ON INERTIA GROUPS AND BORDISM

David L. Wilkens

In this paper a manifold will be a compact oriented differential manifold of dimension greater than 4, and all diffeomorphisms will be orientation preserving. $\theta_{\mathbf{m}}$ denotes the group of homotopy m-spheres, or equally the group of diffeomorphism classes of manifolds homeomorphic to the m-sphere $S^{\mathbf{m}}$. For a closed m-manifold M the inertia group I(M) is the subgroup of $\theta_{\mathbf{m}}$ consisting of those homotopy m-spheres Σ for which M and the connected sum M # Σ are diffeomorphic. $\theta_{\mathbf{m}}(\mathbf{k})$ is the subgroup of $\theta_{\mathbf{m}}$ consisting of those homotopy m-spheres Σ that occur as boundaries of k-connected manifolds. Brender [1] has shown that if M is $(\mathbf{k}-1)$ -connected then I(M) $\subset \theta_{\mathbf{m}}(\mathbf{k}-1)$. The purpose of this note is to show that this result can be improved if it is assumed that M is k-parallelisable.

THEOREM. If M is a closed (k - 1)-connected k-parallelisable m-manifold, then I(M) $\subset \theta_m$ (k).

Before proving the theorem we consider some of its consequences. Excluding the case where m = 2r + 1 and k = r + 1,

$$\theta_{m}(k-1) = \theta_{m}(k)$$
 if $k \equiv 3, 5, 6, 7 \pmod{8}$.

This follows since if $k \ge [m/2] + 1$, then $\theta_m(k-1) \simeq 0 \simeq \theta_m(k)$; while if k < [m/2] + 1, then for $\Sigma \in \theta_m(k-1)$, $\Sigma = \partial V$ where V is (k-1)-connected, and as $\pi_{k-1}(SO) \simeq 0$ for $k \equiv 3$, 5, 6, 7 (mod 8), V is also k-parallelisable. Since V is k-parallelisable it can be surgered to give a k-connected manifold with boundary Σ . The required surgeries exist by Wall [4] for m = 2r and k = r, and by Milnor [3] for all other cases.

The identities $\theta_m(k-1) = \theta_m(k)$ above together with the theorem give necessary conditions for a homotopy sphere Σ to belong to an inertia group I(M), possibly showing $I(M) \simeq 0$. For example, from above $\theta_{2r}(r-3) = \theta_{2r}(r) \simeq 0$ for $r \equiv 7 \pmod{8}$, $\theta_{2r}(r-2) = \theta_{2r}(r) \simeq 0$ for $r \equiv 6 \pmod{8}$, and $\theta_{2r}(r-1) = \theta_{2r}(r) \simeq 0$ for $r \equiv 3$, 5 (mod 8). Combining these identities with the theorem, we obtain the following corollary which extends Theorem 3.1 of Kosiński [2] from the stably parallelisable case to the appropriate degree of parallelisability below.

COROLLARY. If M is a closed 2r-manifold, then $I(M) \simeq 0$ in each of the following cases:

- (a) M is (r 1)-connected and r-parallelisable,
- (b) M is (r-2)-connected and (r-1)-parallelisable,

where
$$r \equiv 3, 5, 6, 7 \pmod{8}$$
,

- (c) M is (r-3)-connected and (r-2)-parallelisable, where $r \equiv 6$, 7 (mod 8),
- (d) M is (r-4)-connected and (r-3)-parallelisable, where $r \equiv 7 \pmod{8}$.

Received June 23, 1975.

Michigan Math. J. 23 (1976).

Proof of the theorem. For $k \ge [m/2] + 1$, M is a homotopy sphere and $I(M) \simeq 0 \simeq \theta_m(k)$.

For m = 2r and k = r the obstruction to r-parallelisability of an (r-1)-connected 2r-manifold M is a well defined element $\hat{\alpha} \in H^r(M; \pi_{r-1}(SO))$. By Theorem 10 of Wall [5], $I(M) \simeq 0$ for $\hat{\alpha} \equiv 0 \pmod{2}$ and $I(M) = \theta_{2r}(r-1)$ for $\hat{\alpha} \not\equiv 0 \pmod{2}$, and so if M is r-parallelisable, $\hat{\alpha} = 0$ when $I(M) \simeq 0 \simeq \theta_{2r}(r)$.

Excluding the cases above, M is χ -equivalent to a k-connected manifold N, by surgeries of type (k+1, m-k). Since M is k-parallelisable, the surgeries exist by Wall [4] for m=2r+1 and k=r, and by Milnor [3] for the other cases. Thus N is χ -equivalent to M, by surgeries of type (m-k, k+1), and a manifold L is defined from N \times I by attaching (m-k)-handles to the boundary component N \times $\{1\}$ by the surgery embeddings $S^{m-k-1} \times D^{k+1} \to N$. Adding the handles performs surgery on the boundary, and so the boundary of L consists of the disjoint union of M and N. Since N is k-connected and $m-k-1 \geq k$, L is also k-connected.

Suppose $\Sigma \in I(M)$ with a diffeomorphism $f : M \to M \# \Sigma$. From the disjoint union of L and $\Sigma \times I$, the boundary connected sum $L + (\Sigma \times I)$ is formed by taking the connected sum $M \# (\Sigma \times \{1\})$ of M and the boundary component $\Sigma \times \{1\}$. $L + (\Sigma \times I)$ is k-connected and its boundary is the disjoint union of N, $M \# \Sigma$, and Σ . A manifold W is now formed by glueing L to $L + (\Sigma \times I)$ by the identity map $N \to N$ and the diffeomorphism $f : M \to M \# \Sigma$. This manifold W has boundary Σ , and it easily follows that $H_1(W) \simeq \pi_1(W) \simeq \mathbb{Z}$ with $H_i(W) \simeq 0$ for $2 \le i \le k$. Now killing $\pi_1(W) \simeq \mathbb{Z}$ by surgery, which does not affect $\pi_2(W)$, \cdots , $\pi_k(W)$, gives the required k-connected manifold with boundary Σ . The surgery exists by Theorem 3 of Milnor [3] since W is orientable and so 1-parallelisable.

REFERENCES

- 1. A. Brender, *Inertial and bordism properties of spheres*. Proc. Amer. Math. Soc. 27 (1971), 209-212.
- 2. A. Kosiński, On the inertia group of π -manifolds. Amer. J. Math. 89 (1967), 227-248
- 3. J. Milnor, A procedure for killing homotopy groups of differentiable manifolds. Proc. Sympos. Pure Math., Vol. III, pp. 39-55. American Mathematical Society, Providence, R.I., 1961.
- 4. C. T. C. Wall, Killing the middle homotopy groups of odd dimensional manifolds. Trans. Amer. Math. Soc. 103 (1962), 421-433.
- 5. ——, Classification problems in differential topology. VI. Classification of (s 1)-connected (2s + 1)-manifolds. Topology 6 (1967), 273-296.

Department of Pure Mathematics The University of Birmingham Birmingham, B15 2TT, England