = x(x — a;)” is the minimum then
0=¢ (x(x—a)x—a,,)) - ¢xEx - a)?) = (a — a,,) dxEx — a)),
hence ¢, — a;b, =<0; by similarly considering x(x — a;)(x — a;_,) one obtains

b, — a;b, = 0 and so a; = ¢,/ ;.

If p=x(x — a;)(x — a;,,) is the minimum then

O0=dxEx~— aj+1)(a - aj+2)) — é(p) = (aj - aj+2) dx(x — aj+1_))

= (aj - aj+2)(¢2 — 854, ¢’1):
and similarly 0= (a;,, — a;_,)(d, — a; ;). Thus a; < d¢,/d, =a;,,. Trivially
0 =< ¢, = d,ay so there exists a unique j such that a, = ¢,/¢, < a,,,. Observe

that in the exceptional case ¢, = a;¢, there are at least two minimal polyno-
mials. To obtain the masses of u at ¢, a;, a;,, evaluate ¢ at

(1—x/a;)1—x/a;,,),x(a;,, — x)/(aj (a;., — 8)), x(x — a;)/(a;,,(a;,, — aj))

respectively, and use the relation ¢, = ¢, (a; + 1).

3.3 THEOREM. The O-principal representation p. for n = 3 is supported on

{0, Qj, 549, ay} where a; = U /U, = (and, — d3)/(and, —d,) = a;+r<a, (the
definition of r) and is given by

Ko = p(0) = Yy — (4’?/‘1’2)(1 + r(aj+1 —a;— r)/(aj 8;,1)),
M = ay (aj+1 - a; — r) lI’1/(a~j (aj+1 - aj)(aN - aj))s
Rjrq = anT ¢1/(aj+1(aj+1 — a;)(ay — a;,,)),
P = &g = (o + 1 + 1y )
Proof. The method is similar to that of 3.2. Here the extremal polynomial

has the form x(ay — x)(x — a;)(x — a;,,) or x(ay — x)(i( - a )°. Replace ¢ by ¥ in
the above proof to obtain the stated results.

In each of these cases it does happen that the support of u brackets the zero
set of the appropriate orthogonal polynomial (see section 2). The zero sets are
{0, ay}, {0, o/}, {0, U/, ay} for n = 1, 2, 3 respectively. However this trick
of bracketing the zeros does not in general produce the supports of principal
representations.
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4. FINITE HOMOGENEOUS SPACES

Suppose that G is a finite group with a subgroup H such that the Hecke algebra,
namely the algebra of two-sided cosets HgH, is commutative. Suppose further
that the collection of these cosets can be placed in one-to-one correspondence with
a finite subset ) of the nonnegative real numbers, in such a way that the coset
H corresponds to 0 € Q and that the spherical functions correspond to a family

of orthogonal polynomials {P_}._, of one variable. Thus there is a family of
representatives, g, equals the identity in G, g,, g,, ..., gy corresponding to

0=a,a,,..,agE N

respectively. The spherical functions are given by g— P_,(a;)) where g € Hg,H.
These assumptions imply that g;' € Hg,H, each i.

The measure m on () furnishing orthogonality is the one induced by G, namely
m; = mfa;} = |Hg,H| /|G| (| E|is the cardinality of the set E). Denote the homoge-
neous space G/H = {Hg:g € G} by X, and let L*(X) be the space of complex func-

tions on X, furnished with the inner product (f,,f,) = (1/|X]) 2 f,(x) £,(x).
xeX
Then G is represented on L*(X) by right translation, and there is a decomposition
N

L’X) = 2 @ H,, where each H, is an irreducible G-module containing exactly
n=0

one H-invariant vector, namely the spherical function given by P,. In this context,

we could call H, the space of spherical harmonics on X of degree n. Now X is

an association scheme, where Hg and Hg’ are “ith associates” if
g’'g'€eHg,H, 0=i=N.

(For a reference on association schemes see Delsarte [2] or Sloane [17]). It may
also happen that X is a distance-transitive graph (if (Hg,H)(Hg,H) is a linear
combination of Hg; ,H, Hg,H, Hg,,,H in the group algebra of G); see Biggs [1].
Conditions sufficient for X to be a distance-transitive graph have been given by
D. G. Higman [19]. This property is called P-polynomial by Delsarte [2, p.56].

4.1. Definition. Fort =1, 2, ..., N — 1, a (generalized) t-design is a probability

t
measure p on X which annihilates z @ H,.
n=1

This definition is due to-Delsarte [3] in the context of association schemes.
If the scheme is the Johnson scheme (see section 5.2.6) and p has all its nonzero
masses equal then the support of p is a classical t-design. In the context of
non-discrete compact homogeneous spaces (like the sphere), . is a cubature rule
exact for spherical harmonics of degree less than or equal to t. Note that the
definition is equivalent to

S fE@u{x) =1/|X) D fx) forallfe 2 ®H,.

x€X xe€X
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The interesting designs are those which have small supports or equal nonzero
masses.
Any measure p on X can be considered as a measure on G, constant on the

cosets Hg (g € G), and thus p has an adjoint p* given by u*{g} = p {g™'},constant
on the cosets gH (g € G). The convolution p * p* is bi-invariant and corresponds
to a measure w on (, defined by

ofa) =D {n{x) p{y}:x,y€ X, xy ' =Hg;H} 0=i=N,

(we interpret y € X as a coset Hg C G and so y™* = g~ 'H). Note that

0{0} = > |r=)~

xeX

4.2 THEOREM. Let p be a t-design, and let v € M, correspond to p * p* as
N

above. Then v represents the strictly positive functional ¢ (p) = 2 m;p(a;),p € Vy,
i=0

for V.. Further | spt p| = 1/p(0) where p(0) is as used in 1.3 with n = t.

Proof. The orthogonality relations for spherical functions (see Dunkl and
N

Ramirez [9,Ch.9]) imply the relations Z m; P, (a;)P,(a;) = 0, k # n; in particular

i=0
N t
2 m;P,(a;) =0,k= 1. Any p € V, can be written as 2 ¢;P; and so ¢(p) = c,.

=0
¢ J

On the other hand ., and hence p * n*, annihilate 2 ®H,, thus

N
> P(a)ofa) =0, 1=k=t
i=0
' 2
Also E ofa;} = ‘ 2 p{x}l =1, and so o represents ¢ on V,, showing
p(0) = v {0} (by 1.3). By the Cauchy-Schwarz inequality

1/2
=> pix) = (Z |u{x}|2) (sp*?

xES xES

where S = spt u, and so [spt n| = 1/v{0} = 1/p(0).

The bound on |spt n| was obtained by Delsarte for assocmtlon schemes [3],
and by Delsarte, Goethals and Seidel [5] for the real spheres.

4.3 THEOREM. A necessary condition that there exist a t-design p. with

|spt n| =1/p(0)
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is that \M{a;} /A {0}* be an integer for each j, where \ is the O-principal representation
for &. \
"~ Proof. Suppose p is a t-design with |spt | = 1/p(0). Let S = spt p, then by
4.2, $(0) = 1/[8] = > n{x}* = p(0), implying that n{x} = 1/|S|, x € S. Further

xES
A = p * p* is the O-principal representation (by the uniqueness result 1.5) and

ISI°A(a;} = [S° D (n®u(y):xy™* € Hg;H)
which is an integer.

5. EXAMPLES

For each of four types of weight functions, the binomial, the hypergeometric,
and their respective q-analogs, we will discuss the specific bounds from sections
2 and 3, the associated homogeneous spaces and orthogonal polynomials, and
conditions on the parameters which imply equality in the Singleton bound (see
1.9). We emphasiz8 that “equality in the Singleton bound” only provides the value
of p(0), and does not imply the existence of a t-design with cardinality 1/p(0).

In each case we describe ) and the weight function m. The corresponding
N

functional ¢ is éiven by &(p) = 2 m;p(a;), p € Vy.
i=0

5.1 The binomial distribution. Fix parameters N=1,2,3 ..., k>0, and let

N .
' 0={0,1,2...,N},mi=<k+1’_N<-)kl'
1

5.1.1. Upper principal, n =1:p(0) = 1/(k + 1).
5.1.2. Lower principal, n = 2: spt w = {0, j, j + 1}, where

j=[&kN+1)/(k+1)], r=kN+1)/(k+1) -],
([x] is the largest integer less than or equal to x), and

1 kKNr (1 — 1)
kN+1 &N+1jG+1)

p(0) =po =

;=1 —=1)kN/(jk + 1)), n;, =rkN/((+ Dk + 1)).

5.1.3. Upperprincipal,n = 3:spt n = {0, j, j + 1, N}, wherej = [a],r = a« — [¢],
a=(kN+1-k)/(k + 1), and

1 kN —1)r(l -1
(k+1DEN+1-k ((k+DE&N+1-k)jG+1 ~

p(0) =
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(1-rkNN-1) B rkN(N — 1)
&+15MN- ) T krPGrON-j-1)

B =

n=1—(p(0) + p; + py,,y).

5.1.4. Associated orthogonal polynomials: The families orthogonal with respect
tom,, xm,, (1 —x/N)m,, x(1 — x/N)m,_ are

k k
X+ K| x5 yN), Ki{x—-1; S N-—1],
+ +
k+1 k+1
k k
Kj(x; ,N—l), Kj(x—l; ,N—2)
k+1 k+1

respectively, (not normalized), where K; is the Krawtchouk polynomial defined

K;xp,N) = (1;1)"2(1); - )i (l:r:lx)(}:)

-j—-x 1 )
=,F, il P p>0,j=0,1,...,N.

The corresponding bounds for p(0) are:

m

N} \*!
(@) n = 2m, p(0) = (2 ( . ) k’) , the sphere-packing bound; equality if
J .

j=o
k
and only if x » K _{x— l;k—+1, N — 1] has m zeros in {1, 2, ..., N}; (Lloyd

[12] found this necessary condition for the existence of perfect codes, in the case
k=1).

m N _ 1 ) -1
M) n=2m+1,p0) = | (k+1) Z "}k’ , equality if and only if
j=0 J

k
xr—>Km(x—1; ,N-—2)
k+1

has m zeros in {1, 2, ..., N — 1}.

5.1.5. The Singleton bound: The bound is p(0) =1/(k + 1)", with equallty if
and only if k = N — n. Here

s, (x) = (x — N),/(-N), and

8 (X) = (=1)'x(x = N);(x = N+ i+ 1), ,/(N - i)iln —i- D
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where (a), = 1, (a),,,,; = (a),, (@a + m). Direct calculation shows that

( )——( )——( —i—1,n—-i-1k), wh
b (s, — S(N —i ,n—1 ; k), er

i (] ’1)1+1 e
M

M
SM, r;k) = Z ( )k“"’(k +1)™@ -y),/r M=12..,r=01,.., M.
y

y=0

To calculate S(M, r;k) observe S(M,0;k) = 1 and

=y (=M),
r! k+1)"r

M
SM,r;k) — S(M,r — L;k) = 2 ( )kM‘y k+1)™

y \Y

- (—M)j 1 ’
and hence S(M,r;k) = z - , a truncated ,F,. Set r=n—-1-1
= k+1 ‘
then ¢(s, ,_._,) is a positive multiple of

. —r,—(N—mn)—r 1
S(IN—-n+r,r;k)=1lim,F, ; .
-0 E—7Y k+1

There is a three-term recurrence relation (for r — 1, r, r + 1) that follows from
the differential equation for the ,F, function (see Bailey [18, p.1]), namely

c+1)SN-n+r+1,r+1k)
=+1-(N-n+2r+1)/(k+1)SN—-n+r,r1; k)
+(N-n+r)k/k+1)>)SN—-n+r—1,r—1; k).

But S(N —n + 1, 1; k) = 0 if and only if k = N — n, and this condition implies
all the recurrence coefficients are positive. Thus

SIN—n+r,1r,k)=0 forr=1,2,...

if and only if k = N — n(= 1). (The author thanks the referee for the suggestion
to use a recurrence relation.) The condition for equality was stated by Delsarte
[2, p.55].

5.1.6. The homogeneous space: For N,k =1, 2, 3 ... let X be the set of ordered
N-tuples o = (o, ay, ..., ay) With a; =0,1,2, ...k (for 1 =i =< N) and let G be
the wreath product of S,,, with Sy (the semidirect product of (S,,,)" with Sy),
where S, is the symmetric group on n letters. Thus a given S, ., factor acts on
one coordinate, and Sy permutes the coordinates. Pick the base-point w = (0, 0, ..., 0),
then the isotropy subgroup H is isomorphic to the wreath product of S, with
Sn- The G-invariant distance on X is given by d(a,B) =||{i: «; # B;}|, and two
points are in the same H-orbit (corresponds to a two-sided coset in G) if and
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only if d(o,0) = d(B,0). With this metric, X is called the Hamming scheme
H(N, k + 1), and X satisfies the hypotheses of section 4, with Q = {0, 1, ..., N},

N\ .
m; = ( . )k'(k +1)7N,
i

k
T N), (g € G) (see Dunkl [6]). A

and spherical functions g - K, (d(m,u)g);

t-design. with equal nonzero masses is the same as an “array of strength t”

m

N\ .
(Rao [13]). The bounds from 5.14, |spt p| = 2 ( i )kJ for a 2m-design p, and
J

j=0
m IN-1) . & (N) . [N-1
Isptpu[z(k+1)2( ) )k’:Z(_)k’+( )km“
j=0 ) j=0 \] m

for a (2m + 1)-design are due to Rao [13]. The bound from 5.1.5, |spt p.| = (k + 1)*
for a t-design p is essentially due to Singleton [16].

5.2. The hypergeometric distribution. Fix parameters a,b,N with N = 1,2,3, ...
anda=b=N,andletQ={0,1,2,..., N},

SR Qo ) e

5.2.1. Upper principal, n = 1: p(0) = b/(a + b).
5.2.2. Lower principal, n = 2: spt p = {0,j,j + 1}, where j= [a], r=a — [a],
a=(N(@-1)+b)/(a+b—-1),and
b(a + b — N) aNr(1—-r(a+b—1)

0) = 2 -
p(0) (a+Db)(N(@—1) + b) (a + b)(N(a—1)+b)j(j +1)

p; = (1 —r)Na/(j(a+ b)), p;,; =rNa/((j+ 1)(a+ b)).

5.2.3. Upper principal, n = 3: spt . = {0,j,j + 1,N}, where j = [¢], r=a — [a],
a=@N-1—N+Db)/(a+b—-2),and

., ab(N—1}a+b —2) r(l —r)
-t (1)
a+b (a+b)(a+b—-1){@(N-1)—N-+b) i(G+1)
(1 —r)abN(N — 1) rabN (N — 1)

P » B =

=(a+b)(a+b—1)j(N—j) @+bla+b-—1DG+1DHN—-j—1)

=1 = (p(0) + by + py,y).
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5.2.4. Associated orthogonal polynomials: The families orthogonal with respect
tom,, xm,, (1 —x/N)m_, x(1 — x/N)m, are
X = Qj(x; —a— 1’ ~b — 1’ N)’ Qj(x o 1; —-8a, —b - 1,N - 1);
Qj(x; —a—1, —b:N_l)’ Qj(x—ls —a, _b)N—z)
respectively (not normalized), where Q; is the Hahn polynomial defined by
Q. 8. N) F(—j,N+a+B+1,—-x;1)
(x;0,B,N) = .
i 3 —N,a+1

The corresponding bounds for p(0) are:

o _ AN, fa+b)fatb-2i+1 )Y
= 2m, p(0) = ’
(a) n m, p(0) (; (=b),(N — a — b), ( j )(a+b—j+1 ))

with equality if and only if x,,Q_(x—1; —a,—b — 1, N — 1) has m zeros in
{1,2,...,N};

(b) n =2m + 1,

a+b & (—a),(1 — N), a+b—-1\a+b-2j \\"
o= e (T ER D)
with equality if and only if x,,Q,(x—1;—a,—b,N —~2) has m zeros in
{1,2,...,N - 1}.

5.2.5. The Singleton bound: The bound is p(0) = (—b),/(—a — b),. Direct cal-
culation shows that ‘

(b) (—1)(=N), . . .
b(sy)=al  |J]—S@-1,b-i,N—-1—-in—-i-1),
i/ (—a—b),,

M (a B . a+p .
where S(a, B, M, 1) = 2 ] Mo (1—M+1), r! M . As in 5.1.5
=0 \1J -J

we note S(a, B, M, 0) = 1 and that S(«a, 3, M, r) — S(e, B, M, r — 1) can be summed

—B). (=M * (—B):(—M):

and found to be -(—B)r—(—)i, thus S(«,B,M, 1) =§:(—%——.)L, a trun-
(—a—B),1! i (—a — B);)!

cated , F,.

Set r =n — 1 — i, then ¢(s,,_,_,) is a positive multiple of

Sa—1,b—n+1+r,N—n+r1

-r,—(b-n+1)—r,~N-n)—r

e—0

b

e—T1,—(a+b—n)—r

(for short). There is a third-order differential equation for the general ,F, function
(see Bailey [18, p.8]; setting the variable equal to one leads to a three-term recurrence
for S, (the third derivative disappears), which is
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r+)a+b—n+r)a+b-n+r+1)S,,,
=@+b—n+r)(r+1){a—1)
—(N—n+r)b-—-—n+2+2r)S,
+b—-n+1+ryN—n+r)a—N+n-r1)S,_,
(with S, =1, S _, = 0). The coefficient of S, has a 'negative second derivative, so

its minimum value is at one of the end-points of the range of r, 0 <r=<n — 2,
A necessary condition for S, = 0,1 =r=<n - 1is S, =0, that is,

a=(N—n)b—n+2)+1.

Ifn<(Q1/2)(N+b+1—((b—-N)b—N +6) + 8N — 7)"/?) then this condition
(S, = 0) is also sufficient, otherwise (larger n),

a=1+(N—-2)b+n—-2)/(n—-1)

(from the value at r = n — 2} is sufficient.

5.2.6. The homogeneous space: For M, N=1,2,3 ... and M = 2N let X be
the collection of subsets of size N of a given set of M elements; specifically let
[a, b] denote the set of integers {a,a + 1,a + 2, ..., b} and take

X={£C [1,M]:|§] =N}.

Let G = S, the symmetric group on [1; M], and let H be the subgroup fixing
the base-point w = [1, N]. The G-invariant distance on X is given by

dE ) =N-[£N |,

and two points £ m € X are in the same H-orbit exactly when d (¢, w) = d(n, w).
Now X is called the Johnson scheme J(M, N), and X satisfies the hypotheses of

) . M-N N M
section 4 with Q= (0,1, ...,N}, m, = i ) , and spherical
i N-1 N

functions g - Q;(d(w, wg); — (M — N) — 1, — N — 1, N). (see Dunkl [7]). A t-design
with equal nonzero masses is exactly a “classical t-design.” The bounds of the
previous paragraphs can be simplified slightly by settinga=M — N, b = N.

(a) Lower principal, t = 2: let N(M — N) = j(M — 1) + R with integers j, R such
that 0 = R =M — 2, then

1 RM—-1-R)
p(0) = — — — ]
M jGg+1)MM -1)

_N(M—N)(M—I—R) _ NM-NR
ST M—1 )P T MGryM—-1)

(this is an improvement on Fisher’s inequality, |spt n.| = M).
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(b) Upper principal, t = 3:let (N — 1)(M — N) = j(M — 2) + R with integers j,
R such that 0 = R =M — 3, then

0 = NRM — 2 — R)
P MM -1 MM -1)M-2iG+ 1)
_ M-NN’(N-DM-2-R)
MITTTOMM - DM - 2N — )
(M — N)N?(N — DR
Wje1 =

G+)OMM-1DM-2)(N-j—1)
uy =1 = (p(0) + w; + P'j+1)-

(c) The orthogonal polynomial bounds: The sums in 5.2.4 are of telescoping form
M

for b = N. For a 2m-design p, |spt p| = ( ), (the Wilson and Ray-Chaudhuri
m

bound [14]), with equality only if x ,, Q. (x—1;— (M — N), -N — 1, N — 1) has
M/M-1
m zeros in {1,2,..,N}. For a (2m + 1)-design p, |spt u| EE ), with
, m
equality only if x ,, Q, x — 1; —(M — N), —N, N — 2) has m zeros in
{(1,2,...,N —1}.

(d) The Singleton bound is p(0) = (—N),/(=M),. If t = N — (8N — 7)'/*-1)/2,
then equality holds if and only if M = N + (N — t + 1)°. Otherwise (for larger

t), the latter is necessary,and M = N + 1 + (N — 2)(N + t — 2) /(t — 1) is sufficient
(for equality). ‘

5.3. The g-binomial distribution: Fix integer parameters M, NwithM =N =1
and a real numberq > 1,andletQ={1-q:j=0,1, ..., N} (sothata;=1—q).
Define the symbol (a;q ™), by (8547 ")o =1, (8 )ms1 = (8507 )u(l —aq_™). The

N
weight function is m; = (" q )@ a7 )/ (@ q71); "), Note 2 m;=1
§=0

(the g-analogue of the binomial sum).

The homogeneous spaces which give rise to this distribution all have q equal
to a power of a prime number, thus q = 2. We will show that for q = 2, p(0)
is always given by the Singleton bound.

5.3.1. Here s.(1 — q7) = (" %q7").. /(50 7"),, and

@ g N g )@ - q7Y)
(@59 @5 q a1 —g7)

sl —q7%) = 0=i=n-1,0=j= N.

N
Thus p(0) = 2 m;s,(1 — q7%) = g™ Further
j=0

J



DISCRETE QUADRATURE AND BOUNDS ON t-DESIGNS 99

(@ q ')

. qM T YSM -1, N-i—1L,n—i—1;q)
(@597

¢’(Sni) = (qM -1)

where

(@ q7);(a% g7, @5 q),
S(c, B,139) = >

= (@ a7 (@i q™),

—j—ap

(and B =0, 1, 2, ...). Note S(e, 8, 0; @) = 1 and
S(a, By 13 @) — Sle, B, v — 1;9) = (&5 971), a7 /(@ a7 )

r

B, -1
(q 3 q )i q_i(u +1)

(by the g-binomial sum), so that S(e, B, 1; q) = 2 P , a trun-
i=o \d 54 )

cated ,$, series. From the definition we see that « = B and q > 1 imply

S(a, B, 2m; q) = 0. For a nonnegative integer j = (r — 1)/2 consider the sum

of terms number 2j and (2j + 1) of the series, which turns out to be a nonnegative
quantity times A;, where A;=1+q "' —q (¢ +¢°™7"). But A, is an
increasing function of j, so

AjzA,=1-q +q 7 (1-q)=q"""(@- D@ - @ -1/(@q-1).

We see that A, = 0 is a sufficient condition for S(a, B, r,; q) = O for all r (and
for any q > 1). But we assume further than q = 2, which implies

e -@-1)/@-1=q"—-(" -1

which is positive for « = B. Thus M = N, q = 2 imply that ¢ (s,;) > 0 for all
i, 0 =i =n — 1, and hence p(0) has the Singleton value.

5.3.2. The homogeneous space: Let q be a power of a prime, and let GF(q)
denote. the field of q elements. Let X be the collection of M X N matrices over
GF(q), and let G be the subgroup of the general linear group of GF(q)"*" defined
by

gn O o o '
{[ " ]: g,; isinvertible N X N, g,, is invertible M X M, g,, € X};

821 Ba2
g, 0
H= {[ = ] e G}.
0 gy

' 8n 0 g 0 . .
It can be shown that and , , | are in the same 2-sided
821 822 821 8o2
coset HgH exactly when rank g,, = rank g,,’, and that G/H = X (there is a unique

and let
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I O
element of the form [ ] in each coset Hg). The space X satisfies the hypotheses
821

of Section 4 with Q={1—-q%:j=0,1, ..., N} and m; as above (the number of
M X N matrices of rank j divided by ™), and the spherical functions are expressed
in terms of g-Krawtchouk polynomials (a theorem of Delsarte [4], or see Dunkl

[81).

Delsarte [4] has constructed t-designs in X of cardinality equal to p(0) %, for
each q, M, N.

5.4. The q-hypergeometric distribution: Fix parameters a,b, N with N=1, 2,
3,...and a,b=N and a real numberq>1. Let 0 ={1-q:j=0,1,..., N} and

a b BN+ a+b m\ . .
let m;=1 ] d ! , where is the q-binomial
i/q\N—-1J/, N /q n/q

@™ q ),
(Gaussian) coefficient defined to be —(El-:-q_T (and equalling the number of
q9:49
n-dimensional subspaces of an m-dimensional vector space over GF(q), prime power
q). As in 5.3 we will show that equality is achieved in the Singleton bound for

q = 2. The polynomials s, and s,; are as in 5.3.

> qY), b +b
Indeed p(0) = &(s,) = Lb(-l—:-)——— = ( ) /(a ) .Also
@ q M. \n/, n /g

b 1—gq™; q7Y), .
d)(sni):(.) (1-a)9q ¢ iSa-1,b—i,N—i—1,n—i-1;q),
1 q

a+b,

(@ q 1)i+1
where

S(e, B, v, 1:9) = 2(‘?‘) ( " ) q'®

j=0 \1J Y=

—1—j, -1 -1, -1 a+f
X(q@ "q ),/((q 5 q ),( ))
Y a

(and vy =1, 2, 3, ...). Note that S(e, B, v, 0; q) = 1 and

@5a)@ah),

a+8,

B @ 9™, @ q™),

S(a, Ba Y, Iy Q) - S((I, B) Y, Y — 1’ Q)

@ a )@ aY
(by Heine’s ,¢, sum), so that S(a, B,v, 1;q) = - — —q
o 20 @ a g g
cated ,¢, series. The sum of terms number 2j and (2j + 1) (for0=j=(y —1)/2)
is a positive quantity times B;, where

~,a trun-

BJ — (qu+[3 _ q2j)(q2j+1 _ 1) _ (qﬁ _ q2])(q‘y _ q2j).
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We see that B, is increasing in j in the range
1=q”= (""" +q"+q +1)/@@q+ D).

Under the assumptions a, § = vy > 1, q > 1, thisinequality holds for0 = 2j =y — 1,
and so to have S(a, B, v, r; @) = 0 for 0 = r = v it suffices to have

By=(q""-1)0g—-1)—("-1)(q -1 =0.
This always holds for q = 2 since
Bo=q™"* —1-(¢" — D(q'— 1) = ¢°(@" — q") + (" + q" — 2) =0.

Thus ¢(s;) =0,0 <i=<n-—1.

5.4.2. The homogeneous space: Let q be a power of a prime, and let M,N be
positive integers with M = 2N. Let X be the collection of N-dimensional subspaces
of GF(q)™, and let G be the general linear group of GF(q)™. Fix a base-point
o € X, and let H be the stabilizer of » (this group H is isomorphic to the group
G of the previous example with parameters N and M — N). Then ¢, { € X are in the
same H-orbit if and only if dim(f N w) = dim({ N w), and we let the space of
H-orbits correspond to Q = {a; =1 — q:j=0,1, ..., N} by associating

{¢ € X:dim(¢ N w) =N —j}

to a;. We obtain m; as above with the parameters a = M — N, b = N. The spherical
functions are q-Hahn polynomials (see Delsarte [3], and Dunkl [7]). The value
of p(0) is (@5 9 n/(@"; 7 V).
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