CRITICAL POINTS AND POINT DERIVATIONS ON M(G)
Sadahiro Saeki and Enji Sato

Throughout this paper, let G be an arbitrary nondiscrete LCA group, and M(G)
the convolution measure algebra of G (¢f. [8] and [10]). We denote by A = Ay g,
the maximal ideal space of M(G). Notice that A has a natural semigroup structure;
in fact, if S denotes the structure semigroup of M(G), then A may be identified
with S, the semigroup of all continuous semicharacters of S [14].

In the present paper we shall study the existence of nontrivial continuous
point derivations at certain elements of A. Recall that a point derivation at a
given element f € A is a linear functional D on M(G) such that

D *xv)=(Dp) - ¥(f) + Dv) - (), n,v € M(G).

We shall say that such a D is continuous if it is continuous in the spectral radius
norm of M(G). As is well-known, the existence of a nontrivial continuous point
derivation at f implies that f is not a strong boundary point for the uniform
closure of M(G)~ in C(A) (see [2; Chapter II, Exercise 12(e)]). On the other hand,
the strong boundary points f € A satisfy |f|> = |f| and the Shilov boundary of
M (G) is contained in the closure of all such f’s ([14; p. 91]). Moreover, if f € A
and |f]|? # |f|, then there exists a nontrivial continuous point derivation at f.
In fact, letting f = £ |f| denote the polar decomposition of such an f ([14; p. 28]),
we have that z— f,|f]|*(Re z > 0) is an analytic map having the value f at z=1;
hence

d
n—— (i (folflz))
dz

2=1

is such a point derivation at f. We may therefore restrict our attention to those
elements of A which have idempotent modulus. G. Brown and W. Moran [1]
have recently proved that there exists a nontrivial continuous point derivation
at the critical point of A which corresponds to the discrete topology of G. (For
a generalization of this result, see [4].) In the present paper we shall prove as
a consequence of our main result that the last result holds for every element
of A whose modulus is a critical point different from the identity 1 € A.

Now we introduce some notation. Given a Borel set E in G, let I(E) be the
set of those measures p. in M(G) which satisfy [pn|(E + x) = 0 for all x € G, and
let R(E) = I(E)* be the set of those measures in M(G) which are singular with
respect to all members of I(E). Thus I(E) and R(E) are an L-ideal and an L-subspace
of M(G), respectively, and M(G) can be decomposed into the direct sum of I(E)
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and R(E). Moreover, each measure in R(E) is carried by a countable union of
translates of E. Let Py denote the natural projection from M(G) onto R(E). If
‘E is a Borel measurable semigroup in G, then R(E) forms an algebra, and Py
is therefore multiplicative (¢f. [5]). (By a semigroup in G we mean any subset
of G which contains 0 € G and is closed under addition.) In the last case, the
linear functional

p— (Pgp) (1) = (Pyp)(@G)

is a complex homomorphism of M (G), which we will denote by h.

THEOREM 1, Let H be a o-compact semigroup in G such that H — H has
zero Haar measure, and let f be an arbitrary element of A such that |f| < hy.
Then we have:

(a) f is not a strong boungjary point for the uniform closure of M(G)~ in C(A);

(b) If the restriction of f to R(H) belongs to the Shilov boundary of the algebra
R (H), then there is a nontrivial continuous point derivation at f.

Notice that every subgroup of G generated by a o-compact independent set
has zero Haar measure (cf. [10]; see also [3], [9] and [12]), and that the condition
in part (b) of Theorem 1 is satisfied if |f| = hy. As immediate consequences of
Theorem 1, we have the following results.

COROLLARY 1. If t is an element of A such that |f| is a critical point different
from 1, then there exists a nontrivial continuous point derivation at f.

CQ‘ROLLARY 2. If f is a strong boundary point for the uniform closure of
M(G) in C(A), then there is no critical point h such that |[f| =h # 1.

We shall also prove the following:

THEOREM 2. Let H be a o-compact semigroup in G such that H — H has
zero Haar measure. Then there exists a nontrivial point derivation at h, which
is continuous in the total variation norm of M (G) but is discontinuous in the spectral
radius norm of M(G).

In order to prove the above results, we need some notation, definitions, and
lemmas. For a set K in G, let Gp(K) denote the subgroup of G generated by
K. Given a natural number n, we define K™ to be the set of all sumsx, + ... + x,,
where the x; are distinct elements of K, and nK = K + ... + K (n times). We also
define

K®=nK=0 ifn=0, and
nK = (—n)(—K) if n is a negative integer.
It is easy to show that if K is a o-compact metrizable subset of G, then all the
sets K™ are o-compact. Given a subgroup H of G, we shall say that K is dissociate

modulo H (or H-dissociate) if (a) KN H= ¢ and if (b) whenever x,, ..., x, are
finitely many distinct elements of K, (p,, ..., p,,) € {0, £1, £2} ", and

p;X; +...+p,x, EH,
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then p;x; € H for all j=1,2, ..., n. Similarly we shall say that K is indepen-
dent modulo H (or H-independent) if (a) K N H = ¢ and if (b) whenever x,, ..., x
are finitely many distinct elements of K, (p,, ..., p,) € Z", and

n

p;X,+..+p,x, €H,

thenp;x; € Hfor all j = 1,2, ..., n. Notice that when H = {0}, the above definitions
of H-dissociation and H-independence agree with the usual definitions of dissociation
and independence, respectively (¢f. [7] and [10]). Finally we define D(K) to be
the union of all K® with n = 0.

LEMMA 1. Let H be a o-compact semigroup in G, and let K be a Cantor
subset of G which is dissociate modulo H,, where H, = Gp(H) = H — H. Set
R, = R(H) and

R,=RH+K")Nn IH+K"™"), n=12, ....

Then we have:
(a) The sets R are pairwise orthogonal L-subspaces of R(H + D (K));
(b) Every measure p. in R(H + D(K)) can be uniquely written as

R=pot+ py+pgt .,

where p, € R, forn =0,1,2, ... and [uf = [[poll + ball + peell + - 5

(¢ R,*R,CR_,, for all myn € Z". In particular, R(H + D(K)) forms an
L-subalgebra of M(G);

(d) If x,y are two elements of G withx —y € H_, then

lw(H+ K@ +x)Nn H+K®+y)=0, p€ER,neZ"

Proof. First we claim that whenever m,n € Z* and m < n, then K™ is covered
by finitely many translates of K™. In fact, this is trivial for m = 0. So assume
that m = 1 and that the result is true with m replaced by m — 1. Given a natural
number n larger than m, take any different n — m elements x,,x,, ..., x,,_,, of
K; then we have

n—in

K™ c U {K(mhl) + xj} U {K(n) — (X + X ))

j=1

This, combined with the inductive hypothesis, implies that K™ is covered by
finitely many translates of K™, and the above claim has been established. It
follows at once that

(1) IH+K®")>IH+K®™), n=12 ....

Part (a) is an easy consequence of (1). Part (b) follows from (a), (1), and the
fact that H + D (K) is the union of all H + K™ with n = 0.
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In order to confirm (c), take any p € R, and v € R_; we must prove that
p*vis in R, , .. This is trivial if either p * v =0 or min (m,n) = 0, so assume
that p * v # 0 and n,m = 1. Since every R is a translation invariant L-subspace
of M(G), we may also assume that p€ M*(H+ K™)andve M*(H + K®™).
Under these additional assumptions, it will suffice to prove that p = v is carried
by the set H + K™*™ and belongs to I(H + K ®™**™"), To this end, take any Borel
subset E of G having positive pu * v-measure. Then we have

2 S [S EE(X+}')dv(y)]du(X)=(u*V)(E)>0,
G G

where &, denotes the characteristic function of E. Since p is carried by H + K™,
(2) yields an element x € H + K such that

(3) S Ex(x+ydv(y) >0.

Let F, be any finite subset of K such thatx € H + F®, Since v is in
MH+K®)nIH+K"?"),

(3) implies that there exists an element y in (H + K®)\(H + K™ + F,) such
that x + y € E. Then we have

4) x+y€ {H+F™}+ {H+ XK\F,)”}c H+ K™,

Thus we have proved that the condition (. * v)(E) > 0implies(H + K™™) N E # ¢,
which in turn implies that p * v is carried by H + K™*™, To confirm that p * v
is in I(H + K™ V), let p denote the least nonnegative integer such that
H + K® + x_ has positive u * v-measure for some x, = x_(p) € G. Then it is
obvious that p=1 since v is in the ideal I(H + K™ V) C I(H). Moreover, we
have p=m+n and (m+*v)(H+ K®™™)Nn H+ K™ +x_)) >0 since p*v is a
positive measure carried by H + K™*™, In particular, we have

H+K™™) N H+K?+x,)#9,

so that there is a finite set F, in K such that x, € H_ + F™"™ — F®, Now the
minimality of p implies that (u*v)(H+ K® ™ 4+ F,+ x_,) = 0; hence the set
E=MH+K?”+x )\H+K®?"+F, +x,) satisfies (2). Repeating a similar
argument as above, we can therefore find a finite subset F, of K\ F, and two
elements x,y € G such that

x€EH+F™, yeH+ K\(F,UF)®, and x+y€ H+ (K\F,)? +x,.

Since K is dissociate modulo H, = H — H and p = m + n, the last three conditions
imply that p=m + n (and x, € H,). It follows from the minimality of p that
p*v is in I(H + K™ ™), It is now obvious that R(H + D(K)) forms an
L-subalgebra of M (G). (In fact, our proof shows that the last result holds without
assuming the H ,-dissociation of K.)
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Part (d) is essentially proved in [12]. In fact, let x and y be two elements
of G withx —y € Hy, and let p. € R, for some n = 0. If

H+K®+x) N H+K™ +y)=4g,

then there is nothing to prove. So assume that the last intersection is non-
empty; then x —y isin H + K™ — K™ and n= 1 since x — y ¢ H,. Take any
finite subset F of K such that x —y is in H, + F® — F®, Then we have
(H+ K\F)® +x} N (H+ K\F)®™ + y} = 9 by the H_-dissociation of K, so that
H+ K™ +x) N (H+ K™ + y) is contained in the union of

H+K"P+F+x and H+ K" "+ F+y.
Since F is a finite set and p is in I(H + K®™), the last two sets have zero
| | -measure, which establishes part (d). The proof is complete.

The following lemma is a variant of Lemma 3 of [11].

LEMMA 2. Let H and K be as in Lemma 1, let . € R(H), and letv,, ..., v,
be mutually singular measures in M_(K). If (p,, ...,p.) and (q,, ....q,) are two
different n-tuples of nonnegative integers, then we have

(i) wrvils L oxpPn L pxplix L xpdn
and
(i) (RS S S Il T LY L N o>

Proof. Replacing H by H, = H — H, we may assume that H is a subgroup
of G. Since K is dissociate modulo H, it is obvious that M_(K) is contained in
R,=RH + K) n I(H). Setting p=p, + ... + p,andq=q, + ... + q,, we there:
fore infer from part (c) of Lemma 1 that the measure in the left [right] hand
side of (i) isin R, [R,]. It follows from part (a) of Lemma 1 that the two measures
in (i) are mutually singular whenever p # q. So, assume that p=q. If E and
F are two different cosets of H, then the measures

(1) (wlg)*vit*...xvln and (p|g) *vit* ... xpin
E n F 1 n

are carried by E + K® and F + K, respectively. It follows from part (d) of Lemma
1 that the measures in (1) are mutually singular. Thus, in order to prove (i),
we may assume that p is carried by a single coset of H, and therefore that p
is carried-by H. Now let K,, ...,K, be any o-compact disjoint subsets of K such
that v; € M. (K;) for j = 1, ...,n. Then the measures in (i) are carried by

(2) H+KP+ . +KP and H+KP+ . +K,

respectively. Since (p,, ...,p.) # (q,, -.-,q,), the H-dissociation of K assures that
the two sets in (2) are disjoint from each other. This establishes (i).

Part (ii) is an easy consequence of (i) (see the proof of Lemma 3 of [11]),
and the proof is complete.
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LEMMA 3. Let H and K be as in the hypotheses of Lemma 1. Let f be an
arbitrary element of [\ such that |f| = hy and such that the restriction of f to
R (H) belongs to the Shilov boundary of R (H). Then there exists a nontrivial continuous
point derivation at f.

Proof. Let the R, be as in Lemma 1, and let P, denote the projection from
M(G) onto R, for n = 0,1,2, .... We first prove that

(1) HPaw) o =[lilley, ® € M@G).

If we denote by Q the projection from M(G) onto R(H + D(K)), then Q is
multiplicative by part (c) of Lemma 1, so that |(Qu) || = [lii]l.. for all pin M(G).
Moreover, we have P, Q = P, for all n = 0, so it will suffice to establish (1) assuming
that p is in R(H + D(K)).

Given a complex number z of absolute modulus less than or equal to 1 and
g € A, define

oo

2) g.(W=> (P,p) (@z", n€R(H+DEK).

n=0

Since g is multiplicative, it follows from part (c) of Lemma 1 that g, is a multiplicative
linear functional on R(H + D (K)). Therefore we have

lg. ()| <[lill.  forall uin R(H + D (K))
and all complex numbers z of absolute modulus less than or equal to 1. For a

fixed p € R(H + D(K)), the right-hand side of (2) is the Fourier expansion of
the function z — g, () on the circle group. Hence we have

|(Pan) (&) =sup (|g.(W)]:]z] =1} = |i]..

Since g is an arbitrary element of A, this establishes (1). (T}ie above proof of
(1) was suggested by the corresponding proof in [4].)

Next notice that
(3) [ I * @+ )] = lill - X +]v)), w€RMH),vE M (K),

where 3, denotes the unit point measure at 0 € G. In fact, we have, by Lemma
2, that

4) ITw* G+ = N - @+ [+[)? neZz”

for all w in R(H) and v in M _(K). It is evident that (4) implies (3).
Now let f € A be as in the present lemma. We claim that there is an f, in
A such that
p(f,) = p(f) forp € R(H), and

6)) . .
v(f) = v(Q1) for v € M (K).
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To confirm this, let Ay, denote the maximal ideal space of R(H), and let V
be an arbitrary neighborhood of f|;y, in Agyy,. Then the closed set Ag g \V
does not entirely contain the Shilov boundary of R(H). Thus there is a measure
p =y in R(H) such that ||i|l. =1 and |x(g)| <1 for all g in Ay \V. Given
Vs oo ¥y € M (K), we apply (3) to the above u and v =v, + ... + v_; then we
can find an element f’ in A, depending on V and the v;, such that

v;(f) =v; (1) forallj=1,2,...,n
and | (f’)| = 1. The last equality and our choice of p imply that |4, is in

V. Thus a routine weak* argument will yield an f, € A satisfying (5).

Finally we define

(6) D(w =@,p) (£), n€M(QG),

where f, € A is as in (5). It follows from (1) that D is a linear functional on
M(G) which is continuous in the spectral radius norm. To prove that D is a point
derivation at f, take any p,v € M(G). Recalling that Q is the projection from
M(G) onto R(H + D(K)) and that Q is multiplicative, we infer from parts (b)
and (c) of Lemma 1 that

Py(n*v) =P, Q)pn+*v) =P, [(Qp) * (Qv)]

=P, [ > Bpp) + (an)]

m,n=0

= (Pou-) *(P,v) + (Pov) * (Pyp).
It follows from (5) and (6) that

D(p*v)=(Pon) () - (Byv) (f) + (Pov) (£,) - (Pyn) (£,
= (Pop) () - D(v) + (Pov) ™ (f) - D (n)
=p(f) - D)+ v() - D),

where we have used the fact that f vanishes on I(H). Therefore D is a point
derivation at f. Finally notice that M_(K) has a probability measure p, since
K is a perfect set. Since M (K) is contained in R,, we have

D(p,) = ko (f) = 2,(1) =1

by (5) and (6), so that D is nonzero. This completes the proof.

LEMMA 4. Let H be a o-compact subgroup of G having zero Haar measure,
and let E(H) be the set of all integers p such thatp X U ¢ H for any neighborhood
U of 0 € G, where p X U = {px:x € U}. Then there exists a closed metrizable
subgroup G, of G such that p XV ¢ H for any p € E(H) and any (relative)
neighborhood V of 0 in G .

Proof. Firstnotice that1 € E (H), since H has no interior point. By the structure
theorem (cf. (24.29) of [8] and (2.4.1) of [10]), G contains an open subgroup G,



154 SADAHIRO SAEKI and ENJI SATO

of the form G, = RY X J, where N is a nonnegative integer and J is a compact
abelian group. Replacing G and H by G, and G, N H, respectively, we may assume
that G = G, =R" x J. If RN X {0} is not contained in H, then G, = R" X {0}
satisfies the required conclusions. So assume that R™ X {0} C H and write
H=R" x H,, where H, is the natural projection of H into J. In order to
prove the present lemma, we may thus assume that G itself is compact (if
necessary, replace G and H by J and H,, respectively). Assuming this, we let
A denote the dual group of G. By Theorem (A.15) of [8], A can be imbedded in
a divisible (discrete) abelian group I'. By Theorem (A.14) of [8], the dual group
K of T has the form K =II{K;:i € I}, where each K, is an infinite, compact,
metrizable, abelian group. Denoting by A the annihilator of A in K, we see that
G is (isomorphic with) K/A. For each subset F of I, we define

K(F) =T{K,:i € F}

and regard it as a compact subgroup of K in the usual way. Let w be the quotient
map from K onto G = K/A. Notice that whenever F is a (at most) countable
subset of I, w(K(F)) is a compact metrizable subgroup of G.

Now choose and fix any p in E(H). We claim that there is a finite or countably
infinite subset I, of I such that whenever V is a neighborhood of 0 in w(K(I,)),
then p X V & H. Suppose that there is no finite set having the above property.

Write H = U H,, where (H,) is an increasing sequence of compact subsets

n=1

of H. We shall construct a sequence (x,) of elements of K and a sequence (F,)
of finite subsets of I as follows. Let x, be an arbitrary element of I1* {K,:i € I},
the weak direct product of the K;, and let F, be an arbitrary finite subset of I
such that x, € K(F,). Suppose that n is a natural number and that the
elements x, and the sets F, have been chosen for all k=0,1,...,n — 1 in such
a way that x, € K(F,). Put F/=F,U ... U F__,; then there is an element
x,inII* {K;:i € I\\F, } such that :

(1) wpx,) & H, —H,.

To see this, take any neighborhood W of 0 in K(F/) so that p X w(W) C H; such
a W exists by the present assumption, since F/ is a finite subset of I. If there
is no element x_ as above, then p X [# (IT* {K;:i € I\\F,})] must be contained
in H, — H,. Since the last set is compact and since I1* {K;:i € I\F}} is dense
in K(I\\F!), the continuity of = yields p X w (K(I\F.)) C H, — H, C H. It follows
that

p X [WXK(INF)] = p X {w(W) +w(KIN\FL)}

(2)

=pXTW) +pXw(K(I\F.) CH+H=H.
But 7 is an open map and W X K(INF)) is a neighborhood of 0 in K. Thus
(2) contradicts our choice of p € E(H). Now take any finite subset F, of I\F/
such that x, € K(F,), which completes the induction.
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Setting I = {F :n €Z"}, we claim that I has the required property.
P n p

Suppose by way of contradiction that there exists a neighborhood V of 0 in w(K(I))
such that p X V C H. Then we have

Vc{xewEK{,):px € H} = U {xex(K(I)):px € H,}.

Since each H_ is compact, it follows from the Baire category theorem that there
exists an n, =1 such that p X W C H, for some nonempty open subset W of
= (K(I,)). On the other hand, we have {x } € K(,) and x, — 0 as n— o by the
construction. Since w is a continuous homomorphlsm it follows that

w(px,) = pw(x,)

belongs to p X (W~ W) C H, — H,_for all n large enough. This contradicts (1)
and the present claim has been established.

To complete the proof, we define I’ = U {I,:p € E(H)}. It is easy to.show

that the group w(K(I’)) has all the required properties. The proof is complete.

Now let q(G) denote the largest member q of {2, 3, ..., ©} such that every
neighborhood of 0 € G contains an element of order q.

LEMMA 5. Let H be a o-compact subgroup of G having zero Haar measure.
Then there exists an H-independent Cantor set K in G. If H has the property that
p X U& H for any natural number p less than q(G) and any neighborhood U of
0 € G, then such a K can be chosen so that Gp(K) N H = {0}.

Proof. We prove this by modifying the well-known method of constructing
independent Cantor sets (see [6] or 5.2.4 of [10]). Let G, be the subgroup of
G as in Lemma 3.

There are two possibilities; either (a) there is a natural number q such that
q X U, C H for some neighborhood U, of 0 in G,, or (b) there is no natural
number q as in (a). In case (a), we define g, as the least natural number satisfying
the condition in (a), G, as the corresponding neighborhood U, of 0 in G,, and
F_ as the set of all nonzero elements of {0,1,...,q, — 1}** forn= 1, where
2(n) = 2", In case (b), we define G, as G, and F,, as the set of all nonzero elements
of {0, +1, ..., =n}*"™ for n= 1. Notice that if (a) is the case, then q_,= 2, and
that if in addition H has the property stated in the last assertion of the present
lemma, then q, = q(G). Let (H,) be an increasing sequence of compact sets with

we | m,

By induction on n = 0, 1, ..., we shall construct nonempty open subsets V, (j),
1=j=2" of G,, as follows. Put V,(1) = G,, and assume that the sets V_, (j),
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1 =j = 2" have been defined for some n = 1. Applying the Baire category argu-
ment, we can easily find distinct elements x, (2j — 1), x,(2j) of V__, (j) so that

2(n)

Zspkxn(k) & H, (P15 -+ Po) € Fi.
k=1

Since H, is a compact subset of H and since F, is a finite set, there exist neighbor-
hoods V (k) of x_, (k) in G, such that

2(n)
(1) l:z pkvn (k)] N Hn = ﬂ: (pu rey p2(n)) € Fn'
k=1

Without loss of generality, we may assume that V_(2j — 1) and V, (2j) have disjoint
compact closures containedinV, _, (j) forallj = 1,2, ..., 2""! and that the diameter
of every V_ (k) is less than 1/n. This completes the induction. We define

(2) K= ﬁ E(j V., (k),
n=1 ket

and claim that K has the required property.

In fact, it is easy to show that K is a Cantor set (notice that the definition
of K is unchanged even if the sets V_ (k) are replaced by their closures). Suppose
that a,, ..., ay € Z, that x,, ..., xy are distinct elements of K, and that

a; X, + ... +ayXy

is in H. We must prove that a, = ... = ay = 0 in case (b) and that every a; is a
multiple of q, in case (a). When we deal with case (a), we may and do assume
that 0 =a;<q, for all j=1, ..., N, since K C G, and q, X G; C H. Now take
any natural number N (1) such that

3) a;x, +..+ayxy € Hyy.

By our construction of K, there is a natural number N (2) such that whenever
n > N(2), the elements x; belong to different sets in {V, (k): 1 = k = 2" }. Choose
and fix any natural number n larger than all of the N(1), N(2), |a,|, ..., |an].
Then (1) and (3) imply a; = ... = ay =0, since we have Hy,, C H,. Evidently
this completes the proof.

LEMMA 6. Let H be a o-compact subgroup of G having zero Haar measure,
let G, be a metrizable closed subgroup of G such that H N G, is nonopen in G,
and let N be a natural number. Then there exists a Cantor set K in G \H and
a probability measure p in M _(K) having the following properties:

(@) p™*! is absolutely continuous with respect to \,, the Haar measure on G ;
(b) (H N G,) + NK has zero \ ,-measure;
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(© If x,,%X,,...,Xy are different N elements of K, if p,,Ps, .-, Pn EZ,
and if p; X, + p,X, + ... + pyXy EH, thenp;x; EH forallj=1,2, .., N.

Proof. Since this is a variant of Theorem 2.4 in [13] (see also Remark 8.3
in [13]), we shall only give a sketch of the proof.

Replacing H by H N G,, we may assume that H is contained in G_,. Then
notice that H has zero \ -measure since H is nonopen in G,. Let E (H) be the
set of all integers p such that p X V ¢ H for any neighborhood V of 0 in G,.
We denote by I', and M, (G,) the dual group of G, and the set of those measures
in M(G,) which are absolutely continuous with respect to A, respectively. Thus
M, (G,) is isometrically isomorphic with the group algebra L' (G, A ,). The Cantor
set K and the measure p having the required properties will be constructed in
three steps.

Step 1. Suppose that A ,,\,, ..., Ay are measures in M (G,) that D C H and
Y C T, are compact sets, that ¢ > 0, and that F is a finite set consisting of elements
(Pys P2s ---» Pn) €E ZY such that p; € E(H) for at least one index j. Then there
exist measures g, Wy, ..., by iD M (G ), with pairwise disjoint compact supports,
such that for each j =1, 2, ..., N, we have

@) Il P‘vj" = ")‘j“;
(i1) supp i ; C supp A;;
- N
(iii) )\O[D+N( U supp p,k):l < g;
k=1
(iv) [8;(v) = X;(0) | <e forally €Y;
(v) If (p;, P2y --» Pn) € F and x € supp p, for all k, then

P:X; +PoXo+ ... + puxXy € D.

The existence of the measures p; € M, (G,) satisfying (i)-(iv) is a consequence
of Lemma 6.1 of [13]. In order to let the p; further satisfy (v), it will suffice
to apply a routine category argument. We omit the details.

Step 2. Suppose that A\ is a measure in M (G,), that DC H and YCT,
are compact sets, and that € > 0. Then there exist finitely many, pairwise disjoint,

compact subsets K,, K,, ..., K of supp A\, where T > max (N, 1/¢),and a measure
p in M (G,) such that

(i) [rl =[Nl and [p™"" =AY <
T
(i1) supp p = U K; and diam(K;) <e for all indices j;
j=1
(iii) A, [D + N(supp p)] <e;
(iv) [A(v) —A(v)|<e forally €Y;

(V) If (py, P2y -+ Pr) € {0, =1, ..., =T} satisfies p; # 0 for at most N indices
j and p; € E(H) for at least one index j, and if x; € K, for all indices j, then
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P:X; +PeXy,+ ... +poxqp € D

This can be proved along the same lines as Lemma 6.2 of [13] by applying
the result stated in Step 1 and Lemma 3.1 of [13]. We leave the details to the
reader.

Step 3. By induction on n =0, 1, 2, ..., we shall construct a sequence (p,) of
probability measures in M, (G,) as follows. Let (D,) be an increasing sequence

of compact sets such that H = U D,, and let p, be any probability measure

in M_(G,) with compact support dlsjomt from H. In the case that there is a
natural number p such that p X V C H for some neighborhood V of 0 in G,
we shall also demand that q, X (supp p,) C H, where q, denotes the least one of
all natural numbers p as above. Suppose that n is a natural number and that the
probability measures p; € M (G,) have been constructed forall j=0,1,...,n — 1.
Define

Y.={v€T,:|p;(y)|=n"" forsomej=0,1,..,n— 1},

and notice that Y, is a compact subset of I',. Setting A\ —p,_,,D=D_, Y=Y,
and € = 27", we now apply the result in Step 2 to find pairwise disjoint compact
subsets K; (1 =j =T,) of supp p,._,, where T, > N2%, and a measure

p=p, €M, (G,),

subject to the five conditions given in Step 2. This completes the induction.

It is easy to show that the sequence (p,) converges weak* to a probability
measure p in M(G,), and that K = supp p and p satisfy the required conditions.
The proof is complete.

Proof of Theorem 1. Let H be any semigroup in G as in the hypotheses of
Theorem 1 and let f be any element of A such that |f| =< h,,. By virtue of Lemma
5, there exists a Cantor set K in G which is independent modulo H, = H — H.
It is evident that every H _-independent set is H -dissociate. Thus part (b) of
Theorem 1 follows from Lemma 3.

In order to prove part (a), assume that f is_a strong boundary point for the
uniform closure of M(G)~ in C(A). Let V be an arbitrary neighborhood of f | R(HD
in Agy,, the maximal ideal space of R(H). Then it is evident that the set of
all g € A with g|g@, € V is a neighborhood of fin A. By the present assumptlon
we can therefore find a measure X\ in M(G) such that [\ (f)| =1 and |\ (g)] <1
forall g € A with g|u, € V. Now write A = p + v, where p. € R(H) and v € I(H).
Then we have |i(f)| = |A(f)| = 1 since f vanishes on I(H). On the other hand,
every element g of A, extends (uniquely to an element g’ of A such that
|g’]| = hy. Therefore we have |ji(g)| = |A(g’)] < 1 for all g in Agry \V.
Since p is in R(H) and ‘since V is an arbitrary neighborhood of f|g 4, in Ag gy,
it follows that f| 4, belongs to the Shilov boundary of R(H). But then part (b)
of the present theorem implies that there exists a nontrivial continuous point
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derivation at f. This yields the required contradiction, since there is no such point
derivation at any strong boundary point. The proof is complete.

Proofs of Corollaries 1 and 2. Suppose that h is a critical point in A different
from 1. Let v be the locally compact group topology for G which naturally corresponds
to h (see Chapters 7 and 8 of [14]). Thus 7 is strictly stronger than the original
topology of G. Let H be any subgroup of G which is open and o-compact in the
topology 7. Then H is a o-compact subgroup of G which is of the first Baire
category in the original topology of G, and we have h = h,;. Therefore Corollaries
1 and 2 follow from parts (b) and (a) of Theorem 1, respectively.

Proof of Theorem 2. Suppose that H is a o-compact semigroup in G such
that H, = H — H has zero Haar measure. By Lemma 4, there exists a metrizable
closed subgroup G, of G such that H, N G, is nonopen in G,. Choose and fix
any natural number N = 6, and take any Cantor set Kin G, \\H_ and any probability
measure p € M_(K) satisfying the conclusions of Lemma 6 (with H, in place of
H). Let the R, (n = 0) be the L-subspaces of R(H + D (K)) defined as in Lemma
1. Notice that R(H + D(K)) forms an L-subalgebra of M(G), as was observed in
the proof of Lemma 1. Furthermore, part (¢) of Lemma 6 with H_ in place of
H guarantees that the inclusion R, * R, C R, obtains whenever m,n are non-
negative integers satisfying 4(m + n) = N + 2. This can be easily seen from the
proof of part (c) of Lemma 1.

Now let P, denote the natural projection from M(G) onto R, (n = 0), and define
D(p) = (P, p) (1) = (P, p)G), p € M(G).

SinceR,, * R, C I(H + K) whenever m,n € Z* and m + n = 2, the proof of Lemma
3, combined with the above remarks, shows that D is a nontrivial point derivation
at hy;. It is evident that D is continuous in the total variation norm of M(G).

In order to confirm that D is discontinuous in the spectral radius norm of
M (G), notice that K™*" has positive \,-measure and that p belongs to C_(I",)
by part (a) of Lemma 6, where I', denotes the dual group of G,. Therefore we
have M, (G,) C R(H + K®*") and, given ¢ > 0, there is a measure \, in M, (G,)
such that sup {|p(y) — X.(v)]: v € [} is less than €. Since p" " is in M, (G,),
it follows that sup {|p (f) — X, (f) |: f € A} <e. On the other hand, H N G, + NK
has zero \,-measure by part (b) of Lemma 6, so that M, (G_) is contained in
I(H + NK); hence, in particular, M, (G_,) L R,. Thus we have

D(p—A)=D(p)=1 and |p—KJ.<s

so that D is discontinuous in the spectral radius norm of M(G). This establishes
Theorem 2.

Remarks. (a) The H,-dissociation of K in Lemmas 1, 2, and 3 may be replaced
by the following weaker condition: if x,, x,, ..., X, are finitely many different
elements of K and if (p,, ps, ..., p,) € {+1, —1}", then

P1X; + PeX, + ... +p.x, € H,.
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(b) If, in Lemmas 1, 2, and 3, H forms a subgroup of G and K is independent

oo

modulo H, then we can replace the sets H + D(K) and K™ by H + (U pK)
p=0
and nK, respectively.

(c) Given f € A, write J;= {p € M(G) : L (f) = 0}. If there is a nontrivial
continuous point derivation D at f, then D extends to a bounded linear functional
on the uniform closure of M(G)™ in C(A). It is evident that f and D are linearly
independent as functionals and that D vanishes on the linear span of J;* J,.
It follows that (J;)  can not be contained in the closed linear span of (J,* J,)"
in C(A). Conversely, if J; has the last property, then there exists a nontrivial
continuous point derivation at f, as was observed by Brown and Moran [1].
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