A STRONGER INVARIANT FOR HOMOLOGY THEORY

Richard Jerrard-

1. INTRODUCTION

In this paper we show that in any homology theory which satisfies the
Eilenberg-Steenrod axioms, the homology groups for compact polyhedral pairs satisfy
aninvariance much stronger than homotopy type invariance; it is called m-homotopy
type invariance. The simplest example is the torus T® and the wedge of spheres
S? v 8' v S', which do not have the same homotopy type but do have the same
m-homotopy type; therefore, they must have the same homology groups. This is
a special case of Theorem 3.8, which begins to classify spaces by m-homotopy
type.

The proof uses certain multiple valued functions which we have called m-func-
tions. An m-function is finite valued, and each point of its graph is assigned
a multiplicity which is an element of a fixed ring. The multiplicities satisfy an
additivity condition which insures that locally as well as globally, the multiplicity
is conserved with respect to variations in the domain variable.

M-functions were used in {5] to describe the intersections of two smooth simple
closed curves in general position in the plane. As one curve undergoes a homotopy,
intersections appear and disappear; one gets a weighted multiple valued function
which associates with each homotopy parameter value a finite number of intersec-
tions, each labeled +1, —1 or zero depending on the orientation of the intersection.

This situation occurs again in studying fixed points, for one is looking for
intersections of the graph of a function f: X — X with the diagonal of the space
X X X. Given a homotopy f,: X — X one obtains an m-function g: I - X in which
the points of g(t) are the fixed points of f, and their multiplicities are the degrees
of the fixed points.

One can construct m-functions that are fundamentally different from any
continuous function. For example, as part of the m-homotopy equivalence mentioned
above we have an m-function from S® to T? that can be described as follows.
If one puts a two-sphere in the (hollow) interior of a torus, there is a projection
from T? onto S®. The inverse of this projection is an m-function; a graph point
has multiplicity +1, —1, or zero depending on how the radial ray from the sphere
center intersects the torus at the point. Unlike any continuous function S® — T?
this m-function has degree one and is not null-homotopic. Another difference is
that m-functions do not behave well under products; diagrams involving products
may not commute, and there is no cup product in m-homology.

It is not difficult to do homology with m-functions [1]. The m-homology theory,
together with some applications to fixed points of continuous functions, is also
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given in [6]. The innovation consists in defining a singular simplex to be an
m-function rather than a continuous function. The multiplicity plays the role of
the coefficient ring in ordinary homology. This is an extension of the usual theory
since the product of a continuous function and a coefficient a can be regarded
as an m-function of multiplicity a. One obtains the Eilenberg-Steenrod axioms,
but with the added result that m-homology is an m-homotopy invariant. Since
homology groups for compact polyhedra are unique, it follows that their homology
and m-homology groups are the same. More significantly, the usual homology
groups must be m-homotopy type invariants. The purpose of this paper is to show
that m-homotopy type invariance is indeed stronger than homotopy type invariance.

The author found, subsequent to the publication of [6], that G. Darbo gave
a theory of weighted maps which are the same as m-functions in an alternative
form. In [1], [2] and [3] he developed the homology theory, did coincidence theory
over manifolds, and proved a Lefschetz fixed point theorem for weighted maps
in the category of compact ANR’s. In particular he showed that homology groups
are m-homotopy type invariants. However, his papers do not consider the strength
of this invariance.

2. M-FUNCTIONS

Suppose that f: X X Y — Ris a (standard) function, where X and Y are Hausdorff
spaces and R is a ring with identity and without zero divisors. Then f defines
amultiple-valued functionf’: X —» Ybyf’ = ¢ Z{(x,y) € X X Y: f(x,y) # 0}. Suppose
also that f satisfies the conditions:

(1) for all x € X, f’(x) is a finite or empty subset of Y;

(2) iff'(x') = {¥1,¥25-+s¥n} t_here exist disjoint neighborhoods V;(y,) such that
for any neighborhoods V;(y;) C V, there is a neighborhood U (x’) satisfying:

(a) 2 f(x,y) =‘f'(x',yi)forxe U,i=12,..n

yE Vi

(b) f‘(x,y)=0foerUandyE|:Y— U Vi];

i=1

(3) if f’(x’) = ¢ there exists a neighborhood U(x’) such that f(x,y) = 0 for
alxe U,y € Y.

Definition 2.1. Under the conditions above, f is the defining function of the
multiple valued function f: X — Y X R given by
f={x,1):y € ' (x) and f (x,y) =1},
and f is called an m-function from X to Y (the ring R is usually fixed and dropped
from the notation).

If f(x,y) =r, then r is called the multiplicity of (x,y). The multiplicity of f

at x is m (f) = 2 f (x,y). It is constant on each component of X and we say
yeEY
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that f has multiplicity m(f) if X is connected. Note that f’ and f may have a
proper subset of X as domain. In fact, if f(x,y) = O for all x and y then f defines
the empty m-function.

The image of a point of X under an m-function is a number of points of Y,
each tagged with a multiplicity from R. As x varies, its images move around
in Y. Two or more points may coalesce, each contributing its multiplicity to the
point of coalescence. Two points of equal and opposite multiplicity may coalesce
at a point of zero multiplicity and then disappear. A point of zero multiplicity
may appear and then divide into a number of points whose multiplicities sum
to zero,

If 1 X—>YXR and g: Y - Z X R are m-functions, their composition

gof: X — Z X R is given by the defining function g3 f (x,z) = z fx,v)8(y,2).
yYEY
The composition of m-functions is an m-function, composition is associative, and

m(go f) = m(f)m(g). We can regard a continuous function f: X — Y as an
m-function of multiplicity one, and the identity function 14: X — X serves as
an identity for m-functions. Thus Hausdorff spaces and m-functions over the ring R
form a category My.

I_f_' f,g: X - Y X R are m-functions, we define their sum (f + g): X - Y X R
by f+g(x,y)=Ff(x,y) +8(xy). If a€R, we define the product m-function
(af): X—-> Y XR by af(x,y) =af(x,y). We have m(f + g) = m(f) + m(g) and
m(af) = am(f). With this addition and multiplication, the set Homg(X,Y) of
m-functions from X to Y over R forms an R-module. The zero element under
addition is the empty m-function 0: X - Y X R defined by 0(x,y) = 0 for all
X € X,y € Y. An m-function on pairs of Hausdorff spaces, used in the next sec-
tion, is defined as follows: h: (X,;A) — (Y,B) X R is an m-function on pairs if
h’(A) C B.

3. M- HOMOTOPY

We consider the category of pairs of Hausdorff spaces and m-functions; the
pair (X X I, A X I) is denoted by (X,A) X I. Suppose that X’ C X and that two
m-functions f,,f,: (X,A)— (Y,B) agree on X’ (f,| X’ = £, | X’).

Definition 3.1. We say that f, is m-homotopic to f, relative to X’ (f, ~_ f, relX’)
if there exists an m-function F: (X,A) X I — (Y,B) with F(x,0) = f, (%),
Fix,1)=f(x),and F|X’' X {t} =1, |X’' =1,| X’ fort € [0,1].

PROPOSITION 3.2. M-homotopy relative to X' is an equivalence relation on
the set of m-functions from (X, A) to (Y,B).

The proof is conventional, requiring only a slight modification to deal with
m-functions.

PROPOSITION 3.3. Compositions of m-homotopic maps are m-homotopic.

Proof. We assume that we have m-homotopic m-functions
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{fo ~_f, by F: (X,A) X I— (Y,B)
g ~mg  byG:(Y,B)xI- (Z,C)

Define the m-function p,: (X,A) X I - I byp,: (X,A) X I X I> R, given by

1 t=s

~2 ’t’ =
Py (=, 5,5) {O t#s

The required m-homotopy g,o f, ~,, g, ° f, is then the composition
F X p, G
(X,A) X I ——(Y,B) X I- (Z,C)
or H=Go (F X p,). We find that

Hxt2) = > Fxty) b (xts) G,s,2)

Y,s

= 2 F (X,t,Y) G(y:t,z)'

Substitution of t = 0 and t = 1 gives the desired result.

PROPOSITION 34. Iff,~, f,: (X,A) - (Y,B) and g, ~,, g,: (X,A)— (Y,B),
then (f, + g,) ~.. (£, + g,). Also af, ~_, af, for a € R.

Proof. We are given two m-homotopies
F,G: (X,A) X I- (Y,B).
The required m-homotopy is
F+ G: (X,A) XI- (Y,B),

for (F + G)|(X,A) X {0} = F|(X,A) X {0} + G|(X,A) x {0}
= f0 + go:

and a similar formula holds for t = 1. The second statement in the proposition
is obvious.

As a corollary to these propositions we have

THEOREM 3.5. There is a category MHy whose objects are pairs of Hausdorff
spaces and whose morphisms are m-homotopy classes of m-functions over a ring
R. Further, as in My the hom-sets of MHy form an R-module.

Definition 3.6. An m-function f: (X,A) — (Y,B) is an m-homotopy equivalence
if [f] is an equivalence in MH;. Two spaces have the same m-Aomotopy type
if there is an m-homotopy equivalence between them.
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Clearly, if h, ~, h,, then m(h,) = m(h,), for they are both restrictions of
the same m-function. Therefore h ~_ 1, implies that m(h) = 1. Consequently, if
g is an m-homotopy inverse of f, then gof ~_ 1, and m(g) = 1/m(f); note that
1/m(f) must then be an element of the ring R.

To illustrate the notion of m-homotopy as well as to provide a result that
will be useful later we consider certain maps of spheres. Suppose that S™ is the
standard n-sphere with unit radius, centered at the origin in E™*'. The north
and south poles are denoted by N and S; the coordinate axis containing these
poles, with N at +1, is the z-axis. The closed northern and southern hemispheres
are denoted by S”, and S”. We define certain functions. r: S® — S" is reflection
in the equatorial n-flat; the image of x is obtained by changing the sign of the
z-coordinate of x. c¢,: 8" — S" is the constant map which takes all points of S”
onto the point x.

PROPOSITION 8.7. 1ga+ 1~ 2¢y.

Here we regard these functions as m-functions; the addition and multiplication
are in the R-module Homg (S",S"). The integer 2 is the sum of two units in the
ring.

Proof. We first show that 2cy ~_, ¢y + ¢g by an m-homotopy ®: S™ X I - S".
To define & we choose a path a:I— S" with «(0) =N, a(1) = S. The defining
function of @ is then

$:S"XIxXxS*"-> R

2 ify=N,t=0
1 ify=Nt>0
1 ify=a’(t),t>0

d(x,t,y) =

0 otherwise

Second, by an ordinary homotopy one has ¢y ~ f, ¢g ~ g where

{fIS’l=1|S’i {gISi'=rIS'l
and .
f|S™ =r|S® g|s” =1|s™

Therefore 2cy ~,, f + g, regarding f and g as m-functions, and by their definitions,
f+g=1g.+r.

To perform surgery on an n-manifold one customarily excises a subset homeo-
morphic to S'7' X D" 7'*! and attaches a copy of D' x S™F (i =1,2,...,n); these
two sets have homeomorphic boundaries and the attaching map is essentially the
identity. We shall say that we have added an i-handle by conservative surgery
if the excised set s X D*7'** is contained in a disc D™ embedded in the manifold.

THEOREM 3.8. If the manifold M"is obtained from M" by adding an i-handle
by conservative surgery then M™ ~_M"v S'v S" 7' = M".

Proof. We shall construct M from M by removing a disc, and then glueing
on three discs in a certain way to replace it. The example to bear in mind below
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/\ (9+¢) D’

Figure 1 M ~_ M’

is the case where M is a 2-sphere, M is a torus, and S',8"™, =! and =" are
all circles. Here the “bottom,” B, is simply a disc. In the general two-dimensional
case B is a 2-manifold with a disc cut out.
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We first remove a disc T = D' X D" from M to obtain B =c1(M — T). We
use the notation

8B = aT = (S ' x D) U (D' x S"'71)
9,B =9, T=8""1'xD""
3,B = 9,T =D'x 8",

We now construct two copies, B, and B,, of B, and four copies T,, T,, T,, T,
of T. We define M by glueing together some of these copies by

M=@B,+T,+T,+T,)/R,

where the numerator represents the disjoint union and R, is the equivalence relation
generated by the pointwise identifications

9,T,=9,B,, 9,T,= a,T,, 9,T,=9,T,;, 8,T;=0,B,.

The original manifold is described by M = (B, + T,) /R, where R is the equivalence
relation generated by 4,B, =9,T,, 9,B, = 9,T,, which simply glues together a
copy of the original manifold.

We must definefth.e various maps used to construct m-homotopy equivalences.
We first write T, = D; X D] " (j = 0,1, 2, 3). Selecting a point
(q,s) € 8D x 4D C 8T = 9B,

we have corresponding points (q;,s;) € 9T;. From this point on we shall regard
B,, T,, T,, T, as subsets of M and B,, T, as subsets of M, joined along their
boundaries by the equivalence relations described above. Following this convention
(ay,8,) = (95,8,) = (q5,5;) € M. We now choose certain discs in M to be regarded
as hemispheres:

2% =D} X {s,}, Zp = D} X {s,} = Dy X {s5},
S37 = (g2} X D5, =R =(q,) X D7 = (q,} X D},

where the equalities on the right stem from the glueing of M. The subscripts
are chosen to suggest eastern and western hemispheres of spheres which we denote

by :
S'=3L U3y
== 27U By, /

both with north pole at (q,,s,;) = N,.

The manifold M v S'v 8*' = M’ is formed by attaching S' and 8™ to M at
the point (q,,s,) = N,, which is taken to be the north pole of both spheres. We
select homeomorphisms
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h,:S'» = h,: S* > 377,

taking N, to N,, and use these maps to define eastern and western hemispheres
of S, 8" (e.g. S = h;' Cp)).
We now define the following functions.

(a) There are identity-like homeomorphisms

tp:T,> T, (j,k=0,1,2,3)

bik: Bj_> Bk (J’k = 0’ 1)
which are the obvious maps (identity if j = k) between copies of T and copies
of B. Clearly t;, =ty , b, = by

(b) There are projections

N\ .
. h 2 (1=2,9)
p:Ty—> Dix (s} = s
2w (=1
52 (j=3)
pjz:Tj"’ {qj}XDj = { X

=W (=1,2).
(c¢) There exist retractions

Po1: Bo— Dil X {s,} = E\iv
Poz: Bo— {q3} X Dg_i = Eg_i-

The first may be obtained by retracting M onto the disc T, and following this
by the projection p,,.
(d) From (b) and (c) we have maps

P15M“>Ei;p1|Bo = ponpllTj:sz

= Po2s leTj = Dj2

(=123

p2:M—> 2“"i;p2|Bo (j=1,2,3)

If M is the torus, p, and p, are merely projections onto longitudinal and meridional
circles.
(e) There is a reflection
r: 32— 3%,
This is the map described above in Proposition 3.7 but now it is a reflection

which interchanges =%, with 1.

From this point on, all of these maps will be regarded as m-functions of
multiplicity one, and will often be represented by arrows; for example
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t1e = (T, > T,),
byo + Po1 = (Bo— By + 2",,) = (B,— B,) + By— E:N)

An m-function described by an arrow may have a sum of terms on the right-hand
side with coefficients (+1). The m-function is the sum of the indicated m-functions,
with the multiplicity of each summand represented by its coefficient. We shall
describe m-functions on M, M’ and M by their restrictions to the subsets
B,, T,,T,, T,C M, B,, T,, S, S ¢ M/, and B,, T, C M. In particular we
shall need

—B0—>B1 7]
T,->T, .
w= ‘tM->MCM
T,—> T,
LTa—’To _

B,— B, -
B= M- M,

The latter is the first real m-function to appear in this section; it is triple-valued
on T, and has multiplicity one. It is the key to the m-homotopy equivalence,
for it is a “degree one” m-function of M onto M and no continuous function of
this sort exists. We note that wo = 1,,. It is easy but tiresome to verify that
B is an m-function. Its defining function is:

- 1l y= bm (x)
x € Int(B,),B (x,y) = {
By 0 otherwise

1 y=t0j(x))j = 1’3
x € Int(T,), B (x,y) = { =1 ¥ = tg(x)
0 otherwise

3 1 y =ty X =Dby(x)
x € 3,Ty — 3,To, B (x,y) = { R
0 otherwise

Y = to3(x) = by (x)

_ 1
xeaT—aT,(x,)={
2me 1To. B (.Y . L0 otherwise

y= to1 (X) = toz (X) = toa (X) = blo (X)

. 1
x €9,T, N 3,T,,B (x,y) =
e 2lo, B (%, {O otherwise

The additivity condition must be verified. If x = N,, its only image point is N,,
of multiplicity one. We can find neighborhoods U of N,, V =B’(U) of N, such
that if x’ is in U N Int(B,) it has one image point in V of multiplicity one;
if x’ € Int(T,) it has three image points in V, two of multiplicity +1 and one
of multiplicity ~1; if x’ € U n (3,T, — 3,T,) it has two image points in V, one
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in 8, T, of multiplicity one, and one in 9,T, = 3, T, of multiplicity zero; if
x’ € UnN @,T,—9,T,y)

it has two image points in V, one in 9,T; of multiplicity one, the other in
3,T, = 4,T, of multiplicity zero. In any case the sum of the multiplicities of the
image points in V is one. Similar arguments hold for all possible locations of x,
and it follows that B is an m-function.

We can now define the required m-homotopy equivalencesg: M— M’, h: M’ — M.
They are given by '

{g='n‘—h;1rp1+h;1p2,
h|[M=8, h|{S'=h,, h|S" " =h,,

Clearly g is an m-function of multiplicity one, for it is a sum of m-functions
of suitable multiplicities. The m-function h, also of multiplicity one, is an extension
of B over M’; the only point at which the domains of h,,h, meet M is N,, and
it is routine to verify the m-function conditions there.

To demonstrate m-homotopy equivalence we first show that heg ~ 1. We
have hog = B o@ — rp, + p, which we write
[ B,— B,
hog = T,->T,—-T,+ T, .+,
T,> T, —T,+ T,
| T3> T, — T, + T, |

Since 1y = [Bo— By, T,— T;, Ty,— T,, Ty— T;],we have

_.BO—)Q -
hog=1y4+ Ti=> T T ' —rp, + P,.
: T,>T;—T,+T,-T, :
_..lTa—> TI—T2J

Here the notation [B,— #] means the empty m-function 0, whose domain is
B,, whose range is M, and whose graph is the empty set. We now define

B,— ¢ B,— ¢
T,—>T;,—T, T,—> ¢

Tl -1, =l romr, -1, |
T,— 9 T,—» T, —T,

which are both m-functions of multiplicity zero from M to M. For example, under
~ each point in Int(T, U T,) has image points in T; and T, with multiplicities
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+1 and —1; each point in 8(T, U T,) has one image point in 8,T, N 9,T; with
multiplicity zero. ‘

We now have

hog=1,4+8+vy—1p, +p,,

and we claim that |
Y ~m [Bo—= 8, T, — 57 = 27, Ty— 257 = 357, Ty — £]
3~m [Bo— 8, T,— 0, T,— =, — 2%, Ts— Sy — Zg].

For the first of these there are obvious homotopies

@ itas ~Dazs Wity ~ Doy
obtained by taking strong deformation retractions of T, ontol {q;} X D3 =327,
T, onto {q,} X D3 =X . Then we can define the required m-homotopy ®,
by

D, |(Int(B,) U Int(T;)) =0, P, |T, =tz — t1u ¥,
D, |T2 = toap, — t25V,.

A similar procedure works for 3.

Since

rp, = [By— 2;:’ T,— 211:::, T,— E\i.v; T;— ziv]:
p: = [Bo— EII;_i! T,— E;‘vﬁi’ T,— Z:nw_ir Ty— Eg_i],

we can put together these various results to find that

i B, — -3+ 32
T, — S5 i-3nt - 3L+ 357
h°g~m1M+ s s . . R s
T, — S —-323i4+ 3L 3L 3L+ 337
| T, — 3L —2F -3, +32

There are several cancellations here, and we now need only show that
M— 237" —2) ~, 0

i.e., the remaining m-function is m-homotopic to the empty m-function. This
m-function is a sum of two functions (M — 25 ') and (M — — =.). Since the point
N, is a strong deformation retraction of both =}, and =% we see that the constant
map (M — N,) is homotopic to both of these functions. Then
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M- ' —-2)~.M>N,-N,)=0

which shows that ho g ~,, 14 and concludes the first half of the proof.

Taking up g o h, we first write
dp=mCy) =7 (L) = Di X {s,} C 9,T,,
Ay =m (@) =mEW) = {go) X DgT C 9,T,.

We observe, for example, that h; ' p,(T,) = S&. Using arrow notations we have

B, » B, — Sy, +S5" ] [ Ty— T, —T,+ T, ]
T, —» Ty,—Sg+S%" B,— B,
goh= : . ° . .
T, — T,— Sk, + 8™ St >t
[T, —’To_si\zv+sg_i_ ;Sn_i—’ e _

In taking the composition, the following maps will appear,

[T, — S% ] "Toﬁs;"ijl
hi'r = o, h, ! = |,
1 plB _D1—>SIE_ 2 sz _Bl—)SEﬂ

B Si — di N —Sn—i_)dn—i
wh, = E ? , wh, = = o_.:|
| Sw—d, [ Sw —dg™
We find that
[~ T, > T,—SL+Sr" 7
B, —» Bl—S}i—.;+SE_i
Si — di — S, + N,
geh= i . . '
Sw— dy —Sg+ N,
S > d57 = Ny + 83
L_S“w'i - d(',’—i—N0+S'{v_l__

Since N, is a strong deformation retract of both S; and of S'é_}, the top two
lines are m-homotopic rel N, to the map

[T0—>T0—N0+N0] )
B,—»B,-N,+N,| ™

Since N, is a strong deformation retract of d}, and d}* the middle two and bottom
two lines are m-homotopic rel N, respectively to
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Si 59N, - Si .
[ = 0 V."]=2(S‘—>No)—r1si,
Si — 2N, — S&

[S';;ie N, — N, + Sz~ ] .
St 5 N, — Ng+ 85t | 757

But we have shown in 3.7 that the first of these is m-homotopic to 1. The
above m-homotopies can be carried out independently because they are all rel
N,, and N, is the point that separates M’ into the pertinent subsets.

COROLLARY 3.9. Each surface has the same m-homotopy type as the wedge
of either the two-sphere or the projective plane or the Klein bottle with an even
number of one-spheres.

Proof. Any surface can be obtained by adding handles through conservative
surgery to one of these surfaces. Theorem 3.8 shows that adding a handle to
a 2-manifold changes the m-homotopy type in the same way as attaching two
circles at a point. '

4. SINGULAR HOMOLOGY AND M-HOMOLOGY

We obtain singular m-homology from singular homology by allowing a singular
simplex to be an m-function over R rather than a continuous function. We start
with A", the standard geometric n-simplex, and the standard boundary maps
3,: A" "= A" (i =0,1,...,n), which will be regarded as m-functions of multiplicity
one. An n-simplex in a Hausdorff space X is an m-function ¢": A" — X (over R).
The chain complex C_(X) = Homy (A", X) is the R-module of all n-simplices in
X if n=0; it is zero if n < 0. Each chain, being a finite sum of m-functions,
is itself an m-function and a singular m-homology simplex rather than a for-

mal sum of singular simplices as in the usual theory. The boundary map
9: C,(X)— C,_, (X) is defined by

do = z (=1)'god,;
i~0

the boundary of any n-simplex is a single m-homology (n — 1)-simplex. The proof
that 90 = 0 is the same as for ordinary simplicial homology, so {C_ (x),9} is indeed
a chain complex. We put Z, = Ker 9, B, =Im d and define H_ (X)=Z_/B_ as
the n™" m-homology R-module of X. In [6] we proved the following.

THEOREM 4.1. M-homology over a ring R is a functor from My, to the category

of graded R-modules; it satisfies the Eilenberg-Steenrod axioms with homotopy
replaced by m-homotopy.

The proof of this theorem is almost entirely conventional. An m-function f: X —» Y
induces an R-module homomorphism f,: H , (X) — H  (Y) just as in the usual theory,
and this yields the functor. There are two departures from convention in proving
the Eilenberg-Steenrod axioms. The first is that the usual proof yields the fact
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that m-homology is an m-homotopy invariant instead of merely a homotopy
invariant; that is, m-homotopic m-functions induce the same R-module homomor-
phisms. The second occurs in the proof of the Excision Theorem which requires
the result, mentioned in section 1, that components of m-functions are also
m-functions.

THEOREM 4.2. In any Eilenberg-Steenrod homology theory H in the category
CP of compact polyhedra and continuous functions, the homology groups are
m-homotopy-type invariants.

Proof. We consider m-homology in the category CP; singular simplices are
m-functions, but maps between spaces are continuous functions regarded as
m-functions of multiplicity one. Since a homotopy can be regarded as an m-homotopy,
this theory is a homology theory in the sense of Eilenberg and Steenrod [4].
In particular, it satisfies the homotopy invariance axiom. By uniqueness, the
homology R-modules are the same as for H. Now we consider m-homology in
the category CPM of compact polyhedra and m-functions over R. The calculation
of m-homology R-modules for any space in CPM is the same as in CP; it is not
affected by the introduction of additional morphisms between spaces. Therefore,
the m-homology R-modules of any compact polyhedron are the same as its homology
R-modules. Since the m-homology R-modules are m-homotopy type invariants, the
proof is complete.

Theorem 4.1 shows that M, is in some ways a better category for homology
than TOP. We obtain a stronger invariant and have cycles that are morphisms
in the category rather than formal linear combinations of them. Theorem 3.8
shows that the invariant is indeed stronger. Worosz [5] has worked out the
corresponding m-cohomology theory, but the ring structure in cohomology is not
preserved by m-functions.
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