ON REPRESENTATIONS OF ARTIN’S BRAID GROUP
Colin Maclachlan

In [5], it is shown that the projective symplectic group P Sp((n — 2)/2,Z,)
is an epimorphic image of B, Artin’s Braid group on n strings. The method arises
from machinery established by Hurwitz [10] for determining the action of B,
on branched coverings of the two-sphere. Redefining this action in terms of Fuchsian
groups, a more direct proof of this result is obtained and the general method
is shown to be allied to the methods of [8] of obtaining finite representations
of the mapping class groups of related Fuchsian groups. These latter finite
representations are discussed in Section 3. The link is provided in Section 2 by
a general method of obtaining (infinite) symplectic representations of B, which
is, in essence, a reformulation of results in [4].

1. PRELIMINARIES

A Fuchsian group is a discrete subgroup of .#= PSL (2,R), the group of all
conformal self-homeomorphisms of the upper half-plane U. A finitely-generated
Fuchsian group of the first kind has a presentation of the form:

@ Generators: e,,€,,...,€.,Py, .., Psr 85, Dy, ..,a,, b,

I S g
Relations: e"i=1(1=1,2,...,7r); H €; H P; H [a;, b} =1
i=1 j=1 k=1

A Fuchsian group with presentation (1) has signature (g;m,, ...,m_;s). The e;
are elliptic elements, the p; parabolic and the a;,b; hyperbolic. The quotient space
U/T takes the structure of a Riemann surface obtained from a compact surface
of genus g by deleting s points. The covering U — U/T is branched over r points
corresponding to the fixed points of e,, e,, ..., e, and the periods m; give the order
of branching at these points.

I' has a fundamental region in U whose hyperbolic area p. (I') is given by

r 1
(2) u(I‘)=2'n-[2(g—1)+2(1———)+s].

m.

If T, is a subgroup of I' of finite index n, then ’p. (T;) = nu ('), which combined
with (2) gives the Riemann-Hurwitz relation.

With T’ as at (1), an automorphism of I is called type-preserving if it maps
parabolic elements into parabolic elements. Let F be a free group on 2g +r + s
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generators and N the normal closure of the relators given in (1) so that I is
isomorphic to F/N. Every type-preserving automorphism ¢ of I' is induced by
an automorphism ® of F. Furthermore, if we denote the generators of F by capital
letters of the corresponding generators of I' then

®(E;)=NEfgAT,  i=1,2,..,,
®(P) =P u,  j=1,2..,s

and ®(R) = ARA"" where R =IIE;IIP,IT [A,, B, ], where e(¢) = =1 and i = ¢ (i) ,
j = ¢ (j) are permutations on r,s elements respectively (see [17]). Let A (I') denote
the group of type-preserving automorphisms ¢ of I' which are also orientation-pre-
serving; i.e, £(¢) = +1. Notice that ¢ then maps each e, into a conjugate of some
e;, with, necessarily, m; = m;, and each p; into a conjugate of some p;. If I(I)
denotes the group of inner automorphisms of I', then Mod I' = A () /I (I') is the
(Teichmuller) modular group of T'.

The Nielsen isomorphism maps Mod I onto the mapping class group (of homotopy
classes of self-homeomorphisms) of the surface U/T" [11].

The methods of proof in the later sections depend on the following known
facts (see e.g. [11]). Suppose there exists a finite group G and a Fuchsian group
I', such that the sequence

i)
(3) 1-TT->T,-G->1

is exact, with i the 1nclus10n map. One can embed G in Mod I via j where j (g) cb
with ¢, (v) = vovYo ' foreveryy €T and vy, € T, is such that j(y,)=g. j . is a
monomorphism since I', has trivial centre.

Define % (T, T) = {¢ € A([,):$ () =T}. For such a ¢, dd, ¢! = ¢, where
g’ = jo (y,). Thus regarding & € A (), € #(J(G)), the normahser of j(G) in Mod
I. On the other hand, suppose ¢ € #(j(G)). Now Mod I' acts as a group of
homeomorphisms of T (I'), the Teichmuller space of T. ¢ will map T(T,), the fixed
point set of J(G) in T(I') onto itself. Choose [7] € T([,) such that +(I,) is a
maximal Fuchsian group. With the exception of a finite number of signatures
for I'y, which will not arise in later arguments, this is always possible [7], [16].
Now & [7] = [o] for some [or] € T(I,). Thus 7(I') is normal in both +(I',) and
o (Iy) and v(I',) C N where N is the normaliser of v(I') in .Z, unless 7(I'y) = o ().

Thus 7' € A(,) and 7 ' o], = ¢. Thus
) 15 (@) — AT, T) 3 4 (G) = 1

is exact. )
Also, if Mod (T',,I) = A(,,T) /I ([,) then the sequence

(5) 1- ) (G) = A#(j (G)) > Mod([,, ) — 1

is exact (see [11]).
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2. SYMPLECTIC REPRESENTATIONS OF B,

Let B, denote the Artin Braid group on n-strings (n = 3). B, has a faithful
representation as a group of automorphisms of the free group F, on n generators
X,,X,,...,X, and we will take this as our definition of B . Thus

B, = {c € Aut(F,)o (X;) =T;X,,T; 'where T; € F,,
i — o (i) is a permutationof 1, 2, ..., n,
ando(X,X,..X,)=X,X,...X _}.

It is well-known that B is generated by o,,0,,...,0,_, where
o;(X;) =X, 0;Xj,) = XXX, ando;(X,) =X, fork #j,j + 1.

Let Sp(2g,Z) denote the symplectic group of 2g X 2g matrices S with integral
0 I

entries, i.e. all S such that S'J S = J where J = [ o

LEMMA 1. Suppose I',T', are Fuchsian groups as at (3) and I has signature
(y;—;0), v = 2. If there is a representation p,:B, A — U, I} then B, has a
representation in Sp (2v,Z).

Proof. Following p, by the homomorphism ., at (4), we obtain a representation
of B, in Mod I'. But Mod I" maps onto Sp (2vy,Z) under the mapping p, induced
by I'-»TI'/[I,T'] [14; p. 356].

Let T, have signature (0; m®; 0) where m|n. (Here m® indicates that the
period m is repeated n times.) Let Z_ denote the cyclic group of residues (mod
m) and define j:I'y,— Z_ by j(e;) =1 for i = 1,2,...,n. Note that, for j to be a
homomorphism one must have m|n. The kernel of j,I', is torsion-free and so has
signature (v;—;0) where, by the Riemann-Hurwitz formula, v is given by

(6) 2v=(n — 2)(m — 1).

Recall that, in order that I’y be Fuchsian, p (I',) defined at (2) must be positive.
Thus n = 4, and if n = 4, then m = 4.

For every ¢ € A(T,), d(e;) =t;e,; t; ' and so jo =j. Thus () =T and so
A (L,, T) = A(T,).

Now let B, be represented as a group of automorphisms of F, as before. Let
w: F,— I', be given by w(X,) = e; so that K, the kernel of =, is the normal closure
of the elements {X{",i= 1,2, ..., n, X, X, ... X, }. K is invariant under the B -auto-
morphisms and so w induces a homomorphism p,: B, — % (I';). At this stage, we
note the following result which will be required later.

LEMMA 2. ., is surjective.

Proof. As noted in Section 2, any ¢ € U([,) is induced by an automorphism
® of F, where @ (X;) = \; X A 5i=1,2,...,n and
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X, X,...X)=AX,X,...X )\
Thusi_,o® € B,.. Let m(\) = £ € T,. Now J([,) C p,(B,) [12]. Let 7 € B,, be
such that u, (r) =1i,. Then p,(roi _, o @) = .
For this p,, Lemma 1 yields

THEOREM 3. There is a representation of B, in Sp(2v,Z) where v is given
by 6) for all min,n=4 and if n = 4, m = 4.

Since F, € F, for n = n’, there is an embedding of B, into B, given by
o - o where o’ (X;,) =c(X;)fori=1,2,..,n and

o’ (X,)=X, fori=n+1,..,n"

Thus
THEOREM 4. There is a representation of B_ in Sp (2vy,Z) where

2y=(@ —2)(m — 1),

wheren’ = n, m|n’, n’ =4 and if n’ =4, m = 4.

In the above j(Z_) is a cyclic subgroup of Mod I' corresponding to the branched.
cyclic covering U/T — U/TI, of the sphere U/I',, branched over n points. In [4],
homeomorphisms of the n-punctured sphere are lifted to fiber-preserving homeo-
morphisms of the surface U/I', and a presentation of the resulting subgroup of
the mapping class group of U/I" is obtained. This subgroup is the normaliser
of the cyclic subgroup of order m corresponding to the branched cyclic covering
and under the Nielsen isomorphism is isomorphic to #1j (Z_)). [On p. 438 of
[4] one should also have the restriction that k|n.] Theorem 3 is immediately
deducible from the results in [4] and the representations, by the above argument,
in the two cases, are equivalent.

Remark. Theorem 3 is also proved in [13] and again it can be shown that
the representations obtained are equivalent.

3. FINITE REPRESENTATIONS OF MOD I' WHERE
I' HAS SIGNATURE (g;—;0)

Permutation representations of Mod I' can be obtained as follows (see [2],
[8]). Let G be a fixed finite group. Let

#(G) = {K: K a normal subgroup of I' such that I'/K = G}.

Let IT., denote the homomorphism Mod I' — S (.# (G)) given by I ($)(K) = ¢ (K),
¢ € A(K). Let ¥ = Image of I1;.

g
If T is generated by a,,b,,...,a_,,b, where H [a;, b;] = 1, these ele-
=1

ments map onto A,,B,,...,A_,B_ in the abelian gr_oup /[T, TIT?=2Z2%. As
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a vector space over Z,, this can be equipped with a bilinear form defined
with respect to the basis A,,A,,...,A,, B,,B,,...,B, by the matrix J where

0 I
J= ( I o ),making it into a 2g-dimensional symplecticspace Vover Z . [[,I'] I'®

being characteristic, & € U(I') induces an automorphism ¢* of Zﬁg which is an
isometry of V. Also the map Mod I' —» Sp (2g, Z ) is onto [14].

THEOREM 5. If G = A is an elementary abelian p-group of rank r < 2g
then ¥ =P Sp(2g,Z ).

Proof. If K € #(A), then K D [I,I']| T'* and the elements of .#(A) are in
one-to-one correspondence with subspace of dimension 2g —r in V. Thus & is
isomorphic to the induced action of Sp (2g,Z ) on these subspaces. Via the orthogonal
complement, these subspaces are in one-to-one correspondence with the subspaces
of dimension r and we can assume that r = g. For every non-zero vector v € V,
there exist subspaces of dimension r such that their intersection is (v). Thus,
if an isometry T of Sp(2g,Z,) fixes all r-dimensional subspaces, it fixes all one
dimensional subspaces and so belongs to the centre of Sp (2g,Z ). Thus

=P Sp(2g2Z,).

COROLLARY 6. There are N (r) orbits in this permutation representation where
N () is the number of isometry classes of subspaces of dimension r.

If G is soluble, there will be a characteristic subgroup G, such that A = G/G,
is an elementary abelian p-group. Let

HA,G) ={(NCI:N=p:' (G, forK € .#(G)}

where py is any epimorphism I' - G with kernel K. N is uniquely determined
by K since G, is characteristic. Thus we have I, ;: ModI' —» S(#(A, G)). Now
HA, G) C A#(A) and-if N € .#(A,G) then every N’ in the orbit of N under
IT, (Mod T') also belongs to .#(A,G). Thus I1,; (Mod I') is just Sp(2g,Z,) re-
stricted to act on certain isometry classes of subspaces of the symplectic space V. If
A =Zf,g, A (A,G) consists of just one element [I',I']I'". If rank of A <2g, we
can assume as before that the subspaces have dimension r = g. Again, for any
non-zero vector v of V and isometry class of subspaces of dimension r, there are
two subspaces in that class whose intersection is (v). Thus if an isometry acts
trivially on any isometry class of subspaces, it acts trivially on all isometry classes.
Thus for r < 2g,I1, ; (ModT') = P Sp(2g, Z ).

If the orbits of . #(A,G) are A, ,.4,,...,.4 let Z = (K € #(G):px (G,) € 4).
Taking & acting on one % at a time, the situation is described in [8]). From that
result one obtains that & is a subgroup of the generalised wreath product

Q:, Q2 .-, Q) l P Sp (2g, Z,) where Q; is isomorphic to the action of Mod (I',N;)
for N; € .#, acting on %, = {K € .#(G): px' (G,) = N,}.

The subgroup L = n K is characteristic of finite index in I Any such

Ke.#(G)
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subgroup will lead to a finite representation of Mod I'. In this connection we
note the following result.

THEOREM 7. Let L be a characteristic subgroup of I'. Then if H = T'/L
either H is perfect or H/ [H,H] = Z *® or Z 2* for some m.

Proof. Let A = H/[H,H] and let II.T — A. 11 induces a homomorphism
IT*: ModI' — Aut (A). Let the images of the standard generators of I' in A be
oy,By,...,0,,8, and the image of I1* be C.

Various elements of A (I') are known explicitly (see [9], [3]) and from these,
we see that there are automorphisms of C which map each «; onto each B; or
its inverse. Thus the order of all these generators in A must be the same, be
it finite or infinite. Thus A is a factor group of Z?® or Z®. If it is a proper
factor group, then there must be an additional relation holding in A which can
be written in the form of = W = W (ay, as, ..., &;, w0, By, .. B), where, if ap-
plicable, k < m, or a similar relation involving B¥. Now there are automorphisms
of T which map a, into a,b, and leave all others fixed, and map b, into b;a;’
and leave all others fixed. Thus in A, (¢; B;,)* = W and so B} =1 and similarly
for the other. This is a contradiction. Thus A = Z>® or Z7.

4. FINITE SYMPLECTIC REPRESENTATION OF B,

In [5], Cohen utilises machinery set up by Hurwitz [10] for describing the
action of the braid group on equivalence classes of Riemann surfaces with a fixed
number of branch points and fixed structure over the 2-sphere, to obtain a
representation of B, on P Sp((n — 2)/2, Z,).

We briefly describe the general approach (see also [12]). Every compact Riemann
surface is a branched-covering of the 2-sphere. Such a covering is determined
topologically by the number of sheets m, the number of branch points n and
a set of permutations T;, i=1,2,...,n on m objects (the sheets) which describe
how the sheets hang together at the branch points. The T, generate a transitive
permutation group and are such that T, T, ... T, = 1. A renumbering of the sheets
will not affect the covering and so two coverings are defined to be topologically
equivalent if and only if the sets of permutations are conjugate in S .

Cohen actually considers representations of the monodromy group defined by
Hurwitz which is isomorphic to the braid group B, (S?). This is a quotient group
of Artin’s braid group B,,.

Let C denote the set of equivalence classes of coverings of S with fixed number
m of sheets, n of branch points and such that each defining permutation has
the same cycle structure. Pick a representative set of permutations {T,, T,, ..., T,}
for an element of C and let 6 be the mapping: F,— (T,,T,, ..., T,) given by
0 (X;) = T,. A representation x of B in the permutation group S (C) is then obtained
by defining x (o){T,, T,, ..., T,} = {00 (X,), ...,00 (X )}.
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In the case where m = 3 and the permutations are all transpositions,
x(B,)=PSpl(n-2)/2,2Z,)

[5].

The above situation will now be described in terms of Fuchsian groups. The
covering is of the form U/T'; — U /T, where I'; has signature of the form (0; #*; 0)
and is generated bye,,e,,...,e,. I, acts as a permutation group on the left I',-cosets
and the permutations T, are the images of the generators e; in this permutation
group (see e.g. [15]). Let G denote the subgroup of S generated by these
permutations. If G acts on {1,2,...,m}, 1 corresponds to the coset I', and so T,
is the inverse image of the stabiliser of 1 in G. Thus

C = {K,: K, is a normal subgroup of I',,[',/K,= G
and each element e; K , has the same fixed cycle structure}.
The permutation representation of B on C is then just the natural representation

of Mod T, on C, similar to that in Section 9.

With this description and our earlier results, an alternative proof of the result

in [5] is obtained and the possibility of generalisation discussed.
THEOREM 8. For n = 6, P Sp((n — 2)/2, Z,) is an epimorphic image of

B

Proof. Letm = 3 and all permutations be transpositions so that G = S,. Clearly
n must be even, so that n = 2n’. Thus x is equivalent to the mapping

B,— A (T,) — Mod [,— S(C)

where I’y has signature (0; 2V; 0). Now I', contains a torsion-free normal subgroup
I' of index 2 which is invariant under all the elements of % (I'y). Thus from the
exact sequence

j
1-T'-»Iy—>Z,->1

the mapping B, — Mod T, factors through .#1j(Z,)), the normaliser of j(Z,)
in Mod T" (see (4) and (5)). From the Riemann-Hurwitz relation, I' has signature
(n’ — 1; —; 0). From the previous section we have a representation of Mod I" in
S(A(Z,)). Now every element of C is an element of .#(Z;) and there is an
embedding S (C) — S (#(Z;)). The following diagram then commutes

N

Mod Ty —.#°(j (Z,)) C ModT

l |

S (C) ————— > S(A#(Z3))
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Thus the image of B, in S (C) is isomorphic to a subgroup of P Sp((n — 2)/2, Z,)
by Theorem 5.

To complete the proof and show that x(B,) is the whole of PSp(n’ — 1, Z,),
we use the results of Section 2 and some elementary symplectic geometry (see
e.g. Chapter III of [1]). The mapping x factors through the homomorphism
fa: ModI' — Sp (2g, Z,) where 2g = n — 2, which is determined by the mapping
which carries the standard generators of I' onto the symplectic basis

A,,B,,..,A,,B,

of the symplectic space V of dimension 2g over the finite field Z,. Let B denote
the bilinear form on V and for X € V, the transvection

ox(Y)=Y+B(X, Y)X.

The group of isometries of V, Sp(2g,Z;) is generated by the transvections. We
will make frequent use of the following fact: for t € Sp (2g,Z,), toxt™' = ox,-

Let D denote the image of B, in Sp(2g,Z,). The result will follow once we
have shown that all transvections lie in D. Recall from Lemma 2, that D is the
image of the whole of .#"(j (Z,)) since B , — #"(j (Z,)) is surjective. But, by Theorem
3, the comments there and [3], the action of generators of #°(j(Z,)) on the standard
generators of I' is determined. It follows that D contains the following isometries:
oa fori=1,2,..,8, og, g, and t;,t,,...,t,_; where

t;(A))=A;-B;+B;,; and t;(A;,,)=B;+A,,, B,

and t; fixes the others.

We proceed by induction on i where V,=(A,,B,, ..., A;, B;) showing that
D contains all transvections corresponding to vectors in V;. In V,, we need only
consider the four vectors A,, B,, A, +B,. o0,,0 are already in D,
(J'AIO‘BIO';: =04, Bp = Oa+n, € D. Likewise oy, (A,) = A, — B, sothato,,_p, € D.
Note that, using suitable combinations of ¢, ,05, any non-zero vector in (A;,B;)
can be carried into A;.

Now assume D contains all transvections corresponding to vectors in V;_;, and
consider V;. First o,, € D. Now

ti—l 0-;: t’i—l (Ai—l) = Ai—l - Ai and O';llt:_ll UAi—l(rBi—l(Ai-l —_ Al) = -—Bi

so that o, € D. Now consider X =Y + oA, + 3B; where Y € V;_, and not both
a,B are zero. As noted above we can map X into Y + A,. If

Y=Z+‘YAi—I+SBi—1’ ZE Vi—2

where not both +,8 are zero, then X can be mapped into Z — A;_, + A,. If
both v,5 are zero, first apply t;_, to Y + A, and then repeat the above steps.
Using the inverse of the element described above, Z — A;_, + A, is carried into
Z — A;_, € V,_,. This completes the inductive step and D = Sp (2g, Z ;).
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If we consider the more general situation of any number m of sheets, but

all permutations still transpositions, G will be isomorphic to S, and the representa-
tion will factor through Mod I' - S (#(A,.)) where I" has signature (g; —; 0) and
A, is the alternating group on m elements. Since for m = 5, A, is simple this

se

ems a difficult problem (c.f. [6]). For m = 4, A has a characteristic subgroup

isomorphic to Z, ® Z, with quotient Z, and the image of Mod I" in S(#(A)))

is

a subgroup of a wreath product with quotient group P Sp(2g, Z;). Using the

same methods as in the above theorem, P Sp(2g,Z;) is a quotient of the image
of B, in this case.
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