THE HOCHSTER-ROBERTS THEOREM OF INVARIANT THEORY
George Kempf

Let G be an algebraic k-group acting morphically on an affine k-scheme, where
k is a field. The quotient G\ X is the affine k-scheme, whose regular functions
are the regular functions on X, which are invariant under the action of G.

We will assume that G is linearly reductive; i.e.,, any finite dimensional
representation of G is completely reducible. The classical finiteness theorem of
Hilbert asserts that, if X is a k-scheme of finite type, then G\ X is also [5]
and [10]. A remarkable modern discovery is the

THEOREM 0.1. (Hochster-Roberts [7]). If X is a regular k-scheme of finite
type, then G\ X is a Cohen-Macaulay k-scheme of finite type.

In this paper, I will give another proof of this theorem. My proof is a modification
of their proof. In fact, it relies on the proof of

THEOREM 0.2. Let A C B be two integral domains which are finitely generated
algebras over a field k. If B is regular and B is a pure A-module, then A must
be a Cohen-Macaulay ring. .

Thisresult was conjectured by Hochster and Roberts in their paper. Furthermore,
both results were established by them in finite characteristics with weaker
noetherian assumptions. As B is a pure A-module if A is a direct summand of
B as an A-module, my proof shows that the only fact from invariant theory, used
in the proof of Theorem 0.1, is that the G-invariant projection

I'X, 0x) > T'(G\X, Os x)

is a I'(G\X, @5\ x)-module homomorphism.

In Hochster-Roberts’ proof, Theorem 0.1 was proven by a reduction to the graded
case, which is apparently not possible for Theorem 0.2. Their reduction to the
graded case uses the G-action and can provide valuable information about the
normal behavior of G\ X along any stratum in terms of the invariants of linear
representations of reductive subgroups of G.

In this paper, I will first prove Theorem 0.2, next explain how it implies the
Theorem 0.1 and lastly show how the theorem may be used for actually computing
invariants. )

1. SOME BACKGROUND

Let S be a regular noetherian scheme and .# be a coherent g-module. Let
F denote the support of #. Let Z be a closed subset of F. Recall that .# is called
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Cohen-Macaulay if and onI’y if depth , .# = codimension of Z in F = codZ for all
such Z. In Grothendieck’s language, one may interpret the depth, .# as

inf {i: #; (#) # 0},

where #}, (%) is the i-th local cohomology sheaf of .# along Z.

In this paper, we will make essential use of Grothendieck’s finiteness theorem
[3]. It is

THEOREM 1.1. Assume that % |s_, is Cohen-Macaulay. Then, #,(F) are
coherent Os-modules (which are supported by Z) for 0 =i < codZ.

We will also need to know this method of computing these local cohomology
sheaves. Let T be a closed subscheme of S with ideal . Let T; be the closed
subscheme of S with ideal .# . Then, we have

THEOREM 1.2. LetZ =TF N T. Then,

(a) & ias*(? , F) is zero if i < depth, # for any coherent s -module ¥ with
support in T.

(b) There is a natural isomorphism,

limit &'y ( Oy, F) = Z5(F)

m-—»e

for any i.
We will need the following
COROLLARY 1.3. If depth, # = i, then we have a sequence of inclusions,

&ty (O, F) C ... C &ty (Oy , F) C ... C 5 (F)
where #(F)= U &t 9 (Op_, F).

Proof. We have an exact sequence, 0 > & — 7 — O  — 0, where & is
a coherent &s-module supported in T. Thus, we have an exact sequence,

5 : o '
%“Z;(g: F) > Et' 9 (Or _» F)—> &t 5 (O, F),

but gxz‘;;(fé, &) is zero by part (a) of the theorem. Hence, o is injective and
the rest follows from part (b).

We may now combine these results to get

COROLLARY 1.4. If %#|gs_, is Cohen-Macaulay and depth, % =1 where

i < codyZ, then we have natural isomorphisms,
/

&t o (O F) S Ky (F),  forj>>0.
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Proof. By the ascending chain condition for sub-modules of a coherent sheaf,
this result follows from Theorem 1.1 and Corollary 1.3.

Let X = Spec(A), where = A, @ A, ® ... is a graded noetherian ring. Let Z
equal the set of -zeroes of the ideal A;® A, ® ... of A and let T, be the closed
subscheme of X with ideal A;® A;,, @ .... Let # =M for some graded A-module
M of finite type. Then, we have the following theorem ([1], [2], [3]), which
is a form of Serre’s finiteness and vanishing theorem for projective space. It is
also related to Hochster and Roberts’ notion of “uniform convergence of Koszul
complexes.”

THEOREM 1.6. Q) The local cohomology sheaves # ‘Z (F) = jg—)l K ; (#); are
naturally graded sheaves of Oy-modules. For any integer N,jg o (F); is a
coherent Oy-module supported by Z.

(i11) The sheaves ngiax(@rm: F) = jg)z é’in‘iax ( @’Tm, F); are naturally graded
coherent Oy-modules.

(iii) For any N and i, there exists an integer m = m(N,1) such that
j(;BN &t o (Or,, F);—> jZ@N H y (F);

for all /= m.

2. THE DISAPPEARANCE OF LOCAL COHOMOLOGY

Let U be an Z-scheme of finite type. Let X be a k-scheme of finite type over
a subfield k of Z Let f: U — X be a k-morphism. Let Z be a closed subset X.

We have a natural f-homomorphism, : #;(Fx) = # -1, (), for any integer
i. Our main technical result is

THEOREM 2.1. Assume that U is regular, X — Z is bohen-Macaulay and
i is an integer less than cody Z such that depth, Oy = i. Then, the homomorphism
U: Z 1 (Ox) > FH -1,(Oy) is zero.

Proof. First, we will reduce to the case where f 'Z has codimension at least
one in U. Otherwise, £ 'Z would contain a whole connected component of U as
U is regular. Thus, # }-1, (&) would be zero along this component unless i = 0.
If i > 0, the theorem is trivial. If i = 0, we have a factorization,

(0% 5T, (G ) > T (&),

where Z’ is the corresponding subset of X’ =X, , (we can do this because U
is reduced). Now, I',. (%) is zero unless Z’ contains a component of X’; i.e.
codx Z = 0. This settles the theorem in this case asi < codxZ = 0.

As the theorem is also local on X, we may assume that X is affine. Thus,
we may find a k-morphism g: X — A} such that Z = g7 {0}. Let h = g of. Then,
f7'Z = h™'{0}; and we have a commutative diagram,
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U—5UX, A=V

T,
X—% X x, A% =S,

where I" denotes the graph of a morphism. Let R be a closed subscheme of A}
with support {0}. Define T; = X X, R; and W, = U X, R,, where R, is the closed
subscheme of /Aﬁ with ideal # ; for i > 0. Then, T, is a closed subscheme of S,

Whlch meets X in Z. Slmllarly, W, is a closed subscheme of V, which meets U
in f'Z.

The virtue of this construction is that we have a commutative diagram of
sheaves,

&t 5 ( O,y Ou) — H 1-15(Ty)

Iwi . ]w

Gty (Ory Ox) — > 5 (),

which covers the morphisms of the underlying schemes.

As # iz((ﬁ‘x) is the direct limit of the &z#’s by Theorem 1.2.b, we only need
to prove that {; is zero for all large j. On the other hand, we know that -, is
an isomorphism for j >> 0 by Corollary 1.4 and our assumptions. Better yet, if
Y is an isomorphism, then v; is an isomorphism for j = m by Corollary 1.3. With
these facts in mind, we see that our theorem is a consequence of the following
more detailed result.

Claim. Assumethatv,,: é’é;/,, (Or_, Ox ) > HL(Ox )1s an isomorphism. Then,
(. é@/,,,s(ﬂlr , Ox)— gxtav((ﬁ’w , Oy) is zero.

We will first prove this claim when char(k) is finite. Then we will deduce
the characteristic zero case by continuity.

Assume that char(k) equals a prime p. Let g be a point of £ 'Z such that
its closure g contains the support of the coherent sheaf Im ¢, - & near g. We
will establish the inequalities.

length Cug (Im ¢, - Ty,) = length Pug (Imy,,, - @’Ug)
= p“™ s - length,, (Im i, - Ty,).

As codyf~'(z) = 1, dim Oy = 1. Thus, the inequalities imply that
length Oug (Imy,, - Oy,) =0 for all such g.

Hence, Im ¢, -+ &, must be zero as its support is empty; i.e., U, is zero. Thus,
it remains to prove the inequalities.
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The first inequality is easy. We have a commutative diagram,

é’.u‘iﬁv(ﬁ’wm, Oy) — é@/iﬂv(ﬁ’wpm, Ty)
Vi I Wom
é@/iﬂs(ﬁ}m, (9’,{).-’3 g’xzias(@rpm, Oy);
where the bottom arrow is an isomorphism by the remarks preceding the claim.

Thus, we have an surjection of &-modules,Im ¢, - &y — Im{,_, - &y. This gives
the first inequality and shows that length ,, _ (Im ., © Ty,) is a finite number.

The second inequality uses an analog of the Frobenius trick employed by Hochster
and Roberts in their work. Let F denote the Frobenius endomorphism of any
schemes involved. Recall that F fixes the points of the scheme but raises a regular
function a to its p-th power, F*a = a”. We get the following commutative diagram,

. B : .
&ty (O, Op) > Eat'y Oy, FyOy) = Fo(&t'y, Oy, Oy))

l ¢m I F* l!"pm

Gty (Or s Ox) = &ty (On By Ox) = F (&t (O, O%)),

where the vertical arrows are f-homomorphisms. The main point is that F, &,
is a faithfully flat coherent ¢-module as U is regular. Thus, B induces an
isomorphism of F, &;-modules,

gx/iﬂv((ﬁ’wm, Oy) @, Fy Oy— %f}v(ﬁ’wm, F, Oy).

Better yet, for any coherent ¢y-submodule .#" of é’zt,, (Ow_, Oy)y M ®, Fy Oy
is isomorphic to the F, &;-submodule of &t’ oy (ﬁ’w ,F Ty ), which y(./// ) gener-
ates.

By the commutativity of the diagram and the last remark, we must have an
injective F, & -homomorphism,

(Im"bm © Oy) ®0‘UF* Oy = F [Imy, - Tyl

We may rewrite this as an injection of &;-modules, F*(Im{,, * Fy) = Im{
Thus,

length &y (F* Oy, /m,) - length P (Imy, - Oy,)
=< length ,_ (Im Yom * Tuy)-

The second equality follows because length Oug (F*(Oy,/m,)) = pdimZus,

It remains to prove the claim when char(k) = 0. As we are working with a
property invariant under field extension we may assume that k = 7, We will find
a subring A of k, which is finitely generated over Z so that f: U— X and all
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the other above structures are defined over A. If we do this carefully, our problem
will be faithfully reproduced by base extension of the problem to a finite quotient
field k of A. These arguments are almost routine but I will state the necessary
requirements on A and give the details at certain turning points in the arguments.

Firstly, we need to_make A big enough so that we have A-morphisms f’': U’ — X’
and g’: X’ — A between A-schemes of finite type, which give the corresponding
notions over k. Choose a closed subscheme R’ of A, which gives R. Let

’ = (g’) " (support (R")).

One may take A so that U’ is smooth over A as U is smooth over / because
char (k) = 0. Furthermore, we may require that X’, T; and W; are flat over A;
and X’ — Z’ is Cohen-Macaulay and depth Oy = 1. Also we may assume that
(f’)"'Z’ has codimension at least one in any fiber of U’ — Spec A. Lastly, we
assume that

épx/io‘s,(ﬁ'r;n, @X’)—) %;'(ﬁx')

remains an isomorphism (here, it is important to use the coherence of %, : (%)),
and é’x/a (Ow., Ou)/Im{;, - Oy is Aflat.

Now, let A — k be a surjection of A onto a finite field k. Such surjections
exist as the points Spec x are dense in Spec A. Let U” be the base-extension
of the above concepts over k. Then, U” is regular (in fact, smooth over k). Also,
X” — Z" is Cohen-Macaulay, depth,. @y =1 and cod.(f”)"'Z” is at least one.
As the various &#’s may be computed before or after base extension by the
A-flatness,

é?:tﬁs,(ﬁ’.r ,@’”)~sz,¢s,(ﬁ’ Ox»)

and hence, to #}, (Ox-). Thus, v”. is an isomorphism. Furthermore, by the last
flatness assumption,

¢ dmel, - Oy) @k =Imel, - Oy

As the last term is zero by the finite characteristic version of the claim, the
image of the support (Im ¢/, -+ @) in Spec A can not contain any point Spec (k).
On the other hand, if ¢, were not zero, then this image would contain an open
dense subset of Spec A. As these possibilities are mutually exclusive, ¢_ = 0.

Remark 1. Hochster and Roberts have proven a much stronger result in
characteristic p.

Remark 2. Itseemsreasonable to ask if the analogous result is true for complex
analytic varieties.

Remark 3. One may hope that the above argument may be simplified by using
the proof of Theorem 1.1 rather than its statement.

We will end this section with a complement of the previous theorem when
X comes from a graded situation. Assume that X = Spec A, where
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A=A,+A + ..
is a graded k-algebra of finite type. Assume that Z equals the set of zeroes of

the ideal A; ® A, @ .... In this situation, we have the

THEOREM 2.2. Assume that U is regular. For any integer 1, ¢ induces the
zero f-homomorphism from the positive graded part ® # ,(0x); of # (%) to

) i=0
&y (Oy).

Proof. The proof is almost the same as that of Theorem 2.2. One must use
the Theorem 1.6 instead of the previous results from section 1. The point is that
the positive graded part is invariant under the Frobenius in characteristic p but
is still small enough to be a coherent &y-module. The reduction to the finite

characteristic case is more standard and can be read in the Hochster-Roberts paper,
or done by mimicking flat and projective base-extensions as in E.G.A.

3. PURE ALGEBRAS
Let ¢: M— N be an A-homomorphism between two modules over a ring A.
Then, ¢ is called pure if, for all A-modules P, ¢ ®, P: M ®, P— N ®, P is injective.

Clearly, if ¢: M — N is pure, then ¢ itself must be injective. If ¢: M — N is
injective and its image ¢(M) is an A-module direct summand of N, then ¢ is
a pure A-homomorphism.

An important property of pure homomorphisms, which is evidently satisfied
by the last example, is contained in

LEMMA 3.1. Let P* be a complex of A-modules. Then the induced A-
homomorphism ¢*: H* (M ®, P*)—» H*(N ®, P*) between the homology groups of
these complexes is injective if ¢ is pure.

Proof. We have a commutative diagram

.MO®P ' SM®P! 5 M®PHHI .

J |

.N®P"' SN®P' - N®P*1 .

We need to show that Im(N ® Py N Im(M ® P!) = Im(M ® P ') as sub-modules
of N ® P’. On the other hand, we have a commutative exact diagram,
0 0 0

M®P'5 M®P'> M®@P/ImP")- 0

N®P™7'5 N®P'-> N®(P/ImP"')- 0,
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where the vertical exactness is a consequence of the purity assumption. The desired
fact follows formally from the diagram.

We can use this lemma to prove

COROLLARY 3.2. Let X = Spec A where A is a noetherian ring. Let Z be
a closed subset of X.

(a) Let ¢: M— N be a pure A-homomorphism. Then ¢ induces an injection
&, (X,M)— #,(X,N) on local cohomology.

(b) Let V: A — B be a homomorphism of C-algebras, which is a pure C-module
homomorphism. Let f: V = Spec B — X be the morphism given by . Then the
Y-homomorphism, # ,(X, Ox) = # -1, (V, Oy), is injective.

Proof. Let 1 C A be an ideal defining the closed subset Z. If one computes
the induced homomorphism Exti\ A/, M) — Ext; (A/I',M) by using a resolution
of A/’ by free A-modules of finite type, then one finds that it is injective by
Lemma 2.1. As Grothendieck has proven that H} (X, M)—» H} (X, N) is the direct
limit for these injections, we may conclude the truth of (a).

For (b), we may factor the given homomorphism as
H. (X, Ox)— HL(X,B) - Hi_i,(V,T).
The first arrow is injective by part (a) and Grothendieck has shown that the
last arrow is always an isomorphism. Thus, (b) is true.

We can bring together the two divergent themes in

¢ U
THEOREM 3.3. Let A — B — C be D-algebra homomorphisms. Assume that ¢
is k-homomorphism between finitely generated algebras over the fields k C /

respectively, §i o ¢ is a pure D-homomorphism and B is a regular noetherian ring.
Then, A is Cohen-Macaulay.

Proof. LetV = Spec C _g) U = Spec B—f> X = Spec A be the corresponding mor-
phisms. For any closed subset Z of X, we need to see that depth, @y = cod x Z,
when X — Z is known to be Cohen-Macaulay. By induction, it will be enough
to check that if depth, @ =i and i < codx Z, then' &}, (T ) = 0; i.e. depth Ty > i.

. P,
As #,(Ox) = Hy (X, O) for any closed subset Z of an affine scheme, we need
to see that H, (X, Ox) = 0. By Theorem 2.1, the homomorphism,

H3 (X, Ox) = Hi-12 (U, Oy),

is zero but, by Corollary 3.2.b, it is injective. Thus, H}, (X, Ox) = 0.

Clearly, the Theorem 0.2 mentioned in the introduction is a special case of
Theorem 3.3.

Remark. Again, Hochster and Roberts have proven this type of result in
characteristic p by the same argument with less restrictive finiteness assumptions.

A similar result to the last theorem is
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THEOREM 3.4. In the situation of Theorem 3.4, assume that A=A, ® A, ...

is a graded k-algebra and Z is the zeros of the ideal A, ® A, @ ... in Spec A = X.

Then, the positively graded part _@0 H 3 (O%); of & 3(O%) is zero for any integer
=

1.

Proof. The same as Theorem 3.3 except that one uses Theorem 2.2 in place
of Theorem 2.1.

4. APPLICATION TO INVARIANT THEORY

Let G be an algebraic k-group acting morphically on an affine k-scheme X.
The quotient G\ X is defined to be Spec(I'(X, ﬁ’x)G), where I' (X, @’X)G is the
k-algebra of G-invariants in I' (X, @%). The inclusion of rings induces a k-morphism
X - G\X.

Recall that, if G is a linearly reductive group, there is a unique G-invariant
projection Av: T' (X, @) = I' (X, O%) of T'(X, &%) onto its subspace of invariant
elements. A trivial calculation shows that Av is a I' (X, &%)%module homomor-
phism. Therefore, the inclusion I' (X, ﬁ’x)G — I' (X, O) is a pure homomorphism of
T (X, @) ¢-modules.

We may now prove

THEOREM 0.1. If X is a regular affine k-scheme of finite type, then G\ X
is a Cohen-Macaulay k-scheme of finite type.

Proof. We have already noted in the introduction that G\ X is a k-scheme
of finite type. Thus, this theorem is a special case of Theorem 3.3. To see this,
just take A =T (X, ﬁX)G and B = C =T (X, J%) where ¢ is the inclusion and ¥
is the identity.

In classical invariant theory, X is a vector variety V and a reductive group
G acts on WV by linear transformations. As the G action on V commutes with
the action of G,, on V by scalar multiplication, G, acts morphically on the quotient
G\\Vin a natural way so that the quotient morphism ¥V — G\V is G -equivariant.
In the algebraic language, this means that I' (\V, @V)G is a sub-graded ring of
(v, @,) = Sym; V, where V is the k-vector space of linear functions on V.

The main problem in classical invariant theory was to explicitly determine
the graded ring I'(V, &,)°. Needless to say, this very difficult problem was never
really solved. A more reasonable problem is getting an effective bound on the

amount of calculation necessary to determined I (V &,) © for given representations
V of G.

The Hochster-Roberts Theorem provides very strong information about a part
of the above process. A useful form of their theorem in this situation is

THEOREM 4.1. There exist fundamental homogeneous invariants1,,...,I1, and
auxilary homogeneous invariants1 = F,, ...,F such that any invariant inT (V, &) ¢

may be written uniquely in the form 2 G;{d,,...,1,) - F,, where the G; are

polynomials in d-variables.



28 GEORGE KEMPF
In other words, I'"(V, ﬁ\v)c is a free graded module of rank t over a graded
polynomial sub-ring k [I,,...,I,] where d equals the dimension of I" (V, ﬁv)G.

Proof. By Max Noether’s theorem (see [6]), we may choose algebraically
independent homogeneous elements I,,...,I, in any finitely generated graded
integral domain A over k, where d is the dimension of the domain so that the
domain is a finite k [I,,...,I,]-module. By a theorem of Macaulay-Serre, A is
a Cohen-Macaulay ring if and only if A is free graded module. The present theorem
is equivalent to Theorem 0.1 in this case.

Let ¢(s) = 2 dim (i-graded piece of T" (V, ﬁ’w)(")si be the generating function
of the graded ring T (V, @’\V)G. By Frobenius-Schur-Weyl methods, ¢(s) may be

computed directly from G and V without determining the ring of invariants. The
last theorem says that the generating function has a special form.

COROLLARY 4.2. The generating function ¢(s) has the form

2 s"

_—, wheref, = degF; for1= i< t
‘a(l —s8)

andg;=degl;forl=j=d.

Furthermore, ¢(s) has a pole of order d at s = 1. In fact

s s _ a _ : )
limit ¢ (s)(s — 1) Ef,/ (mg;).

Proof. The first statement is an easy exercise once one knows Theorem 4.1.
The other statement is apparent.

Unfortunately, the generating function ¢(s) only allows one to guess what
the g; may be. Hilbert described the problem of actually finding fundamental
invariants as the hardest problem of invariant theory. This is shown quite
dramatically by an interpretation of another result of Hochster and Roberts, which
is

THEOREM 4.3. With the notation of Theorem 4.1, for 1 =i < t,

deg F; = z deg I,

wherel =j =d.

I will give the proof of this result later after which I will give a little discussion
of the sharpening of the above theorems which is possible when G is finite. Before
I begin the last part of this section, I will sketch Hilbert’s method of finding
fundamental invariants.
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In [5], Hilbert established his famous finiteness theorem. He next founded

geometric invariant theory in [6]. His Nullstellensatz was crucial to the proof
of the next result.

THEOREM 4.4. (Hilbert) Let f:V — G\V be the quotient morphism. Let Z
be the closed subset of G\V defined by all homogeneous invariants of positive
degree. Let K be the set of homogeneous invariants such that £7'Z is the zeroes
of £*K. Then, there is a finite subset J,,...,d. of K such that T (V, ﬁ’w)G is a
finite graded module over the subring generated by the J.s. Furthermore, if k
is infinite and d is the least common multiple of the degrees d; of the J;, then

we may choose fundamental invariants 1,,...,1, to be linear combinations of the
3/,

Thisresult was combined with his geometric description of the locus of null-forms,
£7'Z, intrinsically without knowing any invariants. Mumford has modernized and
generalized his description in [10]. He proved that f™'Z consists of the vectors

v in V such that the closure of orbit G - v contains 0. More precise further
results may be found in [10], [11] and [9].

One possible approach to proving the Hochster-Roberts theorem in the linear
case uses the

_LEMMA 4.5. Pull back via f gives natural isomorphism of G ,-modules from
H3 (G\V, Os.y) to the G-invariants H;_., (V, ﬁ’\v)G in Hioa 5 (V, 9)).

As I will not need this trivial result, I will not prove it but it shows clearly
how the difficulty of proving the Hochster-Roberts theorem is related to the
codimension of f'Z in V being smaller than the codimension of Z in G\V. The
next result will be useful. It is

THEOREM 4.6. (Hochster-Roberts) (a) The local cohomology groups
HZ (G\V, Oq.) are zero if i < dim G\V = d.

(b) The positively graded part jEEF)O HS (G\V, Ocy) s zero.
Proof. Part (a) is a special case of Theorem 0.1 because it says that
depth , O,y = codimensiong.  Z (= dim G\\V).
In fact, the statement (a) itself implies that G\V is Cohen-Macaulay because

the worst singularity of the “cone” G\V is at its vertex.

Part (b) follows from Theorem 3.4 in the same way as Theorem 0.1 follows
from Theorem 3.3.

We will now see how Theorem 4.3 is equivalent to part (b) of Theorem 4.6.

Proof of Theorem 4.3. By Theorem 4.1, we know that the graded ring I'(V, &) ¢
is a free graded module with basis F,,...,F, over its subring k[I,,...,I,]. Let
w: GN\V — Spec(k [I,,...,I4]) = Y be the morphism corresponding to the inclusion
of the rings. Now, w~'{0} =Z and = is a finite flat morphism. Therefore, we
have a natural isomorphism

H3 (G\V, Coy) = HY (Y, m, Ooy) = ®HY, (Y, F, - Oy).
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Now, H‘:o} (Y, &) is graded and the highest deg{'ee of a nonzero homogeneous

component is — 2 deg I... Thus, the highest degree of a nonzero homogeneous
component of H (G\V, Oc~y) is max deg F, — 2 deg I, . Thus, the part (b) of

Theorem 4.6 is equivalent to the inequality, deg F; < 2 deg I, for all j, which

is Theorem 4.3.

Remark. If Gis a finite group and k is infinite, Dade (unpublished) has shown
that in Theorem 4.1 one may choose the fundamental invariants I,,...,I, to have
degree less than or equal to order (G) where d = dim V. In fact, he notes that
we may take I, = m ;g *X,, where X,, ..., X, are coordinate functions onV, which
are in general enough position so that I does not vanish on any component (which
must be linear) of I, =0,...,I;_, = 0 for all j. See [12] for background material
on invariants of finite groups.

Furthermore, for finite groups, the inequality of Theorem 4.3 may be strength-
ened to an equality. Let HY, (V, &y),, be the m*"-graded piece of H¢, (V, &y).
By Serre duality, we have a perfect pairing

H{, (V, O) ® Sym ™V — HY (V, 4)) _,

where Sym*V is the *-th symmetric product of the linear functions V on V and
0} (V, &) _41s a line.

As G acts on the line H'?O) (V,0y) _4 by the determinant (p) ™', where
p: G —» GL(V) is the given representation and the pairing is equivariant, we
have a perfect pairing,

H{, (V, e ® Sym ™ VO H, (V, A 20) ¢ - k.

As H?o} (V, G,)8 = Hz(G\V, s v)m, the above pairing shows that, if n = max m
such that Hd (G\V, e y)m # 0, then —d — n = min i such that

(Sym Ve H(o) (V, 0\/) _d)G # 0;

t.e., minimal degree p such that Sym"” V contains a nonzero semi-invariant of weight
det(p) ~'. Thus,

—d —maxdegl; + 2 degl =
or, rather,

max deg F, = degl, —d—p= deg I, — d.
’ j
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The reader may prefer another proof of the last equation. We have a canonical
isomorphism 7, Qy = #n oy (T Oy, Q2 1) [3] where we are using the notation of
the proof of Theorem 4.3. As Oy =~A‘V®, &, and Q3 ~dI, A ... adl, - &y, the
duality isomorphism gives a direct relationship between covarlants in AV ®,
k[V] and covariants in Hom,, _,,(&[V],I, ----1;-k[I,,...,I;]). From this
one may deduce more general relationships of the above types.

Remark. The reduction to the graded case in Hochster and Roberts’ proof
gives valuable information about the graded approximation A = ® n, /n;,, to the
local ring & 4, at any point x of the quotient variety G\ X, where n; is the
integral closure of the i-th power m' of the maximal ideal m of Oaxx» In
characteristic zero, one may show that A is up to extension of scalars just the
ring of invariants of a reductive subgroup H of G acting on a representation
of H. One takes H to be the stabilizer of a point of a minimal G-orbit lying
over x. The representation of H is given by the action of H on the normal bundle
of X along the orbit. When one works out what this means in practice, one may
use the information from the smaller subgroup H and its smaller representatlon
See [8] for more indication of this procedure.
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