THE BEZOUT PROBLEM FOR A SPECIAL CLASS OF FUNCTIONS

Robert E. Molzon

INTRODUCTION

For a holomorphic mapping $f: \mathbb{C}^2 \to \mathbb{C} P^2$ Cornalba and Shiffman [1] have shown that it is, in general, impossible to estimate the growth of $f^{-1}(W)$ in terms of the growth of f. Here $W \in \mathbb{C} P^2$ and $f^{-1}(W)$ is assumed discrete. The growth of $f^{-1}(W)$ is measured by counting the number of points in $f^{-1}(W) \cap \{|z| \le r\}$. In this paper we give a class of functions E for which it is possible to measure the growth of $f^{-1}(W)$ in terms of the growth of f and another function M(r). It is hoped that M(r) will be easier to estimate than the error term S(r) of Griffiths [2].

1. NOTATION

Let $\omega = dd^c \log \|Z\|^2$ be the standard Kähler metric on \mathbb{CP}^2 . Let $\tau = \log |z|^2$ be the exhaustion function on \mathbb{C}^2 . If $\xi \in \mathbb{CP}^1$ let \mathbb{C}_{ξ} be the corresponding line through the origin in \mathbb{C}^2 . If $f: \mathbb{C}^2 \to \mathbb{CP}^2$ let $f_{\xi} = f | \mathbb{C}_{\xi}$. Let $W \in \mathbb{CP}^2$. Then $W = A \cap B$ (= intersection of perpendicular lines in \mathbb{CP}^2). Let

$$\omega_{o} = dd^{c} \log (|\langle Z, A \rangle|^{2} + |\langle Z, B \rangle|^{2})$$

in \mathbb{CP}^2 . Let $\Lambda_W = \log \left[|Z|^2/(|\langle Z,A\rangle|^2 + |\langle Z,B\rangle|^2) \right] (\omega + \omega_o)$. If $f:\mathbb{C}^2 \to \mathbb{CP}^2$ is holomorphic and $f^{-1}(W)$ discrete then we have the following functions from Nevanlinna theory:

$$n(W,r) = card(\{|z| \le r\} \cap f^{-1}(W))$$

 $N(W,r) = \int_{0}^{r} n(W,t) d \log t$

(Here we assume $f(0) \neq W$, otherwise one must modify the counting function N(W,r).)

$$\begin{split} T_1(\mathbf{r}) &= \int_0^\mathbf{r} \left\{ \int_{|z| \le t} f^* \omega \wedge dd^c \tau \right\} d\log t \\ T_2(\mathbf{r}) &= \int_0^\mathbf{r} \left\{ \int_{|z| \le t} f^* \omega \wedge f^* \omega \right\} d\log t \\ S(W,\mathbf{r}) &= \int_{|z| \le \mathbf{r}} f^* \Lambda_W \wedge dd^c \tau. \end{split}$$

Received November 22, 1977. Revision received March 9, 1978

Michigan Math. J. 26 (1979).

One has the equation of currents dd $^{c}\Lambda_{w} = \omega \wedge \omega - \delta_{w}$. Applying f^{*} to this equation and integrating twice gives the First Main Theorem of Nevanlinna.

2. LOCAL REPRESENTATION OF f*Λ_w

Choose coordinates in \mathbb{CP}^2 such that W = [1:0:0]. Let $(w_1, w_2) \leftrightarrow [1:w_1:w_2]$ be local coordinates near W. Near W one has

$$\Lambda_{W} = \log \left[(1 + |w_{1}|^{2} + |w_{2}|^{2}) / (|w_{1}|^{2} + |w_{2}|^{2}) \right] (\omega + \omega_{o}),$$

$$\omega = dd^{c} \log (1 + |w_{1}|^{2} + |w_{2}|^{2}), \quad \omega_{o} = dd^{c} \log (|w_{1}|^{2} + |w_{2}|^{2}).$$

The most singular term of Λ_w is

$$\Omega = \log \left[\frac{1}{(|w_1|^2 + |w_2|^2)} \right] dd^c \log (|w_1|^2 + |w_2|^2).$$

For a certain class of functions $f: \mathbb{C}^2 \to \mathbb{CP}^2$ we first estimate $f^* \Omega$.

3. THE CLASS E

Let $f: \mathbb{C}^2 \to \mathbb{CP}^2$ be a holomorphic map having the representation $[1:f_1:f_2]$ near W = [1:0:0]. We say that f belongs to the class E if there exists some positive $\rho << 1$ such that the following conditions hold:

(i) There exists ρ_1 with $0 < \rho_1 < \rho$ such that for each line \mathbb{C}_{ξ} through the origin in \mathbb{C}^2 (a) or (b) holds

(a)
$$\mathbb{C}_{\varepsilon} \cap \{ |f_1(z)| \le \rho_1 \} = \coprod K_{\varepsilon}$$
 (disjoint union)

(b)
$$\mathbb{C}_{\varepsilon} \cap \{ |f_2(z)| \leq \rho_1 \} = \coprod K_{\nu}$$

where K_{ν} are compact in \mathbb{C}_{ξ} and in each K_{ν} the number of points p_{ν}^{i} such that $f(p_{\nu}^{i}) = W$ is less than or equal to N (N independent of ξ and ν).

(ii) For each line \mathbb{C}_{ξ} through the origin in \mathbb{C}^2 there exists a holomorphic function F_{ξ}^2 on \mathbb{C}_{ξ} which vanishes (with multiplicity) exactly on

$${z \in \mathbb{C}_{\xi} : |f_1(z)|^2 + |f_2(z)|^2 = 0}$$

and satisfies the estimate $|F_{\xi}(z)|^2 \le M(r)(|f_1(z)|^2 + |f_2(z)|^2)$ if $|z| \le r$ and where M(r) is independent of ξ .

4. ESTIMATE FOR S(W,r)

Assume W = [1:0:0] and f = [1: f_1 : f_2] near W. Let $N_{\rho} = \{w_1, w_2\}$: $|w_i| < \rho\}$ be a neighborhood of W in \mathbb{CP}^2 . Put

$$I_1(\mathbf{r}) = \int_{\substack{|z| \leq \mathbf{r} \\ z \in \mathbf{f}^{-1}(\mathbf{N}_p)}} \mathbf{f}^* \underline{\Lambda}_{\mathbf{W}} \wedge dd^c \tau \quad \text{and} \quad I_2(\mathbf{r}) = \int_{\substack{|z| \leq \mathbf{r} \\ z \in \mathbf{C}^{2} - \mathbf{f}^{-1}(\mathbf{N}_p)}} \mathbf{f}^* \Lambda_{\mathbf{W}} \wedge dd^c \tau.$$

Then $S(W,r) = I_1(r) + I_2(r)$. The main contribution to S(W,r) comes from $I_1(r)$. Put

$$J_{\xi}(\mathbf{r}) = \int_{\substack{|z| \leq \mathbf{r} \\ \mathbf{z} \in C_{\xi} \cap f^{-1}(N_{0})}} f_{\xi}^{*} \Lambda_{\mathbf{W}}.$$

Then $I_1(r) = \int_{\xi \in \mathbb{CP}^1} J_{\xi}(r) \, d\xi$, where $d\xi$ is the usual normalized volume on \mathbb{CP}^1 . The main contribution to $J_{\xi}(r)$ comes from integration of $f^*\Omega \mid \mathbb{C}_{\xi}$. Let

$$\begin{split} \tilde{J}_{\xi}(\mathbf{r}) &= \int_{\substack{|z| \leq r \\ z \in C_{\xi} \cap f^{-1}(N_{\rho})}} f_{\xi}^{*} \Omega. \\ &= \int_{\substack{|z| \leq r \\ z \in C_{\xi} \cap f^{-1}(N_{\rho})}} \log \left[1/(|f_{1}|^{2} + |f_{2}|^{2}) \right] \\ &\cdot \left[|f'_{1} f_{2} - f'_{2} f_{1}|^{2}/(|f_{1}|^{2} + |f_{2}|^{2}) \right] \frac{\sqrt{-1}}{2} \, dz \wedge d\bar{z} \,. \end{split}$$

$$\text{Let } M_{\xi}(r) = \sup_{\substack{|z| \leq r \\ z \in C_{\xi}}} |f_1'(z) f_2(z) - f_2'(z) f_1(z)|^2 / (|f_1(z)|^2 + |f_2(z)|^2)^2.$$

Remark. A simple calculation shows this exists. Then

$$\tilde{J}_{\xi}(r) \leq M_{\xi}(r) \int_{\substack{|z| \leq r \\ z \in C_{\xi} \cap f^{-1}(N_{\rho})}} \log \left[1/(|f_{1}|^{2} + |f_{2}|^{2}) \right] \frac{\sqrt{-1}}{2} dz \wedge d\bar{z}.$$

Now suppose $f \in E$ and condition (ia) holds. Then we have

$$\begin{split} & \int_{\substack{|z| \leq r \\ z \in C_{\xi} \cap f^{-1}(N_{\rho})}} \log \left[1/(|f_{1}|^{2} + |f_{2}|^{2}) \right] \frac{\sqrt{-1}}{2} \, dz \wedge d\bar{z} \\ \leq & \int_{\substack{|z| \leq r \\ z \in C_{\xi} \cap f^{-1}(N_{\rho})}} \log \left[\rho_{1}^{2}/|f_{1}|^{2} \right] \frac{\sqrt{-1}}{2} \, dz \wedge d\bar{z} + Cr^{2} \end{split}$$

where C is a constant which depends only on ρ_1 and ρ . Using condition (ia) $\mathbb{C}_{\xi} \cap f^{-1}N_{\rho_1}) = \coprod_{\nu} K_{\nu}$ where each K_{ν} is compact and $K_{\nu} \cap K_{\mu} = \emptyset$ if $\nu \neq \mu$. Let

 $p_{\nu}^{i} \in K_{\nu}$ such that $f_{1}(p_{\nu}^{i}) = 0$. Let the Green's function of K_{ν} with pole at p_{ν}^{i} be $g(z, p_{\nu}^{i})$. Then on K_{ν}

$$\log [\rho_1 / |f_1(z)|] = \sum_{\substack{i=1,m_{\nu} \\ m_{\nu} \leq N}} g(z, p_{\nu}^i).$$

Therefore

$$\begin{split} \int_{\substack{|z| \leq r \\ z \in \mathbb{C}_{\xi} \cap \{z: |f_{1}(z)| \leq \rho}} & 2 \log \left[\rho_{1} / |f_{1}(z)| \right] \frac{\sqrt{-1}}{2} \, dz \wedge d\bar{z} \\ &= \sum_{\nu} \int_{\substack{|z| \leq r \\ z \in K_{\nu}}} \log \left[\rho_{1} / |f_{1}(z)| \right] \sqrt{-1} \, dz \wedge dz \\ &= \int_{t=0}^{r} \left(\sum_{\substack{\nu,j \\ j \leq N}} \int_{te^{i\theta} \in K_{\nu}}^{2\pi} g\left(te^{i\theta}, p_{\nu}^{j}\right) d\theta \right) t \, dt. \end{split}$$

Applying Selberg's lemma on Green's function (see Tsuji [3]) gives for $t \ge r_0$

$$\sum_{j} \int_{0}^{2\pi} g\left(te^{i\theta}, p_{\nu}^{j}\right) d\theta \leq N\left(2\pi^{2} + \log\left(t/r_{o}\right)\right)$$

where $r_o = \text{dist.}(0, \coprod K_{\nu}) > 0$ is independent of \mathbb{C}_{ξ} . Hence

$$\int_{t=0}^{r} \left(\sum_{\nu,j} \int_{\substack{\theta=0 \\ to^{j\theta} \in K}}^{2\pi} g(te^{i\theta}, p_{\nu}^{i}) d\theta \right) t dt \leq N \int_{t=0}^{r} \left[2\pi^{2} + \log(t/r_{o}) \right] t dt.$$

Putting L(r) = N $\int_{t=0}^{r} [2\pi^2 + \log(t/r_o)] t dt$ one has

$$\tilde{J}_{\xi}(r) \leq M_{\xi}(r) [L(r) + c \cdot r^{2}].$$

Now since $\log [(1+|f_1|^2+|f_2|^2)/(|f_1|^2+|f_2|^2)] \leq 2\log [1/(|f_1|^2+|f_2|^2)]$ on N_ρ for $\rho << 1$ we have the estimate $J_\xi(r) \leq c \tilde{J}_\xi(r)$. If we obtain an estimate for $M_\xi(r)$ independent on ξ we will have an estimate for $I_1(r)$. Using condition (ii) we have:

$$M_{\xi}(r) \le M^{2}(r) \sup_{\substack{|z| \le r \\ z \in C_{\xi}}} |(f'_{1}(z) f_{2}(z) - f'_{2}(z) f_{1}(z)) / F_{\xi}^{2}(z)|^{2}.$$

Since F_{ξ}^2 has the same zeros as $|f_1|^2 + |f_2|^2$ this exists. Let $G_{\xi} = (f_1'f_2 - f_2'f_1)/F_{\xi}$. Then G_{ξ} is holomorphic and therefore letting $K_{G_{\xi}}(r) = \sup_{|z| \le r} |G_{\xi}(z)|^2$ and using

the estimates

(4.1)
$$T(r) \le \log K_{G_{\epsilon}}(r) + O(1) \le 3T(2r) + O(1)$$

where T(r) is the order function of an entire function, we have

$$M_{\xi}(r) \le M^{2}(r) K_{G_{\xi}}^{2}(r) \le M^{2}(r) \cdot c \{K_{g}^{3}(2r) \cdot M^{3}(2r)(K_{f_{1}}^{2}(2r) + K_{f_{2}}^{2}(2r))^{3}\}$$

where $g=f_1'f_2-f_2'f_1$. $M_\xi(r)\leq c\cdot M^5(2r)\cdot P(r)$ where P(r) depends only on the growth of f. We now have $J_\xi(r)\leq c_1M^5(2r)\cdot P(r)[L(r)+c_2r^2]$ which is independent of ξ . Therefore $I_1(r)\leq c_1M^5(2r)\cdot P(r)[L(r)+c_2r^2]$. Now estimate $I_2(r)$. Since $\omega_o\leq {\rm const.}\,\omega$ on $\mathbb{C}^2-f^{-1}(N_\rho)$ and $\log\left[1/(|f_1|^2+|f_2|^2)\right]$ is bounded on $\mathbb{C}^2-f^{-1}(N_\rho)$ we have the estimate

$$I_{2}(\mathbf{r}) \leq c_{3} \int_{|\mathbf{z}| \leq \mathbf{r}} f^{*} \omega \wedge dd^{c} \tau = c_{3} \cdot \mathbf{r} \cdot T_{1}'(\mathbf{r}) + c_{4}.$$

Since $S(W,r) = I_1(r) + I_2(r)$ we have

$$S(W,r) \le c_1 M^5(2r) \cdot P(r) [L(r) + c_2 r^2] + c_3 r T_1'(r) + c_4.$$

Hence the growth of the error term depends on the function M(r) and functions of r which depend only on the growth of f for functions in the class E.

5. SOME EXAMPLES

We will now give some examples which will show that condition (i) says something about the clustering of common zeros of f_1 and f_2 along radial lines while condition (ii) says something about the proximity to zero of $|f_1|^2 + |f_2|^2$ along radial lines. We remark that all polynomial mappings are obviously in the class E.

Example 1. Our first example will deal with the "exponential surfaces" $f=(f_1,f_2)$ with $f_1(z,w)=e^{\alpha_1z+\beta_1w}-1$ and $f_2(z,w)=e^{\alpha_2z+\beta_2w}-1$, where $(\alpha_i,\beta_i)\neq (0,0)$ i=1,2. In this example we will use a slightly stronger version of the main result than we have proved. Note that in section $4\,I_1(r)=\int_{\xi\in\mathbb{CP}^1}J_\xi(r)\,d\xi$ where $d\xi$ is the usual normalized volume on \mathbb{CP}^1 . Suppose D is a set of measure zero in \mathbb{CP}^1 . Then we have $I_1(r)=\int_{\xi\in\mathbb{CP}^1-D}J_\xi(r)\,d\xi$. Condition (ii) was used to obtain a uniform (i.e., independent of ξ) estimate for $J_\xi(r)$. It will suffice to have condition:

(ii)' For each line \mathbb{C}_{ξ} through the origin in \mathbb{C}^2 with $\xi \in \mathbb{CP}^1 - D$ there exists a holomorphic function F_{ξ}^2 on \mathbb{C}_{ξ} which vanishes exactly on

$$\{z \in \mathbb{C}_{\epsilon} : |f_1(z)|^2 + |f_2(z)|^2 = 0\}$$

and satisfies the estimate $|F_{\xi}^{2}(z)| \leq M(r)(|f_{1}(z)|^{2} + |f_{2}(z)|^{2})$ if $|z| \leq r$ and where M(r) is independent of ξ .

Condition (ii) can be used exactly as before to obtain the estimate

$$J_{\xi}(r) \leq c_1 M^5(2r) \cdot P(r) [L(r) + c_2 r^2]$$
 for all $\xi \in \mathbb{C} P^1 - D$.

Integrating $J_{\xi}(r)$ over $\mathbb{C}P^1 - D$ gives the estimate for $I_1(r)$. Let E' be the set E with condition (ii) replaced by condition (ii)'. We now show that the "exponential surfaces" above are in E'.

First verify condition (i). Let $\zeta_0 z + \zeta_1 w = 0$ be a line through the origin in \mathbb{C}^2 . For $\zeta_1 \neq 0$ this may be written $w = \xi z$. The restriction of f to $w = \xi z$ is

$$f(z) = (e^{\mu_1 z} - 1, e^{\mu_2 z} - 1)$$

where $\mu_i = \alpha_i + \xi \beta_i$. Let $\mu = \mu_1$ if $\mu_1 \neq 0$, otherwise let $\mu = \mu_2$. Let $N \subset \mathbb{C}$ be a small neighborhood of μ ; $N = \{\mu' : |\mu' - \mu| < \epsilon << 1\}$. We show there exists $\rho > 0$ and $\epsilon > 0$ such that $\{z : |e^{\mu'z} - 1| \leq \rho\} = \coprod K_{\nu}$ with K_{ν} disjoint compact and $\mu' \in N$. (The K_{ν} of course depends upon μ' but for each μ' we get a collection of K_{ν} with the stated property.)

This shows that for any given $\xi \in \mathbb{C} \, P^1$ there exists a neighborhood $M \subset \mathbb{C} \, P^1$ of ξ such that the given ρ works for all $\xi \in \mathbb{C} \, P^1$. Cover $\mathbb{C} \, P^1$ by such neighborhoods. Since $\mathbb{C} \, P^1$ is a compact topological space this will imply that there exists a ρ which works for all lines $\zeta_0 \, z + \zeta_1 \, w = 0$ through the origin. By rotating the z-plane we may assume μ real. Then $|e^{\mu z} - 1| = 2(\cosh \mu x - \cos \mu y)$. Let $\tilde{N} \subset \mathbb{R}$ be the set $\{e^{i\theta} \, \mu' \colon \mu' \in N \text{ and } e^{i\theta} \, \mu' \in \mathbb{R}\} = \{t \in \mathbb{R} \colon |t - \mu| < \epsilon\}$. By the continuity of cosh and cos we may choose ρ and ϵ sufficiently small so that

$$\{(x,y): 2(\cosh tx - \cos ty) \le \rho\} = \coprod K_{\nu}$$
 for each $t \in \tilde{N}$.

This implies $\{z: |e^{\mu'z} - 1| \le \rho\} = \coprod K_{\nu}$ for each $\mu' \in N$. Condition (i) has therefore been verified for f. Next we verify condition (ii)'. Again the restriction of f to $w = \xi z$ is $(e^{\mu_1 z} - 1, e^{\mu_2 z} - 1)$. We may assume $\mu_1 \ne 0$ and $\mu_2 \ne 0$ since this occurs for only a finite number of ξ . There are two possible situations.

(a) The zeros of $e^{\mu_1 z} - 1$ and $e^{\mu_2 z} - 1$ lie on the same real line through the origin in \mathbb{C} . This occurs when $\mu_1/\mu_2 \in \mathbb{R}$; hence when

$$(\alpha_1 + \beta_1 \xi)/(\alpha_2 + \beta_2 \xi) \in \mathbb{R}$$
 or $\xi = (\alpha_1 - t\alpha_2)/(t\beta_2 - \beta_1)$, $t \in \mathbb{R}$.

 $\{\xi \in \mathbb{CP}^1: \xi = (\alpha_1 - t\alpha_2)/(t\beta_2 - \beta_1); t \in \mathbb{R}\}\$ is a set of measure zero with respect to $d\xi$, the normalized volume on \mathbb{CP}^1 . Hence we may ignore this set of ξ in verifying condition (ii)'.

(b) The zeros of $e^{\mu_1 z} - 1$ and $e^{\mu_2 z} - 1$ lie on different real lines through the origin in \mathbb{C} . From the discussion on the verification of (i), given $\epsilon > 0$ we may choose $\rho_i > 0$ (i = 1,2) so small that $\{z: |e^{\mu_i z} - 1| \le \rho_i\} = \coprod K^i_{\nu}$ with the K^i_{ν} disjoint compact and K^i_{ν} contained in a ball of radius ϵ about the zero p^i_{ν} of $e^{\mu_i z} - 1$. Let $\rho = \inf(\rho_1, \rho_2)$. Choose R so large that if $|z| \ge R$ then

$$\{z: |e^{\mu_1 z} - 1| \le \rho\} \cap \{z: |e^{\mu_2 z} - 1| \le \rho\} = \emptyset.$$

Let $c=\inf(|e^{\mu_1z}-1|^2+|e^{\mu_2z}-1|^2)/|z|^2$. The constants ρ , R, and c all depend upon ξ . We have also if $|z|\geq R$ then $|e^{\mu_1z}-1|^2+|e^{\mu_2z}-1|^2\geq \rho^2$. Hence if $|z|\geq R$ then $|e^{\mu_1z}-1|^2+|e^{\mu_2z}-1|^2$. We may assume, without changing the respective inequalities, that c and ρ are less than or equal to 1. Therefore $|\rho\cdot cz|^2\leq (1+r^2)(|e^{\mu_1z}-1|^2+|e^{\mu_2z}-1|^2)$. Condition (ii)' is therefore satisfied if we take $M(r)=1+r^2$. Therefore the "exponential surface"

$$f(z,w) = (e^{\alpha_1 z + \beta_1 w} - 1, e^{\alpha_2 z + \beta_2 w} - 1)$$

is in the class E'.

Remark. The lack of restriction on M(r) in condition (ii) in fact makes E a rather large class of functions. For application one might want to restrict E by restricting the functions M(r) allowed. We do this in our next example.

Example 2. In this example we will examine the Cornalba-Shiffman counterexample to the transcendental Bezout problem in the context of our main result. They construct two holomorphic functions g(z,w) and f(z,w) on \mathbb{C}^2 as follows. (See [1].)

Put
$$g(z,w) = g(z) = \prod_{h=1,\infty} (1-z2^{-h})$$
 and $g_k(z) = g(z)(1-z2^{-k})^{-1}$ if $k \ge 1$.

Observe that for any $\varepsilon > 0$, $|g(z)| \le K_{\varepsilon} e^{r^{\varepsilon}}$ for $|z| \le r$ and

$$|g_k(z)| \le K'_{\varepsilon} e^{r\varepsilon}$$
 for $|z| \le r$.

Now put $P_h(w) = \prod_{j=1,c_h} (w - 1/j)$ where $c_h = 2^{2^h}$. Define

$$f(z, w) = \sum_{h=1,\infty} 2^{-c_h^2} g_h(z) P_h(w).$$

Then $|f(z,w)| \leq K_{\epsilon} e^{|z|^{\epsilon} + |w+1|^{\epsilon}}$. We now restrict the class E to a smaller class of functions as follows. Suppose $k \in \mathbb{Z}$. Define the class E_k by replacing condition (ii) in the definition of E by (ii)':

(ii) 'For each line \mathbb{C}_{ζ} through the origin in \mathbb{C}^2 there exists a holomorphic function F_{ζ}^2 on \mathbb{C}_{ζ} which vanishes (with multiplicity) exactly on

$${z \in \mathbb{C}_{\zeta}: |f_1(z)|^2 + |f_2(z)|^2 = 0}$$

and satisfies the estimate $|F_{\zeta}(z)|^2 \le r^k [|f_1(z)|^2 + |f_2(z)|^2]$ for all z with $|z| \le r$.

We will show that the Cornalba-Shiffman example is not in the class E_k for any $k \in \mathbb{Z}$. The set of common zeros of f and g is

$$\{(2^h, 1/j): h = 1, ..., n, ...; j = 1, ..., c_h\}.$$

We restrict (g,f) to the line $w=\zeta z$ where ζ is chosen such that $f|\mathbb{C}_{\zeta}$ and $g|\mathbb{C}_{\zeta}$ have no common zeros and such that $|\zeta|\leq 1$. We remark that almost all ζ with $|\zeta|\leq 1$ have this property. Suppose there exist an entire function $F_{\zeta}(z)$, referred to from now on as F(z), such that $|F^2(z)|\leq r^k\left[|g(z)|^2+|f(z,\zeta z)|^2\right]$ for $|z|\leq r$ and F(z) is nonvanishing (since there are no z such that $|g(z)|^2+|f(z,\zeta z)|^2=0$). Write $F(z)=e^{H(z)}$. Then we would have

(2.1)
$$|e^{H(z)}|^2 \le r^k [|g(z)|^2 + |f(z,\zeta z)|^2]; |z| \le r^k$$

Now $|f(z, \zeta z)| \le K_{\varepsilon} e^{|z|^{\varepsilon} + |\zeta z + 1|^{\varepsilon}}$; hence with $|\zeta| \le 1$ we have

$$|f(z,\zeta z)| \le K_{\varepsilon} e^{r^{\varepsilon} + (r+1)^{\varepsilon}}$$
 for $|z| \le r$.

Therefore

$$|e^{H(z)}|^2 \le r^k (K_{\epsilon} e^{2r^{\epsilon}} + K_{\epsilon}' e^{2r^{\epsilon} + 2(r+1)^{\epsilon}}) \le r^k \tilde{K}_{\epsilon} e^{4(r+1)^{\epsilon}}, \qquad |z| \le r;$$

where we have collected the various constants which gives:

(2.2)
$$\max_{\substack{|z| \leq r}} |e^{H(z)}|^2 \leq r^k \tilde{K}_{\varepsilon} e^{4(r+1)^{\varepsilon}}.$$

Now consider the RHS of (2.1) at the point z=2', $\ell \in \mathbb{Z}$. Since g(2')=0 we have RHS = $r^k \cdot |f(2',\zeta 2')|$. Now

$$f(2', \zeta 2') = \sum_{h=1,\infty} 2^{-c_h^2} \cdot g_h(2') \cdot P_h(\zeta 2').$$

Since $g_h(2') = 0$ if $h \neq \ell$; $f(2', \zeta 2') = 2^{-c/2} \cdot g_{\ell}(2') \cdot P_{\ell}(\zeta 2')$ where

$$g_{\swarrow}(2^{\checkmark}) = \prod_{h \neq \swarrow} (1 - 2^{\checkmark} \cdot 2^{-h}) \quad \text{and} \quad P_{\swarrow}(\zeta 2^{\checkmark}) = \prod_{j=1,c_{\swarrow}} (\zeta 2^{\checkmark} - 1/j).$$

Therefore $|g_{\zeta}(2')| \le 2^{-2}$ and $|P_{\zeta}(\zeta 2')| \le (2')^{c_{\zeta}}$ where we have used $|\zeta| \le 1$. Finally we get

$$|f(2',\zeta 2')| \le 2^{-c_{\ell^2}} \cdot 2^{\ell c_{\ell}} \cdot 2^{\ell^2}$$

SO

RHS
$$\leq 2^{k} \cdot 2^{-2c/2} \cdot 2^{2/c} \cdot 2^{2/2}$$
 for $z = 2^{l}$.

This implies

(2.3)
$$\min_{|z| \le 2'} |e^{H(z)}| \le 2^{-c} \quad \text{for } \ell \text{ sufficiently large and } |z| \le 2'.$$

Therefore

(2.4)
$$\max_{|z| \le 2'} |e^{-H(z)}|^2 \ge 2^{c'} \text{ for } \ell \text{ sufficiently large.}$$

From the classical Nevanlinna theory, for any meromorphic function f, $T_f(r) = T_{1/f}(r)$. If f is holomorphic for all z then we have the relationship between $T_f(r)$ and $\max_{|z| \le r} |f(z)|^2$ given in inequality (4.1). Applying this to the entire functions $e^{H(z)}$ and $e^{-H(z)}$ and using the inequalities (2.2) and (2.4) we get:

$$2^{c} \le K_{\epsilon} 2^{3 \cdot \ell \cdot k} e^{12(2^{\ell}+1)^{\epsilon}}$$

for some K_{ϵ} depending upon ϵ and for all ℓ .

But with $c_r = 2^{2r}$ this gives a contradiction; hence no such function H(z) exists and the Cornalba-Shiffman example is not an element of E_k for any k.

Remark. Notice that in this second example the "clustering" of zeros on radial lines is nonexistent. Although the set $\{(2^h,1/j):h=1,\ldots,n,\ldots;j=1,\ldots,c_h\}$ clusters its intersection with a line, $\zeta_0z+\zeta_1w=0$ does not. We will give a final example which will show that it is not really the distribution of common zeros of f_1 and f_2 along radial lines but proximity to zero along radial lines which determines elements of E. Of course near a common zero of f_1 and f_2 on a radial line the functions must be near zero.

Example 3. Let $f(z,w)=(e^{P(z,w)},e^{Q(z,w)})$ where P and Q are non-constant first order polynomials. Consider any line $w=\xi z$ such that $P(z,\xi z)$ and $Q(z,\xi z)$ are non-constant polynomials. Then no matter how small we take $\rho>0$ the set $\{z:|e^{P(z,\xi z)}|\leq \rho\}$ cannot be written as the disjoint union of compact sets. The same remark applies to $\{z:|e^{Q(z,\xi z)}|\leq \rho\}$. Hence $f\notin E$ because condition (i) is not satisfied.

REFERENCES

- 1. M. Cornalba and B. Shiffman, A counterexample to the "Trancendental Bezout Problem." Ann. of Math. (2) 96(1972), 402-406.
- 2. P. A. Griffiths, On the Bezout problem for entire analytic sets. Ann. of Math. (2) 100(1974), 533-552.
- 3. M. Tsuji, Potential theory in modern function theory. Maruzen Co., Tokyo, 1959.

Department of Mathematics University of Kentucky Lexington, Kentucky 40506