GROWTH OF NUMERICAL RANGES OF POWERS
OF HILBERT SPACE OPERATORS
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1. INTRODUCTION

Let o~ denote a complex Hilbert space with inner product ( -, - ), and let
B(HA) be the set of all bounded linear operators on . For T € B(¢), let o(T)
denote the spectrum of T, and let W(T) denote the numerical range of T,

w(T) = {(Tx, x): x € o, |x| =1}.

The power inequality ]W(Tn)| < |wW(T) In for numerical radii was first proved
by C. A. Berger ([1], [4, Problem 176]). This inequality gives an estimate of the
maximum rate of growth of the numerical ranges of the powers of an operator. In
this paper, we study the minimum rate of growth of the numerical ranges of the pow-
ers of non-Hermitian operators. Using von Neumann’s theory of spectral sets, we
prove that if o(T) C (y, ©) with v > 0, and if T is not Hermitian, then theve is a
positive integer ng such that {z € C: |z| <y} € W(T™) whenever n >ng. In par-
ticular, if o(T) C (1, =), then either T is Hermitian, or for each bounded set & of
complex numbers, there exists an integer ng(f2) such that € € W(T™) whenever
n > ny(Q). In the last part of this paper, we show that R(T"x, x) > 0 for all x € #
and for n=1, 2, ---, k, if and only if the closed sector

{z € C: |Arg z| < n/2k} U {0}

is spectral for T; moreover, || S Tx|| < tan(n/2k)|| 9% Tx| for all x € o .

2. NOTATION AND PRELIMINARIES

Let € denote the set of complex numbers, and IR the set of real numbers. For
Q C C, we denote by Co(Q2) the convex hull, by Cl(f2) the closure, by Int(£2) the in-
terior of ©, and by %(Q) the set {(z +2)/2: z € Q}. For y € IR, we write >y (or
© > v) if @ CR and each number X in © satisfies the condition A > ¢ (or A > v).
Let Alr)={z € C: lzl <r}. Let =(¢) denote the closed sector of the complex
plane symmetric with respect to the real axis, with vertex at the origin, and with
angular opening 2¢; and note that Z(n/2) denotes the right half-plane.

For Te B(x), RT = (T +T*)/2 and ST = (T - T*)/2i. We say T is positive
and write T > 0 if W(T) > 0; if T is also invertible, we write T > 0. By
T)>(>) T2, we mean (T; - T) > (>) 0. We say that T is accretive if RT > 0,
strictly accretive if T > 0.

Let T € #( ), and let © be an open set of complex numbers containing o (T),
whose boundary 92 consists of a finite number of rectifiable Jordan curves, oriented
in the positive sense. If f is a function analytic on some neighborhood of C1(2), then
we define f(T) by the Riesz-Dunford integral [3, Chapter VII]
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(1) £(T) = 5;—1 SBQ FO) (- T)-Lan.

If %(o(T)) >0 and B € R, we define TP € B(o¢) by (1) with () =28, £(1) = 1, and
with © C Int(Z(n/2)).

The following lemma gives a sufficient condition for fwo nth roots of an operator
to be equal [5, Section 4].

LEMMA 1. Let A, B € B(#) be such that c(A) N woB) =@ (1<j<n- 1,
w = exp(27i/n)). If A® = B2, then A = B.

Proof. There exists an open neighborhood of ¢(A) = 0(B), not containing 0, on
which the function z" is one-to-one. Apply [3, Chapter VII, Theorem 3.12].

3. MAPPINGS OF SPECTRAL SETS

Let T € #B(<¢), and let A be a closed subset of C containing ¢(T). We say
that A is spectral (in the sense of von Neumann) for T, if whenever q is a rational
complex-valued function with poles outside A, [a(T)|| < sup) ¢ A la)|. see [11,
Chapter XI] for details. We list some properties of spectral sets: (i) If A is spec-
tral for T, then Co(A) D W(T) and each closed set containing A is spectral for T;
(ii) =(n/2) is spectral for T if and only if T is accretive; (iii) R is spectral for T
if and only if T is Hermitian.

If Aand A, (n=1, 2, 3, ---) are closed convex subsets of € such that A, D A,
we say A, tends to A (A, — A) whenever for each £ > 0 and each compact set K,
there exists an integer ng(e, K) such that n > ng(g, K) implies

A, 0K C(ANK)+A(e).

The following two results about spectral sets are proved in [2]. They are the
principal tools in this paper.

LEMMA 2. Let f be an analytic function in Int (Z(n/2)), and suppose T is ac-
cretive and R (o(T)) > 0. Then C1(Co (f(Int (Z(7/2))))) is spectral for £(T).

LEMMA 3. Let Aand A, (n=1, 2, 3, -+) be closed convex subsets of C such
that A, D A and A, = A. Let T, € B(x), with A, spectral for T,. If To— T
(in the uniform opevator topology), then A is spectral for T.

4. GROWTH OF NUMERICAL RANGES OF POWERS

The following theorem shows that the numerical ranges of large powers of a
non-Hermitian operator with positive spectrum must have a certain minimum rate of
growth.

THEOREM 1. Let T € B(o¢) and o(T) > v > 0. If A(y™) & W(TD) for infinite-
ly many positive integers n, then T > 1.

Proof. Since there exists some positive number & such that o(T) > ¢ + ¢, we
may assume A(y") ¢ CW(T™) for infinitely many integers n. Let M be an in-
finite sequence of positive integers such that for each m € M, there is a complex
number k,, satisfying the conditions |k,,| <™ and k,, ¢ CUW(T™)). We shall
show that T is Hermitian.
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For each m € M, 0 ¢ CLW(T™ - k,)); by the convexity of the numerical range

[4, Problem 166], there is a number 6., € (-7, n) such that A, = «a“gm(Trn - k)
is strictly accretive. By Lemma 2, the closed sector Z(n/2m) is spectral for

A

Since 1lim supy ||k T ||}/™ < v /| o(T)| < 1, where |o(T)| denotes the spec-
tral radius of T, we see that limy; ||k, T"™| = 0. Let M; be the subsequence
{me M: |k, T™| < 1/2}. For each m € M;, put By, = (I - ky,, T™™); then BL/™
exists and

1/ _ nl/ 1/m _ _1 1/ -1 -1
B, -1=B,"-1""=ox rl T -B ) - -D7)d,

where I is the positively oriented circle centered at 1 with radius 1/2. There
exists a constant C, independent of m, such that

IBL/™ - 1] < € sup | -B) - -D.
rel

Applying [3, Chapter VII, Lemma 6.3], we obtain the relation lili HBL,{ m . I” =0.
Thus

limy, le¥m/™Bl/m 1| = 0.

Consequently, if we show that e Om/m B%r{ mm = A}r{ ™m " then the positivity of T fol-
lows immediately, by Lemma 3. Since ¢(T) > 0, it follows from Lemma 1 that
A%x{m = (e!fm Bm)l/mT. Using the facts that 6, € (-7, ), %(0c(B,,)) > 0, and
% (0(e' "™ B_)) > 0, we get the identity (¢! 'm B_)1/m = lfm/mpl/m

The following is an immediate consequence of Theorem 1.

COROLLARY 1. Let T € B{o¢) with o(T) > 0. If 0 ¢ Int(W(TD) for infinitely
many integers n, then T > 0.

We note that the methods used above are not applicable to a singular operator
with real nonnegative spectrum. However, the following is proved in [12].

THEOREM 2. Let T € B(¢). Suppose T is singular, o(T) > 0, and
0 ¢ Int(W(T?)) (n=1, 2, 3, --*). If 01is an isolated point of o(T), then T > 0.

We do not know whether we can omit the condition “0 is an isolated point of
¢(T)” in Theorem 2.

Theorem 1 has the following generalization.

THEOREM 1'. Let T, D € B(o¢), with 6(T) > y> 0 and TD = DT. Suppose
theve ave infinitely many integevs n such that A(Y*) & W(T2 D). Then (i) there
exists some veal number 0 such that o (D) C el =(n/2), and (ii) T > 41 if D is
invertible.

We remark that because of (i), D is invertible whenever D is surjective. The
proof of Theorem 1' is given in [12], and it is more technical than that of Theorem 1.
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It is clear that the proof of Theorem 1 does not extend to the case of an arbi-
trary Banach algebra. In fact, Theorem 1 does not hold in the general setting; for a
counterexample, see [2, Section 3.(1)]. However, the above results remain valid in
C*-algebras because of the Gelfand-Naimark theorem that every C*-algebra has a
faithful *-representation as a closed self-adjoint subalgebra of (o) for some
suitable Hilbert space <. The following theorem is obtained by working in the
Calkin algebra (see [12], [13, Section 4]).

THEOREM 1'". Let T € B(#) and n{o(T +K): K compact} >y >0. If ST
is not a compact operator, then theve is a positive integer ngy such that
A(y") € W(T™ + K) for every integer n > ng and for every compact opevator K.

5. OPERATORS WITH ACCRETIVE POWERS

THEOREM 3. Let T € (). Then T® is accrelive (n=1, 2, +++, k) if and
only if Z(n/2Kk) is spectval for T.

Proof. The sufficiency follows from the definition of a spectral set. If T" is
accretive (n =1, 2, -+, k), then Z(1/2k) D 0(T); by Lemma 1, ((T + 9)}¥)1/k =T +,,
for each y > 0. Thus Z(w/2k) is spectral for T + y by Lemma 2. We let y tend to
0 and apply Lemma 3.

Theorem 3 has a “dual” version. Given an accretive operator A € #(#) and a
number o € (0, 1), we define the fractional power A% by

(2) Al x = Sm—’m-‘—j‘ A% -1(A +1)-1 Axdn

for each x € o¢. The integral in (2) is convergent in the Bochner or absolute sense;
and if %(o(A)) > 0, then the fractional power defined by (2) is the same as the one
defined by (1). Furthermore lim (A +»2 - AQ]| =0. See[8, Chapter V,
Section 3.11].

THEOREM 3'. Fov an accretive opevator A € B(H) and a positive integer k,
theve exists a unique operator B such that A = BX and =(n/2k) is spectral for B.

—--»0'*‘

Theorem 3' generalizes a theorem of V. I. Macaev and Ju. A. Palant [10]. See
also [9] and [14, Proposition 5.5].

THEOREM 4. Let T € B(o#). If T is accretive (n=1, 2, -+, k), then
| s Tx| < tan(m/2k) | ® Tx|| for each x € .

Proof. Apply [7, Theorem 1.1].
The following is an immediate consequence of Theorem 3 or Theorem 4.

THEOREM 5 ([86], [2]). Le! T € #(#¢). Then T > 0 if and only if T™ is ac-
cretive (n=1, 2, 3, ---).

It is interesting to note that there is an elementary proof for Theorem 5. We
conclude this paper with this proof. :

LEMMA 4. Let A, B € B(x¢). If A=A* B> 0,and B% > A%, then B > A.
Proof. Pick A <0 and x € &, with |x|| = 1. Then

I8 -2a)x|2- ||ax]|2 = (B2 - A2)x, x) - 2x(Bx, x) +2% > A%,
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Hence
2
A > 0.
|B -l +[|la]]
Since B - A is Hermitian, we see that (B - A) > 0. Consequently, B > A.

LEMMA 5. Let T € B(#). If T and T? are accretive, then W(T) C =(n/4).

Proof. ((RT)2 - (IT)2)x, x) = 1/2(T2x + T*2x, x) = R(T?x, x). Hence T? is
accretive if and only if (RT)2 > (S T)2. By Lemma 4 and the fact that T is acere-
tive, we get the inequalities T > ST and RT > - ST. Therefore, W(T) C =(n/4).

COROLLARY 2. Let T € (). If T is accretive, 0 < a < 1, and
W(T?2) C =(an/2), then W(T) C Z(an/4).

Proof. By Lemma 5, the operators exp(+in/4) T are accretive. Hence the
operators exp(+i(l - a)7/4) T are accretive. The hypothesis W(T2) C Z(an/2)
implies that the operators exp(+i(l - a)n/2) T2 are accretive. Applying Lemma 5
again, we deduce that both exp (in/4) (exp (i(1 - @)n/4)T) and

B - A -] > [B -] - [ax] >

exp (-in/4) (exp (- i(1 - a)n/4)T)

are accretive. Therefore, the operators exp(+i(l - /2)1/2) T are accretive and
W(T) C =(an/4).

THEOREM 5'. Let T € B(w). If T2 is accretive for n=0, 1, 2, -, then
T > 0.

Proof. Corollary 2 shows that if T2" is accretive (n = 0, 1, ---, k), then
W(T) C Z(n/2Kt1),
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