REMARKS ON ABSOLUTELY SUMMING TRANSLATION
INVARIANT OPERATORS FROM THE DISC ALGEBRA AND ITS
DUAL INTO A HILBERT SPACE

S. Kwapien and A. Pelczynski

In this note among other results we prove the following
THEOREM 1. Letf,€ L' forj=1,2,.... Assume that

(1) i

< 4o foreveryh € H” .

S £(t)h () dt

)]

oo

Then for every scalar sequence (m, ) with z Im, |? < 4o,
k=0

(2) i \[i jm, £,(~K)|* < 4o,
j=1 k=0

. 1 2w )
where f (k) = — ft)e ™ dt fork=0,+1,+2,....
27},

By L” (0 < p =x) we denote the space of equivalence classes of p-absolutely
integrable with respect to the Lebesgue measure complex-valued measurable

functionson [0, 2w] ,and by C,_ the space of 27 -periodic continuous complex-valued
1 27 1/p

functions on [0, 27] . For f € L° we put [|f], = (2—— S If @®)|° dt) forp=1
™

0
2T

1
and (ff]}, = ;T— S |f (t)]® dt for 0 <p < 1. The Hardy spaces H” (1 < p < ») and
o

the Disc Algebra A are defined by
H*={fe L": f(k)=0fork <0}, A={feC, :f(ky=0fork<0}.

In the language of absolutely summing operators Theorem 1 means that the
adjoint of every translation invariant operator from H? into A is 1-absolutely
summing. It is an open question whether every bounded linear operator from
H? into A has 1-absolutely summing adjoint.

Our proof of Theorem 1 is indirect. Our argument uses the duality between
nuclear and bounded operators and Theorem 2 below which asserts that a translation
invariant operator M : A — H? is nuclear if and only if it is p-absolutely summing
for some pwith1>p>0.
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PRELIMINARIES

Let T: X — Y be a linear operator (X , Y, Banach spaces). Recall that T is nu-

clear if and only if it has a nuclear representation, say ZX}k@yj; ie.,
j

there are sequences (x]) C X* and (y;) C Y such that 2 I}l lly; Il < +oo and

T() = D x} (x)y;foreveryx € X. We put n(T) = inf > Ixtllly;|l where the in-

J
fimum is extended over all the nuclear representations ojf T. T is L'-factorable if
there is an L'-factorization of T, say (U, V), i.e. there are an L’ (n) space and
operators U : X — L'(u), V: L'(p) — Y** with VU = kT where k : Y — Y**
is the canonical embedding. We put «, (T) = inf |U|| ||V|] where the infimum is
extended over all the L'-factorizations of T. Let 0 < p < c. An operator T is
p-absolutely summing if there is a constant C > 0 such that

(3) D IT@IP=CPsup > |x*(x)|*  forevery finite F C X.

x€F Ix*||=1 x€F

We put 7, (T) = inf {C: C satisfies (3)}. It can be easily seen that if T: X —> Y
is p-absolutely summing then

) S IT (¢ () m (dw) = [7,(T)]® sup S |x* (¢ (w))|*m (dw)

=x*l=1

for every probability space (m, X, ) and every weakly measurable function
b: 00— X.

We shall deal with translation invariant function spaces on the circle group
which is represented as the interval [0, 2w] with addition mod 2w as the group
operation. An operator M acting between those spaces is translation invariant
if and only if it commutes with all the translations T, for 0 = a < 2% (where
(T.H)t) =f(t+ o) fort € [0,2xw]). If M is a translation invariant operator,
then M (e’™) = m_ e"™ whenever the exponent e™ belongs to the domain of M ;
we put M = {m_: e € domain of M }.

We end this section with the following well known fact:

LEMMA 1. Let 0 <p <1. Then there is an absolute constant K, such that,
for every complex Borel measure v on [0, 2w] with v({0}) = v({27n}),

1 27
2m So

Here ||v|| denotes the total variation of v and

n

> vet

i=0

P

dt=KP[W|® forn=1,2,...

2
() = X e y(dt) forj=0,£1, £2, ...

V]
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Proof: The unit ball of L' is dense in the unit ball of the dual (C,.)* in
the o ((C,.)*, C,.) — topology. Hence, given a measure v as above, a positive

integer n and an £ > 0, there exists an h € L' such that |||, = |v|| and

€

Ih(G) — o ()] < forj=0,1,...,n.

n
Let (Rh)(t)=lim§:ﬁ(j)eijtrj. By the Kolmogorov Theorem (cf. [1]), the
rf1 i

limit exists t-almost everywhere and the function Rh belongs to L* for every p with
0 < p < 1. Moreover there is an absolute constant K, > 0 such that

1 2w P

|IRh, = — S |(Rh)(t)]” dt < — |||} .
27 ), 2

Since E h(j) e = (Rh) — R (he '™V, we get
j=0
1 2 n ) - P )
o S 2 h(j)e™| dt = [Rh||, + R he'™* Y|,
V] j=0

= K¢fhl7 = Kgip®

Thus
1 2'“: n B P 1 2% n - p
- b(j)e’| dt = — S h()e™| dt+e
27 XO j=20 2w Jo j§=(;
< K:|pf +¢.

Letting ¢ tend to 0 we get the desired conclusion.

RESULTS AND PROOFS

We begin with

R THEOREM 2. Let M:A— H? be a translation invariant operator with
M = (m;) o< .. - Then the following conditions are equivalent:

(i) M is nuclear,
@ii) M is L'-factorable,
(iii) M is p-absolutely summing for every p > 0,
(iv) M is p-absolutely summing for some p with 0 <p < 1,
v) Me/7”.
Proof: The implications (i) = (ii) and (iii) = (iv) are trivial; (ii) = (iii) follows

from a result of Maurey [6, Théoreme 94] which says that every bounded operator
from an L'-space into a Hilbert space is p-absolutely summing for every p > 0.
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(iv) = (v). Let us fix a positive integer n and put

f)=> et-e™, 0=t=2m O=oa=2m.
i=0
Consider the map a — f, from [0, 2«] into A. It follows from (iv) and (4)

1 o 1 2w
(5) o S IM ()5 do =< [, VD] sup — S |x* (£,)]" dex .
K

) Ixsi=1 4T Jo

Clearly, for 0 = o < 27,

1 (2" 1/2 n ) 1/2 n 1/2
IM(£)]] > = (;T- XO IM(fa)(t)|2dt) = (on lmje”“|2) = (on |mj|2) -

Hence

1 2w n ) p/2
(6) o S M (f,)]|z do = (on |m; | ) :

(1)

Now fix an x* € A*. By the Hahn-Banach and the Riesz Representation Theo-
rems, there exists a complex Borel measure v,. € (C,..)* such that |v..|| = ||x*|| and

2m
X g (—t)v,. (dt) = x*(g) for g € A . In particular we have

0

x*(f,) = 2 b.()e’™  for0=a<2m.

j=0

Thus, by Lemma 1,

1 2
) 27 S |x* (F)]” do = K7 | = Kl

™ Jo

n 1/2
Combining (5), (6) and (7) we get (2 |mj|2) < K, m,(M). This completes
j=0

the proof of the implication (iv) = (v) .

(v) = (). Consider the commutative diagram

I2 I2,1
Cy. > L? L'
1 d I M
A M > H?

where J : A= C,, is the isometric inclusion, I,:C,, — L? and I,,:L?— L' are
natural injections, (I,(f) (resp. I,,(f)) is the equivalence class of f regarded as
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2~

- 1
the element of L? (resp. of L)), M(f)(s) = o S f(t) g (s — t) dt where
v

o

_ ijt
g—zmje .

j=0

Clearly, by (v), g € H®. Hence M (f) € H? for f € L' and

oo 1/2
V) =< ligll, = (.2 Im,-(z) = ¥l -
j=0

(by the Young 1nequallty) Thus M = 1\7112 I,d . Clearly w,(I,J) = w,(I,) =< 1 and
m,(MI,,) < |Mj because MI, , isa Hilbert Schmidt operator with the Hllbert Schmidt
norm less than or equal to ||M|| (cf. [2]). Thus, by a result of [8], M = MI,,1,J
is nuclear and n (M) < @, (MI, ), (I,J) < |M| < |[M||,. This completes the proof.

Remark 1. Theorem 2 can be restated as follows:

For every translation invariant operator M: A — H? and for 0 < p < 1 we have
the following chain of inequalities

8) IM],>=nM) =v,(M) = C,w,(M) = C K |M]|,,

where C, is the constant appearing in the Maurey Theorem [6] quoted above
and K is the constant appearing in Lemma 1.

Remark 2. 1t is 1nterest1ng to compare Theorem 2 to what is known about
the spaces H'"" (A, H?) of all the p-absolutely summing translation invariant
operators from A into H? for p = 1. We have (folklore):

There is a natural isometric lsomorphlsm between the space H““’ (A, H?) with
the norm m, (-) and the space B™ (H?, H?) of all the bounded translatmn invariant
operators from H? into H? p=1).

Proof: If I,: A— HP is the natural injection and if M e B™(H?", H?), then
M=MI € II"“’ (A, H?) and =, (M) = = ,(I)|M|| = [M]| . Conversely, by the Groth-
endieck-Pietsch Theorem (for p = 1) (cf [5], [71, [8]), given M € ITI.""(A , H?)

there is a finite positive Borel measure on [0, 2], say i, which p- domlnates
2w

M;ie, |M{))5= S If(t)| * . (dt) for f € A . Now using the standard averaging

4]
technique and taking into account that M is translation invariant we infer that

M is p-dominated by a multiple of the Haar measure (the normalized Lebesgue
measure on [0, 2w]). Thus M = MI for some M€ B™ (H?, H?) . Moreover
it is not difficult to see that w, (M) = [M]| . This completes the proof.

1/q
Let/7%” = {(m )i=0" sup( 2 |m-|q) < +00} It is known (cf. {1], [4])
2k—l<jt1<gk

k=1
that M € B"‘V(Hl H?) if and only if M€ /*", and if M€ /*® ™" then
Me B™ (HP,H?)forl1<p<2;if p=2 then M & B™H", H?) if and only
if M € /77 (trivial).
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Our next resu}t is in fact equivalent to Theorem 1 stated in the introduction.

THEOREM 3. Every bounded translation invariant operator M: H>— A has
1-absolutely summing adjoint. Equivalently, there is an absolute constant K
independent of M such that

9) @, (M*) = K|M||.

Proof: Recall that (cf. [3], [7]).

(a) an operator T : X — Y has 1-absolutely summing adjoint if and only if UT
is nuclear for every bounded linear operator U: Y — /' ; moreover

7, (T*) =sup n(UT):U: Y-/, |U||=1}.

(b) Let # be a Hilbert space and Y a Banach space. An operator S: #— Y is
nuclear if and only if for every finite dimensional V:Y — ., VS is nu-
clear; moreover n(S) = sup {Jtr VS| : V: Y - Z, |V| = 1, dim V (Y) < +}, where
tr T denotes the trace of a nuclear operator T ; #— #

By (a) and (b), it is enough to show that there exists an absolute constant
K > 0 such that

(10) sup |tr (VUM)| = K|M||,

where the supremum extends over all operators U:A — /' with ||U|=1 and
V:/'—> H?with [V =1 and dim V(') <.

Fix U and V as above. The translation invariantness of M and the well known
property of the trace yield

(11) tr (VUM) = tr (T, VUMT.?) = tr (T, VUT ' M)

for every translation T (0 =« < 2w). Clearly, for every f € A, the function
a— (T, VUT_ Y)(f) is continuous and therefore the integral

27 ),

1 2w
— S (T, VUTY)(f) d

1 27
exists. Define B: A— H? by B(f) = o S (T, VUT_)(f) du for f € A . Clearly
T Jo

B is a bounded linear operator with the following property

there is a sequence (B,,) of finite convex combinations of the operators

(12) 1 VUT " such that lim |B,, (f) — B (£)] = 0 for every f€ A .

(As the B_’s one may take the Riemann sums of the functiona — T _VUT_'.)

Since V is finite dimensional, n (V) < «. Thus, by (12),
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(13). nB_ )< sup n(T,VUT ) =n(V) forn=1,2,....

O=a<2nw

Next recall that the space N(A, H?) of all the nuclear operators from A into
H? can be identified with the dual of the space K (H?, A) of all the compact
operators from H? into A , and the duality is given by the trace (cf. [3],
[71). Therefore the ball {T € N(A,H?):n(T)=n(V)} is compact in the
o(N(A,H?) ,K(H?, A))-topology. Thus it follows from (12) and (13) that the se-
quence (B_) converges to B in the o (N (A , H?) , K(H?, A))-topology and

n(B)=Ilimn(B,).

Thus tr (BM) = lim tr (B,, M) = tr (UVM), because, by (11),

trB,,M = tr(UVM) for every m .

-

Hence
(14) |tr (VUM)| < n(B)|M[| < lim n(B,,).

Obviously ~, (T, VUT )< 1forO<a <2w. Thus v,(B,)= 1foreverym be-
cause the B_’s are finite convex combinations of the operators T, VUT ' . Hence,

K
by (8), n(B,)=K = inf —2 for everym which combined with (14) yields

o<p<1 (

[tr (VUM)| = K|M|| . This implfes (10) and therefore (9), and completes the proof.

COROLLARY. Every translation invariant operator M : L' /H} — H? is abso-
lutely summing. Here

Hy={fe H:f(0) =0} and H’={f€ L?: f(n) = 0forn>0}.

Proof: An operator M:L'/Hy— H? is translation invariant if and only if
Mgq : L' — H? is translation invariant (q : L' — L'/H, is the quotient map); equiva-

lently there is a sequence (m,),., with 2 |m, |? < 4+ such that
k=0

M{{e™ +H})=m,e™ fork=0,1,....

Define M,:H?>—> A by M, (™) =m,e™ for k=0,1,.... Clearly M, is

1/2
bounded, in fact |M,]|| = Z |m, |2) . Furthermore M is the restriction of the
k=0

adjoint of M, to L'/H, (we identify L'/H, with a subspace of A* using the fact
that, by the F and M Riesz Theorem, H, coincides with the annihilator of A
in (C,_) *). The desired conclusion follows now from Theorem 3; in fact

w 1/2
(15) m, (M) =K|M| = K(E |mk|2)
k=0



180 S. KWAPIEN and A. PELCZYNSKI

Proof of Theorem 1. Since the dual of L'/H; can be identified with H” (cf.
[1]), the condition (1) simply means that the cosets {f; + Ho} € L'/Hg form a
weakly unconditionally summable sequence, i.e.

D k()] <+ foreveryx* € (L'/Hy)*.
i=1

Now the standard Baire category technique yields the existence of a constant
¢ = c((f;)) such that E |x* (f;)] = c|lx*|| for every x* € (L'/H,). Thus for every
=1
1-absolutely summing operator M : L'/H,— H? ,
(16) DML + HoDll, < em, (M) .
=1 .
Finally suppose that M : L' /H} — H? is translation invariant and let

M{e™ +H)})=m,e™ fork=0,1,2,....

Then, by Corollary to Theorem 3 (cf. formula (15)), the inequality (16) gives
) o 1/2

(17 DM ((f;, + HEl, = cK (2 lmkl“‘) :
j=1 k=0

On the other hand M ({f; + Hg}) = >, m, f;(~k)e ™. Thus
k=0

(=]

o o0 1/2
(18) > M+ Holl. = D, (Z |, f,.(—k)ﬁ) :
j=1 k=0

j=1

Obviously (17) and (18) implies (2). This completes the proof.
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