SOME QUOTIENT VARIETIES HAVE
RATIONAL SINGULARITIES

George R. Kempf

Let WV be a representation of a reductive algebraic group G over a field k of
characteristic zero. The quotient variety G\V is the affine variety, whose regular
functions are the regular functions on WV, which are invariant under G.

The famous theorem of Hochster-Robertis [7] asserts that G\WV is a Cohen-
Macaulay variety. In this note, I will demonstrate a generalization of the following

THEOREM 0. The variety G\V has rational singulavities if the connected
component of G is a semi-simple group.

The essential case for the proof is when G is semi-simple (¢f. Lemma 8). One
may also prove the same result when the connected component of G is a torus. (See
[6] and [9]). Of course, one would like to have the same result for an arbitrary re-
ductive group G acting on an affine variety with (as weak as possible) conditions on
its singularities.

1. PROPERTIES OF DIFFERENTIALS

In this paper, we will be working in the category of k-schemes of finite type
over a field k, which is algebraically closed. All points are k-points. A variety is
a k-scheme, which is separated, reduced and irreducible. Thus, the set X, of
singular points of a variety X forms a closed subset of X, which is not all of X.

A variety X is normal, by definition, if and only if all its local rings 0X,x are
integrally closed. Recall that, if X is a normal variety, the codimension of X,
in X is at least two. In fact, the depth of 0y along Xsing 1S at least two.

If X is a normal variety, let i: U = X - Xg;,, = X be the open immersion of
the smooth part U of X. The sheaf wy of regular dualizing differentials is defined

to be the sheaf i*(sz%imU) on X. If X is smooth, then wy equals the sheaf of dif-

ferential forms le(imU of highest degree. In general, a rational dualizing differen-

tial (j.e., a rational section of wyx) on a normal variety is regular (i.e., a section of
w+) if and only if it has no poles. For further information, the reader should con-
sult [3].

Let f: X — Y be a birational morphism between normal varieties. We may
identify a rational dualizing differential on X with one on Y. If w is a regular dual-
izing differential on Y, the f*w may only have poles along divisors D in X such
that £(D) is contained in the singularities of Y. Conversely, if w is a regular dif-
ferential on X, then f_w has no pole along any divisor E on Y such that E N {(X)
is dense in E.

Let f: X' — X be a proper birational morphism between normal varities. By

the last remark, f, Wy C Wy Define the sheaf KX of absolutely regular dualizing
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differentials to be the intersection Ky, = ﬂ f, wx:, where we take the intersection
for all such morphisms f. Clearly, in the above situation, we always have the
equality f, Ky, =K.

If X is smooth, then Ky = wx = leqimx. So, if f: X' — X is a proper birational
morphism, where X' is smooth and X is normal, then Ky =£f wx:, whichis a
coherent sheaf on X.

By Hironaka’s theorem [5] in characteristic zero, we are assured that such a
resolution f of the normal variety X exists. Thus, we have the following criterion
for a rational dualizing differential to be absolutely regular.

LEMMA 1 (Characteristic zero). Let w be a rational section of wx on a
novmal vaviety X. Then, w is absolutely vegular (i.e., w € Kx) if and only if, for
any bivational movphism 1: S — X, wheve S is a smooth affine vaviety, *w is a
rvegular section of wg.

The reader should also consult Serre’s discussion in [13].

Next, I want to recall the definition of rational singularities [8], [9]. A variety
X in characteristic zero is said to have rational singularities if X is a normal
Cohen-Macaulay variety such that wx = Kx . (That is to say that any regular dual-
izing differential is absolutely regular.)

Lastly, we come to the main technical tool in this paper which does not require
invariant theory.

LEMMA 2. Let f: X = Y be a survjective movphism between two varieties in
characteristic zevo. Assume that Y is smooth and X is novmal. Let w be a va-

tional diffevential on Y (i.e., a rational section of the sheaf Qly for some i). Then,

w is vegular if and only if the pull-backed vational differential t* w has no poles
on X.

Proof. The forward implication is evident. Contrapositively, if w is not regu-
lar, then we will see that f*w must have a pole. As Y is smooth variety and w is
not regular, there must be an irreducible divisor F on Y along which w has a pole.
Furthermore, locally we may find a regular function t on Y such that t generates
the ideal of F.

Let E be the inverse image f 1(F). As E is locally defined by the equation
f*t = 0 and is not all of X, E has codimension one in X. The mapping f: E — F is
surjective. Thus, we may find an irreducible component D of E such that the image
of D contains an open dense subset of F. We intend to show that f*w has a pole
along D.

For the rest of the proof, we will fix a point d of D, which is general enough to
satisfy the following conditions:

a) D and X are smooth near d,

b) the ideal of D is generated near d by a function s on X, which is regular
at d,

c) f¥ =v - sT, where v is a unit near d and r is a positive integer,
d) F is smooth near f(d), and

e) if t, y;, -+, yx are regular parameter functions on Y at the point f(d), then
X, = f"‘yi have independent differentials on D near d.
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The existence of such a point d is fairly easy. The hardest part is e), which fol-
lows from Sard’s lemma applied to the almost surjective morphism D — F. I leave
the details to the reader.

As a direct consequence of the above, we may find other functions z;, ---, z,
on X such that s, x;, **-, X, z}, ***, Z, are regular parameters on X at our gen-
eral point d. To prove that f*w has a pole along D, we will begin with some special
cases.

Assume that w has either of the following forms:

1 1
t—ndt/\dyl/\---/\dyi_1 or t—ndyl/\ -« N dy. .

1

rov-st-l ds ANdx, N\« N dx. plus a term with a pole
(V . Sr)n 1 i-1
along D of order less than or equal to r(n - 1). Inthe second case, f*w is
1

(v-s
along F, then the order of the pole of f*w along D is either r-n or r(n - 1) + 1.
As these orders are positive, we are done.

In the first case, ffw is

dx, VANERLIVAN dx; . Therefore, in general, if n is the order of the pole of w

I’)I’l

2. INVARIANT THEORY

I will begin by recalling some basic notions. Let G be a reductive algebraic

group over a field k = k of characteristic zero. Let X be an algebraic k-scheme.
A group action of G on X is a morphism G X X — X satisfying the usual rules for a
group action.

If X is an affine scheme with a G-action, the quotient scheme G\X is the affine
scheme where T'(G\X, 0g\x) is the ring of G-invariants Grx, ox) in I'X, 0x).
We have an obvious quotient morphism 7: X = G\X corresponding to the inclusion
between the two rings.

The quotient morphism 7 has many pleasant properties. We will next recall
LEMMA 3. a) 7 is surjective.
b) 7 takes G-invaviant closed subsets of X onto closed subsets of G\X.

c) If X is a novmal variety, then G\X is a normal vaviety.

T—-X
d) Let | l\ be a cartesian squave of affine k-schemes. Then, S is nat-
S — G\X
urally isomorphic to the quotient G\T, wheve T is given the G-action induced by
the G-action on X.

For the proof, see Theorem 1.1 in Mumford’s book [11]. We will use the above
results in the form of

COROLLARY 4. Given a G-action on a novmal affine variety X and a birational
movphism S — G\X from an affine variety S. We may find a commutative diagram,
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R—>X

Lo

S —> G\X

wheve R is a novmal affine variety, which is bivational to X and maps suvjectively
onto S.

Proof. Let R' =8 X G\XX. Let R equal the normalization of the component of

R', which is mapped birationally to X. R exists because S is birational to G\X and
X dominates G\X. Furthermore, the image of R in S is dense.

On the other hand, the image of R in R' is a closed G-invariant subset. Hence,
by the lemma, the image of R in S is closed. Thus, the morphism R — S is surjec-
tive.

Remark. I S is normal, S = G\R, where R is given the induced G-action.

The next lemma deals with codimension one behavior. Most of it is well-known

[2], [10].

LEMMA 5. Let X be an affine k-scheme such that T'X, Ox) is a unique fac-
torization domain and has only constants as units. Assume that (1) we arve given a

G-action on X and (2) all charvacters of G ave constant on the connected components
of G.

a) Let D be an effective G-invariant divisor on X. Then, 1D is the suppovt of

an effective principal divisor E on G\X such that D is the set-theovetic inverse
image of E.

b) If G is connected, in the above situation, we may find a unique divisor E
such that -1 E = D as divisors: hence, T(G\X, 0G\x) is a unique factorization
domain,

c) For any such G, if w is a rational diffevential form on G\X, which has no
poles, then m*w has no poles.

Proof. (a) As I'(X, 0) is factorial, we may find a regular function f on X such
that D is its divisor. f is determined up to constant multiple by the assumption on
the units. Thus, as D is G-invariant, f(gx) = x(g)f(x), where x is a character of
G. By the assumption on G, the values of X are m-th roots of unity, where m is
some number which divides the number of connected components of the variety G.
Thus, f™ is a G-invariant function on X. The divisor E of f™ regarded as a regu-
lar function on G\X has the required properties.

b) In the above notation, we may take m = 1. This gives the first statement.
Let g be a regular function on G\X. As any factor of 7*g corresponds to G-in-
variant divisor on X, the first statements show that #*g is irreducible if and only
if g is irreducible. This implies the second statement.

c) m*w is a G-invariant differential form on X. If it has any poles, they must
be situated along a G-invariant divisor D. By (a), 7D is a divisor on the normal
variety G\X and D =7-17D. As w has no poles along 7D, it cannot have any poles
along D = 7-l7D. Thus, 7*w has no poles.

Remark. For the proof of (c), the above assumptions are a rather brutal way to
insure that 7(G-invariant divisor on X) is a divisor on the quotient G\X.
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The next results bring together the above information.

PROPOSITION 6. Let X be a smooth affine variely with G-action. Assume
that

1) IT'(X, O‘X) iS a unique factorization ving with only constants as units; and

2) G has no vadical. Then, any vegulav dualizing diffevential on the normal
quotient variety G\X is absolutely vegular.

Proof. Let w be a regular dualizing differential on G\X. By Lemma 5c, we
know that 7*w has no poles on X. Hence, 7*w is regular differential form on the
smooth variety X. We will use the criterion of Lemma 1 to check that w is
absolutely regular.

Let S — G\X be any birational morphism from a smooth affine variety S. We
will use the diagram

R——X

la .
Y

S —> G\X

of Corollary 4, where you recall that R is normal and « is surjective. Thus, the
pull-back of w to R via X is regular by the above remarks. Hence, the pull-back
w' to S remains regular under a*. By Lemma 2, this means that w' is regular.

This is what we need.

We can now state the

THEOREM 7. With some assumplions as Proposition 6, the quotient variety
G\X has vational singulavities.

Proof. G\X is automatically normal by Lemma 3.c. We have just seen that
any regular dualizing differential on G\X is absolutely regular. The hardest part of
the result is the Hochster-Roberts theorem [7] which gives in particular: any quo-
tient G\X of a smooth affine variety by a reductive group is a Cohen-Macaulay
variety (Char. 0). Hence, G\X has all three of the properties in the definition of
rational singularities.

I want to remind the reader that if G is connected (i.e. semisimple), one may
add the properties:

a) G\X is Gorenstein and
b) T(G\X, Oc\x) is a UFD.

This result was already noted by Hochster-Roberts, but it is easily understood
in terms of the methods of this paper. In fact, (b) follows from Lemma 5.6. As we
know that G\X is a factorial Cohen-Macaulay variety, Murthy has proven that these
properties for a variety imply that it is Gorenstein (i.e., We\x *- ﬁG\X). Murthy’s
point is that WE\X is a reflexive rank-one coherent sheaf on a factorial variety and,
hence, the freeness follows from the factorial property [12].

Next, I want to point out a rather well-known result (see [1] for instance) when
G is a finite group.

LEMMA 8. Let G be a finite gvoup of order not divisible by the chavacteristic
of the gvound field. If G acts on an affine scheme Y, then
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a) the projection Y — G\Y is a finite pure movphism,

b) G\Y is Cohen-Macaulay if Y is, and

¢) G\Y has vational singulavities if Y does.

This is trivial compared to the last theorem. I leave the proof to the reader.

I will make a remark which might be helpful to researchers of questions related

to this paper. The results of Luna [10] on the behavior of a group acting along a
closed orbit give a better picture of Hochster-Roberts’ “reduction to the graded
case”.

1.
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