ARITHMETICALLY EMBEDDABLE LOCAL
NOETHER LATTICES

D. D. Anderson and E. W. Johnson

In [1], Anderson showed that each distributive local Noether lattice can be em-
bedded in the lattice of ideals of a Noetherian ring. However, it is of interest to
know when such an embedding can be made into the lattice of ideals of an arithmeti-
cal Noetherian ring (that is, a Noetherian ring with a distributive lattice of ideals),
and the results of [1] shed no light on this question.

We call a Noether lattice independently generated if it satisfies the identity
A(B A C) = AB N AC, and basis-annihilating if it satisfies the identity
(AV B)(AA B) = AB. (Theorems 3 and 9 justify the seemingly strange terminol-
ogy.) Since the ideals of every arithmetical ring satisfy the stated identities, it is
clear that every Noether lattice that is embeddable in the lattice of ideals of an
arithmetical ring is both basis-independent and basis-annihilating.

In this paper, we study basis-annihilating and basis-independent Noether lat-
tices, our primary goal being the determination of an answer to the question posed
above. However, since the implications of these properties are also interesting
outside of the distributive case, we do not limit our considerations to that situation.
We note that both properties have received wide attention in rings. (See, for exam-

ple, [5], [6], [7].)

In [4], K. P. Bogart showed that if E is a principal element in a minimal base of
an element A of a distributive local Noether lattice, then E is in every minimal
base of A. Since much of our work will be outside of distributive structures, where
this obviously need not be the case unless A is principal, it is convenient to intro-
duce the following terminology:

(i) If £ is a local Noether lattice and E is in every minimal base of an ele-
ment A of &, then E is an essential genevator of A.

(ii) If 2 is local and A has a unique minimal base, then A is essentially
genevrated.

(iii) If 2 is local and every element is essentially generated, then &£ is essen-
tially genevrated,

(iv) I £ is local and no nonprincipal element has an essential generator, then
& is inessentially genevated.

Finally, we say that a nonlocal Noether lattice is essentially generated or ines-
sentially generated if each of its localizations is. As we have noted, distributive
Noether lattices are essentially generated. Lattices of ideals of rings are inessen-
tially generated.

It is easily seen that every independently generated Noether lattice is basis-
annihilating (the proof is the same as that given in [6] for rings). And it is fairly
easy to see directly that the two conditions are equivalent for Noetherian rings.
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(This also follows from Theorem 6.) Interestingly, the two conditions are not equi-
valent for Noether lattices, even in the distributive case.

Our main results are (i) a characterization of basis-annihilating distributive
local Noether lattices; (ii) an embedding theorem for distributive, independently
generated locals into arithmetical Noetherian rings; (iii) a characterization of the
distributive Noether lattices as those that are essentially generated.

LEMMA 1. Let (£, M) be a local Noether lattice, and let {E;, -, E,} bea
minimal base for M such that E; E; =0 whenever i # j. If A is any element of &
such that A < E;, then either A =0 or A is a powey of E;.

Proof. Assume A # 0, and choose n so that A < M"E; and A £ M E, .
Then A = A AMPE; = AAEP! = (A:EPTHED!; therefore A = EPL, by the choice
of n.

LEMMA 2. Let (2, M) be a local Noether lattice in which M has a minimal

L V, &}’
base {El, -+, Ex} such that E;E;=0 whenever i # j. Then 0:M = V; E;,

where s; <« is the least exponent such that EiEisi = 0.

Proof. 0:E;=E;'V (Vj¢iEj), and E; A (VJ-HEJ-) < E;, so that
Ei/\(O:Ei)=E§i. Hence,

(0:E)) A(0:Ep) = E;' V(E, A (0:E)V V E; = B! VEZV V E.
j>2 i>2

The induction is clear.

The following gives several alternate characterizations of a basis-annihilating
Noether lattice; in particular, it justifies the term “basis-annihilating.”

THEOREM 3. Let (£, M) be a local Noethev lattice. Then the following ave
equivalent:

(i) 2 is basis-annihilating.

(i) If {¥y, -, Fg} is a minimal base for an element A € &, then FiF;=0
whenever i # j.

(iii) M has a minimal base {E,, ---, Ex} such that E;E;=0 wheneveri # j
and each principal element E # 1 is contained in one of the elements
0:M, Eq, -+, Ex.

Proof. Assume £ is basis-annihilating, and let E and F be noncomparable
principal elements. Since £ is local, so that principal elements are join-irreduci-
ble, we may assume EF =(E AF)(E VF) = (E AF)F. Then EF = (F:E)EF < MEF,
so that EF = 0, by the intersection theorem. Hence, (i) implies (ii).

Assume (ii) holds. Let {E;, ---, Ex} be a minimal base for M, and let E <M
be any principal element. Assume E &£ 0:M, and choose i so that EE; # 0. Then E
and E; do not form a minimal base for the element E V E;, and E; £ M2; therefore
E < E;. Hence (ii) implies (iii).

Now, assume (iii) holds. Since every element is the join of principal elements,
it suffices to show that (EV F)(EAF) = EF if E and F are principal. Because
(EV F)(E AF) < EF, it suffices to show EF < (EV F)(E A F). The conclusion fol-
lows immediately if EF = 0; therefore we may assume E< E; and F < E;. But
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then, by Lemma 1, E and F are comparable, so that the relation
EF < (E AF)(E V F)

is clear. Hence, (iii) implies (i), and the proof is complete.

By Theorem 3, it is clear that if & is a basis-annihilating Noether lattice in
which 0 is prime, then each localization of £ is a principal-element lattice, and
therefore & is a principal-element lattice. Since each principal-element lattice is
basis-independent and also representable, it follows that in the case of domains,
basis-annihilation and basis-independence are equivalent, and each implies distribu-
tivity and representability.

As in the following generalization of the case of domains, we shall frequently
use decompositions of local Noether lattices by local direct sums. We refer the
reader to [3] for a general investigation of the decomposition process. It was first
used in [10].

THEOREM 4. Let (%, M) be a basis-annihilating local Noether lattice. Then
2/(0: M) is the local divect sum of principal-element lattices. In parvticular, if M
is not a prime of 0, then £ is basis-independent and every element of £ is join-
principal,

Proof. Let {El, .., Ek} be a minimal base for M. If
B < (V E)vio:m,
j#i

then ME; = ElZ =0, so that E; < 0:M. It follows that in £/(0:M), M has a minimal
base consisting of those E;V (0:M) £ 0:M. For notational simplicity, we assume
the minimal base consists of the elements E; V (0: M) (1 <i <n). Now, by

Lemma 2,

(EiV(O:M))/\((\/ Ej)V(O:M)) = Efiv (0:M) = 0:M;
j#Fi

therefore the minimal base E;V (0: M) (1 <i <n) is independent in £Z/(0:M).
Each principal element of £/(0:M) is of the form F V (0:M), for some principal
element F of &, and either F is a power of one of E;, --+, E, or F < 0:M,
Hence, in 2/(0: M) each principal element is contained in one of the independent
minimal-basis elements E; V (0:M) (1 <i <n). It follows that £/0: M splits, as
desired.

If M is not a prime of 0, then £ is a submultiplicative lattice of a direct sum
of local principal-element lattices, so that & is basis-independent.

It is interesting (though straightforward to prove) that if E is a principal ele-
ment of a local Noether lattice (£, M), then E V (0: M) is join-principal. This ob-
servation yields the following result.

COROLLARY 5. Let (£, M) be a basis-annihilating local Noether lattice such
that #/(0: M) is irveducible. Then M is join-principal.

We note that it follows from the results of [8] that if (&, M) is a local Noether
lattice in which M is join-principal, then £/(0: M) is independently generated and
hence also basis-annihilating.
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THEOREM 6. Lel & be a basis-annihilating Noether lattice. If £ is inessen-
tially genevated, then £ is the divect sum of principal-element lattices and trivial-
multiplication lattices, and hence is a join-principal-element lattice.

Proof. Assume & is basis annihilating, and let (£', M) be any localization of
Z. Let {E, -, Ex} be a minimal base for M in £'. If ME, # 0, then, since
each principal element not contained in E; annihilates E, the element E; is nec-
essarily an essential generator of M in £'.

Hence, if & is inessentially generated, every maximal element is either prin-
cipal in & or satisfies the condition M2 = 0 in &);. Consideration of the nature of
a primary decomposition for 0 shows that £ splits as desired.

At this point, it is natural to wonder whether every basis-annihilating Noether
lattice is a weak-join principal-element lattice. However, the following examples
show that the answer is negative even in the distributive case.

For i =1, , K, let (Qi, Ei) be a local principal-element lattice such that

EMY2 - 0 put E“l” #0 (n;>1). Let (Qny, *-, ny), M) be the local Noether lat-
tice obtained from the local direct sum of the lattices &; by identifying the elements

1
ENY (1 <i<K). I k> 2, then

ni+l

n] _ nz np+1
ME, = ME,°, 0:M=E,

= Ep> , and E;!VO0:M# E,>V0:M,

so that M is not weak-join principal. For example, Q(1, 2) is the lattice in Fig-
ure 1. Actually, it is easy to see that if (£, M) is a distributive, basis-annihilating,
local Noether lattice of altitude 0, and if, in the

notation of Lemma 2, E, 1= E;z = e = Ek , then I

either k =1, or s; > 2 and Z = Q(nl, e, D),
where n; = s; - 1. The following theorem shows
that the lattices Q(nl y "7ty nk) come close to
characterizing basis-annihilating distributive lo-
cal Noether lattices.

THEOREM 7. Let (2, M) be a basis-annihi- E, \/ EZ

lating local Noether lattice. Then £ is distribu-
tive if and only if 0:M is essentially generated, I
If & is distributive, then £ is the local divect

E

sum of local principal-element lattices and local
Noether lattices of the form Qny, -+, ny).

Proof. Assume 0:M is essentially gener-
ated, and let {E;, '+, E, |} be a minimal base
for M.

We note that if A is an essentially generated
element and if {F;, :--, F} is the minimal
base for A, then every element that is the join of
a subcollection of {F;, -:-, F,} is also essen- Figure 1
tially generated. Since, in the notation of Lemma

2, 0:M =\/- ElS i, it follows that the unique minimal base for 0:M consists of the

distinct, nonzero elements E , and that every element generated by a subset of
these elements is also essentlally generated.
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Now assume that E < 0:M is a nonzero principal element and that
{Ei1 s "% Ein} ‘is a minimal subcollection of the elements E, :--, Ep such that

E L Ei1 VoV Ein' For notational simplicity, we assume ij = j 1<i<L n). Then

by [9, Theorem 2.1] and by Lemma 1, it follows that there exist exponents
m;, *--, m, such that

Ev( V E?i)= V B
1<i<n 1<i<n
i#r

Moreover, the elements Eini must be distinct and nonzero, by the minimality of the

collection {El s 7 En}. Since E <0:M, EV ( \/ Einl) is annihilated by
1<i<n
i#r

E.; therefore m; =s; for i =1, :--, n. Since E can be used in a minimal base for
E;l V -+ V ECP, it follows that E = E;1 for some i (1 <i <n).

Now we partition the elements E;-, --+, Ey by the equivalence relation ~ de-

. . S3

fined by the rule E; ~ Ej if and only if E?l = EJ-SJ and either i =j or Eil # 0. De-

note the equivalence class of E; by <Ei > We may assume that the distinct equiva-
lence classes are <E1'>, ey (En> If E is a nonzero principal element and

ES(\/<E1>)/\(\/(1<U< (5;)))

where 1 <i <n, then clearly E < 0:M. Hence, by the argument above,
E-= Efi = EJ.Sj for some j # i (1 <j <n), which contradicts the nature of the parti-

tion. Hence, the elements \/<E1> (1 <i < n) are independent. Moreover, since

each nonzero element is either contained in an E; or is usable in a minimal base
for 0:M, it follows that every principal element is contained in one of the elements

V < Ei>, and hence that £ is the local direct sum of the local Noether lattices

(2;, M) = I: 0, \/<E1 > ] U {I} Now, each of the Noether lattices #; satisfies
the hypothesis on £ and has the additional property that (0:M;) is principal and
either 0 or a power of each of the minimal-basis elements of M;. It follows in
either case that £/(0:M;) is distributive (Theorem 4), that [0, 0: M;] is distribu-
tive, and that 0:M; is a distributive element in &;. Hence, by the discussion pre-
ceding the theorem, each (£;, M;) is either a principal-element lattice or of the
form Q(n;, -*-, ng).

Figure 2 shows that an independently generated Noether lattice need not be
distributive.

As we pointed out earlier, a basis-annihilating Noether lattice need not be a
weak-join principal-element lattice. In contrast to this, we have the following
proposition.

THEOREM 8. Let (£, M) be a local Noether lattice, and let B be an element
of & such that B(E A\ A) = BE A BA, for all A and for all principal E. Then
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(i) B is weak-join prvincipal, and I

(ii) 0:B is a distributive element., '

Proof. Assume B satisfies the stated M
condition. If A is an element of &£ and E is
principal, with BE < BA, then
BE = BE ABA = B(EAA) = BE(A:E), M?V E M2V ¥
so that either E < A or BE = 0. In either \ //
case, E <AV (0:B), sothat B is weak-join
principal. To see that (0:B) is a distributive E M2 F
element, let E be any principal element, and
let A be any element. Then
(0:B) V(AAE)=(B(AAE):B E? G F?
=(BAABE):B=(AV (0:B) AN(EV(0:B)). \ /
Hence, also 0
(0:B)A(AVE)=({(0:B)ANA)V((0:B) AE). Figure 2

Since every element is the finite join of principal elements, it follows that
(0:B)JAAVC)=({(0:B)yA A)Vv((0:B) AC) for all A, C € Z.

The following gives alternate characterizations of basis-independent Noether
lattices, and it justifies the terminology:

THEOREM 9. Let (£, M) be a local Noether lattice. Then the following are
equivalent:

(i) @ is basis-independent.
(ii) M is weak-join principal and £ is basis-annihilating.

(iii) If {F,, ---, F,} is a minimal base for an element A € &, then F;, -, Fp,
arve independent.

Proof. If E and F are noncomparable principal elements such that
M(E A F) = ME A\ MF, then from (E:F)F = EAF = (F:E)E it follows that
E AN F < ME A MF < M(E A F), and therefore that E A F = 0. Hence (i) implies (ii).

It was shown in [2] that if M is weak-join principal and has a minimal base
E;, -+, Ey satisfying the condition EiEj = 0 whenever i # j, then Eq, ---, Ey are
independent. Hence, assume that & is basis-annihilating and that {El, LTI Ek} is
an independent minimal base for M. Let {A;, ---, A;} be a minimal base for an
element A < M. By the minimality of the base {Ai , -+, Ag} and the basis-annihi-

lation property of £, we may assume that A; = E?i for 1 <i<r and that MA; =0

for i > r. Consider the element Z = A; A (A; V- VA;V -V A). Since
Z < MAj, clearly Z =0 if i > r. On the other hand, if i <r, then Z is a power of
E;. In this case, by Lemma 1 and [9, Theorem 2.1}, there exist principal elements

AJ:SAJ- (j # 1) such that Z Vv \/j.it A'J) :\/j A'j for each t # i. By the mini-
mality of the base {A;, -, Ag}, it is clear that A} < MA;, so that
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Z <E;A ( V Ej) = 0. Hence (ii) implies (iii).

jFL
1 <<
Now, assume £ satisfies (iii). Let {Ej, :--, Ex} be a minimal base for M,
and let {Bj, -, Bg} and {C;, --*, Ct} be minimal bases for B and C, respec-

tively. Because it suffices to show that AB A AC < A(B A C), we may obviously as-
sume that AB /A AC # 0 and that B and C are not comparable.

Since every principal element is either a power of an E; or is annihilated by M,
. n;
we assume B; = E;i) and Cj = Ez,UJ(j) for 1<i<m and 1<j<n and that

MB; = MC; =0 for i > m and j > n. Then the elements AB;i (1 <i < m) are powers
of distinct elements Ej, as are the elements AC; (1 <1i < n); thus, by the independ-
ence of Ey, ---, Ey, we see that

asnac=( V ABi)/\( V ac;)= V  (aBiAAc).
1<i<m 1<j<n 1<i<m
1<j<n

On the other hand, for 1 <i<m and 1 S] <n, Bj and Cj are either comparable
or independent. Hence

V' @aBiaac) = Vo ABACQ),
1<i<m 1<i<m
1<j<n 1<j<n

and therefore AB A AC < A(B A C). The proof is now complete.

THEOREM 10. Let (£, M) be a local Noether lattice. Then the following are
equivalent.

(i) @& is embeddable in the lattice of ideals of an avithmetical ring.
(ii) @ is distributive and basis-independent.

Proof. It is obvious that (i) implies (ii). Hence, assume £ is distributive and
basis-independent. It is obvious from Theorem 9 that £ is the local direct sum of
principal-element lattices. By definition, & is then a submultiplicative lattice of a
direct sum of principal-element lattices; therefore (i) follows from (ii).

By similar methods, one obtains the following alternate characterization:

THEOREM 11. Let (2, M) be a local Noether lattice. Then the following ave
equivalent:

(i) 2 is embeddable in the lattice of ideals of an avithmetical ving.
(ii) & is distributive, and M(E N\ F) = ME A\ MF for all principal elements
E, F.

As we noted earlier, every element of a distributive local Noether lattice is es-
sentially generated. We close with the converse, which has been conjectured for
some time.

THEOREM 12. Let ¥ be an essentially genevated Noethev latlice. Then < is
distvibulive.
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Proof. We may assume £ is local and has a maximal element M.

Let E and F be principal elements, and let B be arbitrary. Assume
E<FVB, ELB, and F £ B. Let n>> 0 be any integer such that E < F V M"B.
Since F V M"B is essentially generated and has a minimal base consisting of F and
some principal elements B; < M"B, it follows that E cannot be used in a minimal
base for F V M"B, and hence that E < M(F V M"B) < F Vv M*" ! B. Hence

E S/\n (FVM"B) = F. Since every element A is the finite join of principals, it
follows that E < AV B implies E < A or E < B, and hence that £ is distributive.
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