A NEW APPROACH TO GELFAND-MAZUR THEORY
AND THE EXTENSION THEOREM

Seth Warner

To state the theorem on which our approach is based, we need the follow-
ing definitions: A function N from a ring A to the real numbers R is a (ring) semi-
norm_if for all x,y € A, N(x) =0, N(—x) = N(x), N(xy) = N(x)N(y), and
N(x + y) = N(x) + N(y). The null space N"'(0) of a seminorm N is an ideal;
N is a norm if N7'(0) = (0). The core of a seminorm N on A is the set C(N),
defined by

C(N) = {c € A: N(c) # 0, and N(cx) = N(c) N(x) = N(xc) for all x € A}.

A function V from a ring A with identity to R is an absolute semivalue if
V is a seminorm satisfying V(1) = 1 and V(xy) = V(x) V(y) for all x,y € A. The
null space V™'(0) of an absolute semivalue V is a prime ideal; V is an absolute
value if V1(0) = (0).

If |. .| is an absolute value on a field K and if A is a K-algebra, a ring norm
N on A is an algebra norm if N(\.x) = |[\| N(x) for all A € K, x € A.

Let N be a seminorm on a commutative ring A. As is well known, lim N (x*) /"

n—o
1/n

exists for each x € A, and N,:x - lim N(x") is a seminorm on A, called the

n—oc

spectral seminorm associated to N. A seminorm N on A is spectral if N = N_,
or equivalently, if N(x") = N(x)" for all x € A and alln = 1. If N is any seminorm
on A, N, is a spectral seminorm.

Our discussion is based on the following theorem of Aurora [3, Theorem 1]:

THEOREM 1. If N is a nonzero spectral seminorm on a commutative ring
A with identity and if J = N7 (0), there is a family (V) .c o~ Of absolute semivalues
on A such that for each c € A\J, V,=<N, C(V,) D C(N) U {c}, V.(x) = Nx) for
all x € C(N) U {c}, and therefore N= sup V..

cE ANJ

We have stated somewhat more than appears in [3], but a slight modification
of the proof yields our statement. Earlier, Cohn [8, Theorem 13.3] had shown
that a spectral norm on a field was the supremum of a family of absolute values,
but the further properties mentioned in Theorem 1, which are crucial for applications,
are not apparently derivable from his proof. Aurora’s theorem has subsequently
been rediscovered, in whole by Bergman [4], and in part by Szpiro [17] and
Kiyek [11].
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1. THE EXTENSION THEOREM

An absolute value |. .| on a field K is proper if the topology defined by |. .|
is not the discrete topology, that is, if there exists x € K such that 0 < |x| < 1.
The basic extension theorem is the following:

THEOREM 2. Let |..| be a proper, complete absolute value on a field K,
and let E be a field extension of K of finite degree. There is a unique absolute
value V on E extending |. .|.

Proof. Let {e,,...,e,} be a basis of the K-vector space E, where e, = 1. By
[7, Theorem 2, p. 18] there is a unique topology on E making E into a Hausdorff
topological vector space, and that topology is therefore given by the norm N on

the K-vector space E, defined by N 2 Ae; | = sup |A;|. Multiplication is a
i=1

1=i<n
K-bilinear mapping from E X E to E and hence is continuous (cf. [7, Corollary
2, p. 19]), so there is an equivalent algebra norm N, on the K-algebra E (defined
by N,(x) = |a| >N (x), where « € K* is such that for all x,y € E, N(x) < | «|
and N(y) = |a| imply N (xy) = 1). By a familiar technique, we may replace N,
by an equivalent algebra norm M satisfying M (1) = 1 by defining

7/

M(x) = sup {N, (xy)N, (y) ":y # 0}.

Then C(M) D K, and M is a norm extending |..|. As E is a field, the associated
spectral seminorm M_ is a norm; furthermore, C(M,) D C(M) D K, and M,
agrees with M on C(M), so in particular, M, is an extension of |..|. By Theorem
1, there is an absolute semivalue V on E agreeing with M_ on C(M,) and, in
particular, on K. As E is a field, V is an absolute value, which is thus the desired
extension of |. .|. For uniqueness, see [6, Lemma 2; p. 132].

THEOREM 3. If |..| is a proper absolute value on a field K and if E is
a field extension of K of finite degree, there is an absolute value on E extending

Proof. Let |..| be the absolute value of the completion K~ of K. There is
a K-isomorphism o from E onto a subfield of the algebraic closure Q of K,
and [o(E) :K ] = [0 (E):K] < +o. By Theorem 2, there is an absolute value V
on o(E)” extending |..| , so'x = V(o (x)) is the desired extension of |. .| to E.

Kiirschak’s original proof [12] of the Extension Theorem depended on theorems
of Hadamard concerning the radius of convergence of the product of a power
series and a polynomial. Ostrowski [13] observed that Hensel’s Lemma permitted
a much simpler proof for nonarchimedean absolute values, and established the
theorem for archimedean absolute values by proving the theorem that bears his
name. Essentially, this method of proof of the Extension Theorem has remained
current since 1918 (e.g., [2, Ch. 2]), although some presentations replace the appeal
to Hensel’'s Lemma by one to Krull’s extension theorem for valuations (e.g., [6,
Proposition 9, p. 151}).



GELFAND-MAZUR THEORY AND THE EXTENSION THEOREM 15
2. THE GELFAND-MAZUR THEOREM

Besides Theorem 1, we shall need the following two theorems:

THEOREM 4. (Frobenius) If D is a real division algebra such that every
commutative division subalgebra has dimension at most 2, then D is isomorphic
to'R, C, or the division algebra H of quaternions.

A proof is given in [14] and in [6, Exercise 2, p. 186].

Henceforth we shall use |. .| to denote the usual absolute value on division
subrings of H.

THEOREM 5. (Ostrowski) If a field K is a proper extension of C, the absolute
value |. .| on C, where 0 <p =< 1, admits no extension to an absolute value on
K.

This theorem is crucial to the proof of Ostrowski’s description of archimedean
absolute values. The proof [13, pp. 281-282] uses the fact that'C is locally compact
and contains roots of unity of all orders.

Gelfand’s proof of the Gelfand-Mazur theorem depended on the Hahn-Banach
Theorem and Liouville’s Theorem concerning bounded entire functions. Subsequent
elementary proofs ([18], [16], [10], [15]) used instead the same properties of
C that Ostrowski used in proving Theorem 5. Zelazko [19] established more explicitly
the fact the convexity played no role by showing that |..| on the scalar field
C could be replaced by |..|” where 0 < p =< 1. All presentations heretofore have
proved the complex Gelfand-Mazur theorem first and derived from it the real .
version, first established by Arens [1]. We may prove the real version directly,
however, from which the complex version follows.

THEOREM 6. (Gelfand-Mazur) If D is a normed division algebra over R,
equipped with the absolute value |..|® where 0 <p =<1, there is a topological
isomorphism from D onto one of the R-algebras R, C, H.

Proof. As in the proof of Theorem 2, there is an algebra norm N on D that
is equivalent to the given one and satisfies N(1) = 1. Consequently,

N(A1) = [A]PN(@) = |\ ]P

for all A € R. We identify R with R.1; thus N is a norm on D that extends
|..|® and contains R in its core. To apply Theorem 4, let K be a commutative
~ division subalgebra of D, N’ the restriction of N to K. The corresponding spectral
seminorm N on K agrees with |..|” on R and contains R in its core, and N’
is a norm since K is a field. By Theorem 1, there is an absolute semivalue V
on K that agrees with N, and hence |..|° on R, and again, V is an absolute
value as K is a field. By Theorem 3, there is an absolute value V’ extending
V on K (i), the field obtained by adjoining arooti of X®> + 1to K.ButK({) DR (i) = C
so as R is complete for |. .|?, V' (x) = |x|* for all x € R (i) by Theorem 2. Therefore
K (i) = C by Theorem 5, so the dimension of K does not exceed 2. Consequently
by Theorem 4 and [7, Corollary 2, p. 19], the assertion follows.
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3. THE SPECTRAL RADIUS THEOREM

Gelfand [9] used complex variable methods in establishing the spectral radius
formula. Rickart [15] has given an elementary proof of it. In a complex, commutative
Banach algebra with identity, the spectrum of an element x coincides, of course,
with the set of all the numbers u(x) where u is a nonzero homomorphism from
A to C. Consequently, the spectral radius theorem for complex Banach algebras
is contained in the following theorem:

THEOREM 7. (Spectral Radius Theorem) Let K be either;R or C, equipped
with the absolute value |- -|* where 0 < p < 1. Let N be the norm of a commutative
Banach algebra A with identity over K, and let A, be the set of all nonzero
homomorphisms from A into the K-algebra C. For each x € A,

sup ju(x)|® = N,(x).

UEA,L

Proof. As is well known, every maximal ideal of A is closed, so as the kernel
of each u € A, is a maximal ideal of finite codimension (for its range must be
either K or C), each u € A, is continuous and therefore has norm 1. Consequently,
by a familiar argument, ju(x)|® = N, (x) for everyu € A,.

To prove the converse, let ¢ € A be such that N, (c) # 0. By Theorem 1, there
is an absolute semivalue V, on A such that V_ (c) = N (c) and V, agrees with
N, on its core. In particular, V_,(A\.1) = N_,(A.1) =|A|® for all A € K, so
V.(\.x) = |\ }PV_(x) for all A € K, x € V. Therefore the prime ideal V' (0) is
an algebra ideal; let P = V_* (0), let B be the K-algebra A/P, and let V, be the
absolute value on B satisfying Vc (x+ P)=V_x) for all x € A. Let V. be the
absolute value on the quotient field L of B induced by V.. We make L into a
K-algebra by defining A.(s/t) = (A.s)/t for all A € K, s,t € B, t# 0. Clearly
VI(\.(s/t) = |N|?V.(s/t)forallA € Kandalls,t €B,t#0. Thus V’/ is an
algebra norm on L. By Theorem 6, there is a K-isomorphism w from L onto
either K or C. As w(B) is a K-subalgebra, w(B) is a field and hence B is also.
Thus B =L, and V! = V_. In particular, the dimension of B does not exceed 2.
As s ., |w(s)|® and V, are absolute values on B that agree on K.(1 + P) and
as K.(1+P) is complete, by Theorem 2 they coincide on all of B. Let
v:ix ,,wEx+P),x€ A. Then ve A,, and |v(x)|°=V_(x) for all x € A; in
particular, |v(c)|® = V. (c) = N (c).
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