OPERATOR ALGEBRAS LEAVING
COMPACT OPERATOR RANGES INVARIANT

Eric Nordgren, Heydar Radjavi, and Peter Rosenthal

We show that a closed operator whose domain is the range of a compact opera-
tor has closed range. This has two easy consequences: a closed operator whose
range is contained in that of a compact operator must itself be compact, and a
transitive algebra whose only proper invariant operator ranges are the ranges of
compact-operators must be strongly dense.

We consider operators from any Banach space into any other Banach space. (In
all the results other than Theorem 2, the spaces can be real or complex; for Theo-
rem 2, the space must be complex.) A closed operator is a linear transformation
T with domain 2(T) in some space & and range in some % such that
{x@® Tx: x € @(T)} is a closed subspace of 2 (D #, where the norm on & P ¥ is
any which is equivalent to the norm defined by |x@®y| = [|x|| + ||y|. Then the pro-
jections of (@ % onto & and onto # are bounded operators.

We begin with a well-known fact which follows, for example, from Douglas [1].

LEMMA 1. A bounded operator whose vange is contained in the vange of a com-
pact operator is itself compact.

Proof. (Similar to [1].) Let K be the compact operator, with domain %. By
replacing K by its natural quotient on # /ker K if necessary, we can assume that K
is injective. Now if T is a bounded operator with ran T C ran K, then KT isa
closed operator whose domain is a Banach space, so K- T = C is bounded. Hence,
T = KC is compact.

Theorem 1 below generalizes Lemma 1 to closed operators.

LEMMA 2. A closed opevator whose domain is contained in the vange of a com-
pact opevatov must have closed range.

Proof. Let T be the closed operator; by going to a quotient space if necessary,
we can assume that T is injective. Suppose that the domain @ (T) is contained in the
range of the compact operator K. Then the projection K of the graph of T onto
the first coordinate space is a bounded operator with ran K C ran Ky, so K is com-
pact by Lemma 1. Clearly, K is injective and has range equal to @ (T).

Now TK is a closed operator with domain a Banach space @(K), so TK is a
bounded operator C. Clearly,

{x@®Tx:xe 2(T)} = {Kz@®Cz:z € 9(K)}.

Thus to show ran T is closed, it suffices to show ran C is closed. Define the map-
ping U by Uz =Kz (® Cz for z € @(K). Then U is a bounded injective operator
mapping the Banach space @2 (K) onto the graph of T, so U is bounded below. We
must prove that C is bounded below.
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If C is not bounded below, then there is a sequence {z,} with ”zn” =1 for all
n and {Cz,} — 0. Since K is compact, there is a subsequence {zni} such that

{Kzni} converges to some vector X. Then x(@® 0 is in the graph of T, so the as-
sumption that T is injective implies x = 0. Thus, {Uz, } = {Kz_ ® Czni} ap-
1 1

proaches 0, which contradicts the fact that U is bounded below. Hence, C is
bounded below.

THEOREM 1. A closed opevalor whose vange is contained in the range of a
compact opervator must itself be compact.

Proof. Let T be the closed operator; by Lemma 1, we need only show that T is
bounded. By the closed graph theorem, it suffices to show that T has closed domain,
and by taking quotients we can assume that T is injective. (The inverse of the na-
tural projection of the domain of the quotient is the domain of T.) But the domain of
T-1 is the range of T, so T-! satisfies the hypothesis of Lemma 2. Hence,
ran T-! = @(T) is closed.

Example. If T is a closed operator from a Banach space into LZ(0, 1) such
that Tx is absolutely continuous and has derivative in L2(0, 1) for all x € @ (T),
then T is compact.

t
Proof. If V is the Volterra operator defined on L%(0, 1) by (V)(t) =S f(s) ds,
0

then V is compact and has range consisting of all absolutely continuous functions
which vanish at 0 and have derivatives in LZ(O, 1). If P is the rank 1 projection of
L? (0, 1) onto the constant functions, then a formula due to Crimmins [3, Theorem
2.2] implies that the range of VvVV* + P is the set of absolutely continuous functions
with derivatives in LZ(O, 1). Since VvVV* + P is compact, Theorem 1 applies.

The next theorem is a slight generalization of the well-known result of Foiag
[4; 7, Theorem 8.9]. We use #(a) to denote the algebra of bounded linear opera-
tors mapping the complex Banach space 2 into itself.

THEOREM 2. If « is a subalgebra of B(X), and if every proper operator
range invaviant undev < is the vange of a compact operator, then either A is
strongly dense in B(X) or A has a finite-dimensional invariant subspace other
than {0}

Proof. If « has a nontrivial closed invariant subspace, then it must be finite-
dimensional, since the range of a compact operator cannot be closed unless it is
finite-dimensional. Thus we can assume that « is transitive; ¢.e., & has no non-
trivial invariant subspaces.

We use the notation and techniques described in [7, Chapter 8]. As in the proof
of Theorems 8.9 and 9.7 of [7], it suffices to show that each graph transformation for
« is bounded. Let {x@ T;x@® -+ ®T,x: x € @} be an invariant graph subspace
for «(M*t1): we assume (by induction) that all graph transformations arising from
« (") are bounded. Let T be the map from 2 into & (n) gefined by

Tx =T x@ - DT, x;

we must show that T is bounded.

Case (i): T, is not injective. Let @ = {x € @: T,,x =0}; since @ # {0} and
@ is invariant under &, 9 is dense in 2°. The inductive hypothesis implies that
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the restriction T of T to D is bounded and thus extends to Z. Hence, D = Z, so
@ =2 and T is bounded.

Case (ii): T, is injective. If @ # &, @ is the range of a compact operator, so
Lemma 2 implies that ran T = {T;x® - @ T x: x € @} is closed. Also,

ranT = {T, T !ly@ -~ DT, | T;lyDy:ye T, o},

so the inductive hypothesis implies T; Tr;l is bounded for i =1, -, n - 1. Hence,
T @ =2,
n

{xET 2@ - PDT,xxxe D} = {Tly@T,Tly@® - Dy:ye '},

and T{ll is a bounded transformation with range 9, so Lemma 1 implies Tr‘l1 is
compact. Since T;ll obviously commutes with , Lomonosov’s theorem [6; 17,
Corollary 8.25] implies «/ has a nontrivial invariant subspace. This contradiction
proves that 2 = 4 and T is bounded.

It seems that the theory of operator ranges on Banach spaces has not been
seriously investigated. Which of the.results of [3] hold on Banach spaces? As E.
Azoff has kindly informed us, the paper [5] of S. Grabiner gives some results along
these lines.
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