SMOOTH S1-MANIFOLDS IN THE HOMOTOPY TYPE OF CP3

Italo Jose Dejter

0. INTRODUCTION

Four years ago T. Petrie [6] conjectured that if X is a closed, smooth, 2n-dimensional homotopy $\mathbb{C}P^n$ that admits a nontrivial action of S^1 , and if $h: X \to \mathbb{C}P^n$ is a homotopy equivalence, then h preserves Pontrjagin classes.

In the present paper we prove the conjecture for the case n = 3:

THEOREM 0.1. Let X be a closed, smooth S^1 -manifold such that $X^{S^1} \neq X$, and let $f: X \to \mathbb{C}P^3$ be a homotopy equivalence. Then

$$f^* \hat{\mathcal{A}}(\mathbb{C}P^3) = \hat{\mathcal{A}}(|X|),$$

where |X| denotes the underlying smooth manifold of X,

$$\hat{\mathcal{A}}(|X|) = (x_i/2) (\sinh x_i/2)^{-1} \in H^*(|X|; \mathbb{Q}),$$

and the elementary symmetric functions of the x_i^2 give the Pontrjagin classes of |X|. In particular, f preserves the Pontrjagin classes of |X|.

Furthermore, a theorem of D. Montgomery and C. T. Yang [5] implies that there is a bijective application

P: $\mathbb{Z} \to \{ \text{diffeomorphism classes of smooth manifolds homotopy equivalent to } \mathbb{C}P^3 \}$ such that, for every $\alpha \in \mathbb{Z}$,

$$p_1(P(\alpha)) = (24\alpha + 4) z^2$$
,

where p_1 is the first Pontrjagin class and z is a generator of $H^2(\mathbb{C}P^3)$.

THEOREM 0.2. A closed smooth S^1 manifold X, homotopy-equivalent to $\mathbb{C}P^3$ and such that $X^{S^1} \neq X$, is diffeomorphic to $\mathbb{C}P^3$.

Theorem 0.1 follows from Theorem 2.1, as indicated subsequently. This is intimately related to the proof of Theorem 1.3, which completely determines the rational torsion-free equivariant K-theory of X.

1. EQUIVARIANT COHOMOLOGIES

Let G be a compact abelian Lie group that is topologically cyclic, in other words, such that there exists a dense generator g in G. Let R(G) be the representation ring of G. Let Z be a closed, smooth G-manifold such that $Z^G \neq Z$, and let $\hat{K}_G^*(Z)$ be the quotient of the equivariant K-theory $K_G^*(Z)$ by its R(G)-torsion.

Received May 27, 1975.

Michigan Math. J. 23 (1976).

We assume $K_G^*(Z^G) \neq \emptyset$. Then the R(G)-homomorphism

$$\mathbf{i}_{\mathbf{Z}}^{*} \colon \hat{\mathbf{K}}_{\mathbf{G}}^{*}(\mathbf{Z}) \to \mathbf{K}_{\mathbf{G}}^{*}(\mathbf{Z}^{\mathbf{G}})$$

induced by the inclusion $i_Z\colon Z^G\to Z$ is a monomorphism, by the Atiyah-Segal localization theorem [6, page 109], and the induced homomorphism (where F is the field of fractions of R(G))

(1.1a)
$$i_Z^* \otimes 1_F : \hat{K}_G^*(Z) \otimes F \to K_G^*(Z^G) \otimes F$$

is an isomorphism. For simplicity of exposition, we consider $\hat{K}_G^*(Z)$ as an R(G)-subalgebra of $K_G^*(Z^G)$, that is, we identify $K_G^*(Z)$ with its image under i_Z^* ; thus $\hat{K}_G^*(Z) \otimes F$ is not only a submodule of $K_G^*(Z^G) \otimes F$, but it also coincides with it.

If Z is simply connected and the tangent bundle τZ of Z admits a spin^c structure [6, page 117], let

(1.2)
$$\operatorname{Id}_{G}^{Z} \colon \hat{K}_{G}^{*}(Z) \to R(G)$$

be the R(G)-module homomorphism defined as the composition

$$\hat{K}_{G}^{*}(Z) \xrightarrow{\psi} K_{G}^{*}(\tau Z) \xrightarrow{Ind} R(G),$$

where ψ is the Thom isomorphism of [6, page 119] and Ind is the Atiyah-Singer index homomorphism [1].

According to [6, page 123], Id_G^Z has an algebraic extension R(G) module homomorphism that we denote by

(1.3)
$$\operatorname{Ed}_{G}^{Z}: K_{G}^{*}(Z^{G}) \to F,$$

and such that, if $\{Z_i^G\}_{i=0}^{\ell-1}$ is the set of components of Z^G , then

(1.4)
$$\operatorname{Ed}_{G}^{Z} = \operatorname{tr} \left[\bigoplus_{i=0}^{\ell-1} \operatorname{Ed}_{i} \right],$$

where $\operatorname{Ed}_{i}: K_{G}^{*}(Z_{i}^{G}) \to F$ are R(G)-module homomorphisms. If $G = S^{1}$, let

(1.5)
$$h^*(\cdot) = \hat{K}_{S1}^*(\cdot) \otimes \mathbb{Q}$$

and

$$(1.6) R = R(S1) \otimes Q.$$

(See the universal coefficient theorem (U.C.T.) of [4].) Let

(1.7)
$$\Lambda = h^*(Z)$$
, $\Theta = h^*(Z^{S^1})$, $Id_{\Lambda} = Id_{S^1}^Z \otimes 1_R$, $Ed_{\Lambda} = Ed_{S^1}^Z \otimes 1_R$.

THEOREM 1.1. Let Γ be a Λ -submodule of Θ such that $\operatorname{Ed}_{\Lambda}(\Gamma) \subset R$. Then $\Gamma = \Lambda$.

Proof. Let $\gamma \in \Gamma$. Define $f \in \text{Hom}_{R}(\Lambda, R)$ by

$$f(x) = Ed_{\Lambda}(x\gamma)$$
.

By the U.C.T. of [4], there exists a unique element $\lambda \in \Lambda$ such that

$$f(x) = Id_{\Lambda}(x_{\lambda}) = Ed_{\Lambda}(x_{\lambda}).$$

Thus $\mathrm{Ed}_{\Lambda}[x(\lambda-\gamma)]=0$ for every $x\in\Lambda.$ On the other hand, Ed_{Λ} also defines a nondegenerate bilinear form

$$\Theta \otimes F = \Lambda \otimes F \rightarrow Hom_F (\Lambda \otimes F, F)$$

(see (1.1a)). Thus $\lambda = \gamma$.

We recall that an S^1 -linear $\mathbb{C}P^n$ is a smooth S^1 -manifold Y with underlying manifold $\mathbb{C}P^n$ and such that the action of S^1 over Y is given by

$$t \circ [z] = [w_0; \dots; w_n],$$

where $t \in S^1$, $[z] = [z_0; \cdots; z_n]$, and $w_i = t^{a_i} z_i$ for $i = 0, \cdots$, n (with the usual complex operations). We write

(1.8)
$$Y = Y(a_0, \dots, a_n)$$
.

A closed smooth S^l -manifold, homotopy-equivalent to $\mathbb{C}P^n$ (usually called an S^l -homotopy- $\mathbb{C}P^n$), is said to be S^l -exotic if it is not an S^l -linear $\mathbb{C}P^n$.

THEOREM 1.2. If a closed smooth S^1 -manifold X is homotopy equivalent to $\mathbb{C}P^n$, where $n \leq 3$, and if $X^{S^1} \neq X$, then there exists either an S^1 -linear $\mathbb{C}P^n$ (see (1.8)), which we denote by Z_0 , or an S^1 -exotic $\mathbb{C}P^3$ of the only known type [4], denoted by Z_1 ; in either case, there exists an R-algebra-isomorphism

(1.9)
$$\omega : h^*(Z_j^{S^1}) \to h^*(X_j^{S^1}),$$

where j = 0 or 1, such that

$$(1.10) \qquad \qquad \omega[h^*(Z_j)] \subset h^*(X)$$

and

$$(1.11) \qquad \qquad [(\operatorname{Ed}_{S^{1}}^{Z_{j}} \otimes 1_{R}) \circ \omega^{-1}][h^{*}(X)] \subset R.$$

The proof of Theorem 1.2 is carried out in Sections 3 and 4 for the two different possible situations j = 0, 1.

The following is an immediate corollary of Theorems 1.1 and 1.2.

THEOREM 1.3. If X is a closed, smooth S^1 -manifold, homotopy-equivalent to $\mathbb{C}P^n$, where $n \leq 3$, and such that $X^{S^1} \neq X$, then $\hat{K}^*_{S^1}(X) \otimes \mathbb{Q}$ is the rational $\hat{K}^*_{S^1}$ of either an S^1 -linear $\mathbb{C}P^n$ or an S^1 -exotic $\mathbb{C}P^3$ as in [4].

2. THE DIFFERENTIAL STRUCTURE

Let X be a closed, smooth S^1 -manifold in the homotopy type of $\mathbb{C}P^n$, such that $X^{S^1} \neq X$. The set of fixed points X^{S^1} is the disjoint union [2]

(2.1)
$$X^{S^1} = \sum_{i=0}^{\ell-1} X_i$$

of the fixed-point set components X_i , such that X_i is a cohomology $\mathbb{C}P^{k_i}$ and

(2.2)
$$\sum_{i=0}^{\ell-1} (k_i + 1) = n+1.$$

Let η be the equivariant Hopf bundle over X [6, page 132], and let $\nu_X X_i$ be the normal S^1 -bundle of X_i in X. Then there are integers x_{ij} and a_i such that as complex S^1 -modules, for $x_i \in X_i$

(2.3)
$$(\nu_X X_i)_{x_i} = \sum_{j=1}^{n-k_i} t^{x_{ij}}$$
 and $(\eta \mid X_i)_{x_i} = t^{a_i}$.

The exponents a_i are distinct, and they are determined, up to translation by a common integer [6, page 132]. We shall assume throughout that $a_0 = 0$.

We observe that

$$R(S^1)[\eta]/(I) \subset \hat{K}_{S^1}^*(X),$$

where $I = \prod_{i=0}^{\ell-1} (\eta - t^{a_i})^{k_i+1} \in R(S^1)[\eta].$

Let $\phi: R(S^1)[\eta] \to \hat{K}_{S^1}^*(X)$ be the composition

$$R(S^1)\left[\eta\right] \,\rightarrow\, R(S^1)\left[\eta\right]/(I) \,\subset\, \hat{K}_{S^1}^*(X)\,.$$

For some positive integer h, let j_{α} (α = 1, ..., h) be an integer such that $0 \le j_{\alpha} < \ell$, and such that in $\{j_1, ..., j_h\}$ there are at most $k_{j_{\alpha}} + 1$ distinct appearances of j_{α} , for each α = 1, ..., h. We write

(2.4)
$$\psi_{j_1,\dots,j_h}(t) = (\operatorname{Id}_{S^l}^X) \circ \phi \left[\prod_{j=1}^h (\eta - t^{a_{j_\alpha}})^{-1} \right] \in R(S^l).$$

We point out the following generalizations of [6, Part II, Lemmas 2.1 and 2.3 and Corollary 2.4], from [6, Part I, Proposition 5.2].

(2.5)
$$\psi_{i}(t) = \left[\prod_{j \neq i} (1 - t^{a_{i} - a_{j}})^{k_{j} + 1} \right] \left[\prod_{j=1}^{n - k_{i}} (1 - t^{x_{i} j})^{-1} \right] \in R(S^{1})$$

(up to units), and then

(2.5a)
$$\psi_i(1) = \pm 1$$
,

which implies that

(2.6)
$$\prod_{j \neq i} |a_i - a_j|^{k_j + 1} = \prod_{j=1}^{n - k_i} |x_{ij}|$$

and

(2.6a) g.c.d. {
$$|a_i - a_j|$$
; $j = 0, \dots, \ell - 1$; $j \neq i$ } = g.c.d. { $|x_{ij}|$; $j = 1, \dots, n - k_i$ }.

The numerical value of the last expression is independent of i (i = 0, \cdots , ℓ - 1).

We say that the action on X is S^1 -quasi-linear if for every i such that $0 \le i < \ell$,

(2.7)
$$\{|x_{ij}|; j = 1, \dots, n - k_i\} = \{|a_j - a_i| \text{ repeated } k_j + 1 \text{ times, } j \neq i\},$$

(where, in the right hand side, $j = 0, \dots, \ell - 1$), or equivalently by (2.5), $\psi_i(t) = \pm t^{N_i}$, where $N_i \in \mathbb{Z}$. Otherwise the action is said to be S^1 -quasi-exotic.

[6, Part I, Proposition 5.2] implies that if for i \neq j, k_i , $k_j \leq$ 1, then for some $\lambda \in \mathbb{Z}$,

(2.8)
$$\psi_{ij}(t) = (1 - t^{a_i^{-a_j}})^{-1} [\psi_i(t) + t^{\lambda} \psi_j(t)] \in R(S^1)$$
 (up to units).

Together with Theorem 1.2, we prove in Sections 3 and 4 the following result. THEOREM 2.1. $\operatorname{Id}_{S^1}^X(\eta^k)(1) = \pm \operatorname{Id}_{S^1}^Y(\mathscr{H}^k)(1)$, where

$$Y = Y(a_i \text{ repeated } k_i + 1 \text{ times } (0 < i < \ell))$$

(see (1.8)), and where \mathcal{H} is the equivariant Hopf bundle over Y.

Proof of Theorem 0.1. The proof is obtained from Theorem 2.1, in the same way as the one given for the case where X^{S^1} is isolated, in [6, Part II, Corollary 2.12].

Remark 2.2. [6, Part I, Proposition 5.2] implies, with the notation of the present section, that, if X^{S^1} is isolated, then

(2.9)
$$Id_{S^{1}}^{X}(u(\eta)) = \sum_{i=0}^{\ell-1} u(t^{a_{i}}) t^{\lambda_{i}} \prod_{j=1}^{n-k_{i}} (1 - t^{x_{i}j})^{-1} \in R(S^{1}),$$

where $u(\eta) \in R(S^1)[\eta]/(I) \subset \hat{K}_{S^1}^*(X)$ and the exponents λ_i are integers. Compare with [4, Part II, Section 10].

When necessary, we shall make use of the distinction λ_i = λ_i^X and ψ_{j_1,\dots,j_h} = ψ_{j_1,\dots,j_h}^X .

3. THE QUASI-LINEAR ACTIONS (2.7)

PROPOSITION 3.1. The statements of Theorems 1.2 and 2.1 are true for any n>0, provided that X is S^1 -quasi-linear (see (2.7)) and X^{S^1} is isolated. More specifically, in this case there exists an S^1 -linear $\mathbb{C}P^n$, denoted by Z_0 , such that formulas (1.9), (1.10), (1.11) hold for j=0.

Proof. We consider here the Remark 2.2. First, observe from $\psi_{ij} \in R$ (i \neq j) (see (2.8) and (2.9)) that there exists $\epsilon = \pm 1$ such that

$$\prod_{\substack{j \neq i \\ j = 0, \dots, n}} (a_i - a_j) = \varepsilon \prod_{j=1, \dots, n-k_i} x_{ij}$$

for $i = 0, 1, \dots, n$. (This observation implies already Theorem 2.1 in the present case.)

Let Y be as in Theorem 2.1. By [6, page 130], the exponents λ_i^Y are null. Assume that λ_0^X is also zero. Now, if n>2,

$$\varepsilon \psi_{0ij}^{X} - \psi_{0ij}^{Y} \in R(S^{1})$$

for every i and j such that i \neq j and i, j \neq 0, implies that there exists k \in Z such that λ_j^X = ka_j , so that

$$\varepsilon \operatorname{Id}_{S^{1}}^{X} (\eta^{-k}) = \operatorname{Id}_{S^{1}}^{Y} (1).$$

This implies the statement.

In the remainder of this section and in Section 4, we complete the proof of the results stated in Sections 1 and 2.

PROPOSITION 3.2. Assume that either n = 3 and $X^{\hbox{S}^1}$ is nonisolated, or that n < 3. Then X is $\hbox{S}^1\text{-quasi-linear.}$

Proof. Consider the case $n = \ell = 3$ and $(k_0, k_1, k_2) = (1, 0, 0)$ (see (2.1) and (2.2)).

If $\psi_0 \neq \pm t^N$ for every N \in **Z**, we see from (2.5) and (2.6) that the assumption $x_{0j} | a_j$ for j = 1, 2 gives a contradiction; therefore we may assume x_{01} , $x_{02} | a_2$, which implies that $a_1 | a_2$. By (2.6a),

g. c. d.
$$(|x_{01}|, |x_{02}|) = g. c. d. (|a_1|, |a_2|) = |a_1|.$$

Since $|x_{01}| \neq |x_{02}|$, we may assume

$$|a_2| = |a_1|pq$$
 and $\{|x_{0i}/a_1|\} = \{p, q\}$,

where p and q are coprimes greater than 1. Then

$$|a_2 - a_1| = |a_1|(pq \pm 1)$$
.

Since $\psi_{02} \in \mathbb{R}$, we can assume $|x_{21}| = kp$, and if k > 1, then $|x_{22}| = k'p$, where (k, k') = 1, and $|x_{02}| = q$, so that (2.6) gives a contradiction; if k = 1, then $|x_{22}| = k'q$, and if k' > 1, then $|x_{23}| = k'q$, so that (2.6) again gives a contradiction, as in the case k' = 1.

If $\psi_1 \neq \pm t^N$ for every N \in Z, then by (2.5) and symmetry we may assume either

(i)
$$x_{11} | a_1$$
; x_{12} , $x_{13} | a_2 - a_1$, or

(ii)
$$x_{11}$$
, x_{12} , x_{13} | a_2 - a_1 , or

(iii) x_{11} , x_{12} , $x_{13} \mid a_1$.

(Observe that (iv) x_{11} , $x_{12} \mid a_1$; $x_{13} \mid a_1 - a_2$ contradicts $\psi_1 \neq \pm t^N$.)

Then, by (2.6) and (2.6a), there are mutually coprime numbers $\,p_1>1,\,\,p_2>1,\,\,p_3\geq 1,\,\,{\rm such}$ that

for (i) and (ii),
$$|a_2 - a_1| = |a_1| \prod p_j$$
, $\{|x_{ij}/a_1|\} = \{p_j\}$,

for (iii),
$$|a_1| = |a_2 - a_1| \prod p_i$$
, $\{|x_{ij}/(a_2 - a_1)|\} = \{p_i p_j; i \neq j\}$.

In particular, $\psi_1 \neq \pm t^N$ implies that either $a_1 \mid a_2 - a_1$ or $a_2 - a_1 \mid a_1$. Since a similar conclusion would arise if $\psi_2 \neq \pm t^N$, that is, if either $a_2 \mid a_2 - a_1$ or $a_2 - a_1 \mid a_2$, we see that (i) or (ii) implies $\psi_2 = \pm t^N$, and therefore $\{ \mid x_{2i} \mid \} = \{ \mid a_2 \mid, \mid a_2 \mid, \mid a_2 - a_1 \mid \}$. Then $\psi_{12} \in R$ gives a contradiction.

Recall that if $\psi_0 \neq \pm t^N$, then either $a_1 \mid a_2$ or $a_2 \mid a_1$. This observation and (iii) imply $\{\mid x_{0i} \mid \} = \{\mid a_i \mid \}$. Then $\psi_{01} \in R$ gives again a contradiction. Similarly for $\psi_2 \neq \pm t^N$.

Remark 3.3. When $n \le 3$ and X is S^1 -quasi-linear, then [6, Part I, Proposition 5.2] implies Theorem 2.1 and 1.2.

For example, if $\ell=3$ and $(k_0\,,\,k_1\,,\,k_2)=(1,\,0,\,0)$, we can assume $\epsilon_j=a_j/x_{0j}$, for $j=1,\,2$. Then $\psi_{00}\in R(S^1)$ implies $\left<\,z_0+\epsilon_j\,\xi_{0j}\,,\,[X_0]\,\right>=0$, where z_0 is the first Chern class of $\eta\,|\,X_0$ (as a vector bundle in the nonequivariant sense) and the various ξ_{0j} are the formal roots of the total Chern class of the direct sum of the components of $\nu\,|\,X_0$ with real S^1 -representation t^{x_0j} , and $[X_0]$ is the orientation class of X_0 . It turns out that there exists $\mu_j\in \mathbb{Z}$ such that

$$\pm t^{N_i} \psi_{00i} = (t^{\mu j} - 3t^{aj} + 2)(1 - t^{aj})^{-2} \in R(S^1),$$

for i, j = 1, 2 (i \neq j), which only happens when $\mu_j = 3a_j$. This implies our claims.

If $\ell=2$ and $(k_0, k_1)=(1, 1)$, then $\langle z_0, [X_0] \rangle = \langle a_1, [X_1] \rangle$ (where z_1 is the first Chern class of $\eta \mid X_1$ and $[X_1]$ is the orientation class of X_1), because there is an isomorphism $(\iota_{X_i})_2 \colon H_2(X_i) \to H_2(|H|)$ with $(\iota_{X_i})_2 [X_i] = z^2 \cap [|X|]$. Then $\psi_{01} \in R(S^1)$ implies $x_{01} x_{02} = x_{11} x_{22}$, and $\psi_{00j} \in R(S^1)$ for j=1, 2 implies our claims.

If $\ell=2$ and $(k_0, k_1)=(2, 0)$, then $(\iota_{X_0})_4\colon H_4(X_0)\to H_4(|X|)$ is an isomorphism given by $(\iota_{X_0})_4[X_0]=\pm z\cap [|X|]$. Since X_0 is of codimension 2 in |X|, we can extend $\nu_{|X|}|X_0$ to a bundle ν over X such that

$$(\iota_{X_0})^2(c_1(\nu)) = c_1(\nu_{|X|} X_0)$$
 and $(\iota_{X_0})_4[X_0] = \pm c_1(\nu) \cap [|X|].$

Then, $p_1(X_0) = (24\alpha + 3)z_0^2$ can be substituted in $\mathscr{A}(X_0) = 1 - p_1(X_0)/24 + \cdots$, and by means of $\psi_{00} \in R(S^1)$ and $\psi_{000} \in R(S^1)$ we get our claims.

According to Section 3, to prove the results stated in Sections 1 and 2 it is enough to complete their proofs under the following assumption.

Let n = 3, let X^{S^1} be isolated, and let X be S^1 -quasi-exotic (see (2.7)). (4.1) Without loss of generality, we can assume $\psi_0 \neq \pm t^m$ for every $m \in \mathbb{Z}$ (see (2.4)).

PROPOSITION 4.1. There is exactly one a_i that is divisible by none of the x_{0j} , for j = 1, 2, 3.

Proof. To prove that at least one a_i is not divisible by any of the x_{0j} , for j=1, 2, 3, we assume to the contrary that each a_i is divisible by some x_{0j} . By symmetry, we consider three cases:

(i)
$$x_{03} | a_1, a_2; x_{01} | a_3;$$
 (ii) $x_{03} | a_1, a_2, a_3,$ (iii) $x_{0i} | a_i$ for $i = 1, 2, 3$.

(iii) and (2.6) imply $\psi_0(t) = \pm t^N$, a contradiction. By (2.6), each x_{0j} divides some a_i . This observation, symmetry, and the recent rejection of (iii) allow us to assume, for (i), that $x_{02} \mid a_3$, and for (ii), that x_{01} , $x_{02} \mid a_3$. Under these assumptions, we see that (ii) is a particular case of (i). Moreover, (2.6) implies $x_{03} \mid a_j$, $x_{0k} \mid a_3$, for j=1 and 2, k=1 and 2. Then (2.6a) implies $(a_1, a_2) = x_{03}$; replacing t by $t^{x_{03}}$, we may assume $x_{03} = 1$, $(a_1, a_2) = 1$, and $|x_{0j}| = b_j |a_1 a_2|$ for j=1, 2. Again by (2.6), $|a_3| = b_1 b_2 |a_1 a_2|$, so that (because $\psi_0 \in R$) we may assume $|a_2| = 1$ and $(b_1, b_2) = 1$, and because $\psi_0 \neq \pm t^N$, we see that $b_1 > 1$ and $b_2 > 1$; therefore $\psi_{03} \in R$ and (2.6) give a contradiction.

To prove the rest of the statement, assume that a_1 and a_2 are not divisible by any of the x_{0j} . Then $\psi_{03} \in R$ implies that a_1 - a_3 and a_2 - a_3 are not divisible by any of the x_{3j} , and

(*)
$$\{ |\mathbf{x}_{0j}| \} = \{ |\mathbf{x}_{3j}| \}.$$

On the other hand, it is easy to see the existence of the decompositions

$$|x_{01}| = m p_3 p_2 q_1$$
, $|x_{02}| = m p_3 p_1 q_2$, $|x_{03}| = m p_1 p_2 q_3$

into positive factors. Then our present assumption says that $|a_3| = m pq$, where $p = p_1 p_2 p_3$ and $q = q_0 q_1 q_2 q_3$. Because of (2.6) we have the relation $a_1 a_2 = m^2 p$. Because of (2.6a), $|a_1| = mp'$ and $|a_2| = mp''$, where p'p'' = p. Therefore, (*) implies

$$(p''q\pm 1)(p'q\pm 1) = 1,$$

which is possible only if $|a_3| = 2 |a_1| = 2 |a_2|$, which in turn is absurd.

COROLLARY 4.1a. We can assume

$$x_{0j} \nmid a_1 \text{ for } j = 1, 2, 3, x_{01}, x_{02} \mid a_2, x_{03} \mid a_3,$$

and write

$$|x_{01}| = \gamma p$$
, $|x_{02}| = \gamma q$, $|a_2| = \gamma pq\alpha$, $|a_3| = |x_{03}|\beta$,

where p and q are positive coprimes and α , β , $\gamma > 0$.

PROPOSITION 4.2. (a) $\alpha = \beta = 1$.

(b)
$$a_1 | x_{01}, x_{02}, x_{03}$$
.

- (c) p > 1, q > 1.
- (d) $\psi_2 \neq \pm t^N$, for every $N \in \mathbb{Z}$.

Proof. In the first place, observe that (2.6) implies

$$\gamma = |a_1| \alpha \beta$$
,

and (2.5) implies that the common zeros of $1-t^{\left|\mathbf{x}_{01}\right|}$ and $1-t^{\left|\mathbf{x}_{02}\right|}$ are the zeros of $1-t^{\gamma}$. Because of these facts together with $\psi_{0}\neq\pm t^{N}$, we see that either (i) $\gamma\mid a_{1}$, or (ii) $\gamma\mid a_{3}$. We shall prove the proposition for each of these two situations.

(i) $\gamma \mid a_1$. Here (a) and (c) hold. If $a_1 \nmid x_{03}$, by $\psi_{02} \in R$ and (2.6), we can assume

$$\{|x_{2i}|\} = \{|a_1|p, |a_1|q, (pq \pm 1) | a_1 pq \pm x_{03}|\},$$

which is possible only if $a_1 pq \pm x_{03} = \pm 1$; therefore $\psi_{12} \in R$ and (2.6) give

$$\{|x_{1i}|\} = \{|a_1|, |a_1|, pq \pm 1\},\$$

which is possible only if $a_1 \pm x_{03} = \pm 1$, which is absurd. This proves (b), and $\psi_{02} \in \mathbb{R}$ justifies (d).

(ii) $\gamma \mid a_3$. Here $a_1 \alpha \mid x_{01}$, x_{02} , x_{03} . It follows, by (2.6a), that $\alpha = 1$; therefore (b) holds. To verify (c), let us assume that to the contrary p = 1. Then $\psi_{03} \in \mathbb{R}$ and (2.6) shows that

$$\{ |x_{3i}/a_1| \} = \{ k\beta, k'\beta, k''(\beta x \pm 1) x \},$$

where $x = |x_{03}/a_1|$, and $kk'k'' = |q \pm x|$, which is possible only if x = 1, and this contradicts $\psi_0 \neq \pm t^N$. This proves (c), and $\psi_{02} \in R$ justifies (d), thus allowing us to verify that $\beta = 1$ by means of the fact that (b) holds at the component X_2 , in the following way: By (b) at X_0 , $\delta' = |a_3 a_1^{-1} \beta^{-1}| \in \mathbb{Z}$. If $\beta > 1$, then

g. c. d. (
$$\beta$$
pq, $\beta \mid pq \pm \delta' \mid$)

can be determined to be the g.c.d. of two of $b_j = |a_j - a_2|/|a_1|$ for $j \neq 2$. This only happens if the third b_j , that is, $\beta pq \pm 1$, is equal to 1, absurd.

PROPOSITION 4.3. Let $\delta \in \mathbb{Z}$ be determined by

$$|a_1 \delta| = |a_3|$$
 and $|a_1| |\delta - pq| = |a_3 - a_2|$.

Then $|\delta - pq| = 1$, so that we can write

$$\varepsilon_0 a_1 = |a_1| \varepsilon$$
, $\varepsilon_0 a_2 = |a_1| pq$, $\varepsilon_0 a_3 = |a_1| (pq + \varepsilon')$,

where ε_0 , ε , $\varepsilon' = \pm 1$ and

$$\{|x_{0i}/a_1|\} = \{p, q, pq + \epsilon'\}, \{|x_{2i}/a_1|\} = \{p, q, pq - \epsilon\}.$$

Proof. Part (b) of Proposition 4.2 applied to $\psi_2 \neq \pm t^N$ and the remark below (2.6a) imply $|\delta - pq| = 1$. The rest comes from $\psi_{02} \in \mathbb{R}$.

Subsequently, we shall make use of Section 5, in which we find a polynomial expression and properties of the element

(4.3a)
$$\phi_{p,q}(t) = (1 - t^{pq})(1 - t)(1 - t^p)^{-1}(1 - t^q)^{-1} \in R(S^1).$$

PROPOSITION 4.4. (i) $\varepsilon = \varepsilon'$.

(ii)
$$\{|\mathbf{x}_{1j}|\} = \{|\mathbf{x}_{2j}|\}, \{|\mathbf{x}_{0j}|\} = \{|\mathbf{x}_{3j}|\}.$$

(iii)
$$\Pi x_{1j} = -\Pi x_{2j}$$
, $\Pi x_{0j} = -\Pi x_{3j}$.

Proof. These conclusions are obtained by means of $\psi_{12} \in \mathbb{R}$, $\psi_{03} \in \mathbb{R}$, Proposition 4.3, Corollary 5.5, and the fact that the numerator in (2.8) for the data of Proposition 4.3 necessarily takes the form $\phi_{p,q} - t^{\lambda} \phi_{p',q'}$ for some integers λ , p' > 0, q' > 0 such that (p', q') = 1.

PROPOSITION 4.5. We can assume, if necessary by permuting the subindexing of the fixed-point set components X_i , that

$$a_1 = |a_1|, \quad a_2 = |a_1| pq, \quad a_3 = |a_1| (pq + 1).$$

Then there exists an orientation class (see the Thom isomorphism of [6, page 119], or Section 1)

$$\partial_{S^1}^X \in K_{S^1}^*(\tau X)$$

such that for every $u \in K_{S1}^*(X)$ with (see (1.1))

$$i_{X}^{*}(u) = (u_{1}, u_{2}, u_{3}, u_{4}) \in K_{S^{1}}^{*}(X^{S^{1}}) = \prod_{j=0}^{3} K_{S^{1}}^{*}(X_{i})$$

there exists $\varepsilon_0 = \pm 1$ such that, if $\sigma = t^{a_i}$,

$$\epsilon_0 \operatorname{Ind} (\partial_{S^1}^X \mathbf{u}) (t) \\
= (1 - \sigma^p)^{-1} (1 - \sigma^q)^{-1} [(1 - \sigma^{pq+1})^{-1} (\mathbf{u}_3 - \mathbf{u}_0) - (\sigma - \sigma^{pq})^{-1} (\mathbf{u}_2 - \mathbf{u}_1)].$$

(Theorem 2.1 will follow.)

Proof. We assume for simplicity that $a_1 = 1$. As in Proposition 4.4, (iii), by means of $\psi_{ij} \in R$ for $i \neq j$, we get relations of sign among the integers x_{ij} that permit us to obtain the following formula for the Index, where $\delta_{S^1}^X = \psi(1) \in K_{S^1}^*(\tau X)$ is the orientation class of Section 1.

$$\varepsilon_0 \operatorname{Ind}(\delta_{S^1}^X u)$$

=
$$(1 - t^p)^{-1} (1 - t^q)^{-1} [(1 - t^{pq+1})^{-1} (t^{\lambda_3} u_3 - t^{\lambda_0} u_0) - (1 - t^{pq-1})^{-1} (t^{\lambda_2} u_2 - t^{\lambda_1} u_1)],$$

where the exponents λ_i are integers. (This implies Theorem 2.1.) Moreover,

$$pq + 1 \mid \lambda_3 - \lambda_0$$
, $pq - 1 \mid \lambda_2 - \lambda_1$, and $(pq + 1)^{-1} (\lambda_3 - \lambda_0) = (pq - 1)^{-1} (\lambda_2 - \lambda_1)$.

We use $\operatorname{Ind}(\delta_{S^1}^X \, \eta^k \, t^\ell) \, \epsilon \, R$ for integers k and ℓ such that

$$\lambda_0 + \ell = 0$$
 and $\lambda_3 + k(pq + 1) + \ell = 0$

to conclude $\lambda_1+k+\ell=\lambda_2+kpq+\ell$. Then $\operatorname{Ind}(\delta_{S^1}^X\eta^{k+1}t^\ell)\in R$ shows that $\lambda_1+k+\ell=-1$. Since

$$\partial_{S^1}^X = \eta^k t^{\ell} \delta_{S^1}^X \in K_{S^1}^*(\tau X)$$

is also an orientation class, the Proposition is proved.

PROPOSITION 4.6. Theorem 1.2 holds with j = 1 when X is S^1 -quasi-exotic. Proof. Consider the R-module homomorphism

$$f: h^*(X) \rightarrow R$$

given by $f(u) = (u_1 - u_2)(\sigma - \sigma^{pq})^{-1}$. By the U.C.T. of [4], we have an epimorphism

$$\Psi$$
: (X) \rightarrow Hom_R (h*(X), R)

given by $\Psi(u)[v] = \operatorname{Ind}(\partial_{S^1}^X uv)$. Therefore, there exists $\gamma \in h^*(X)$ such that $\Psi(\gamma) = f$. Comparing f and Ψ (see Proposition 4.5), we find that if $i_X^*(\gamma) = (\gamma_0, \gamma_1, \gamma_2, \gamma_3)$, then $\gamma_0 = \gamma_3 = 0$ and $\gamma_1 = \gamma_2 = (1 - \sigma^p)(1 - \sigma^p)$.

On the other hand, [6] gives explicitly an example of an S^1 -exotic $\mathbb{C}P^3$ (we denote it by Z_1), whose equivariant K-theory as an $R(S^1)$ algebra is

$$K_{S^1}^*(Z_1) = R(S^1)[\eta, \eta^{-1}, \gamma]/J$$
,

where J is the ideal generated by the elements

$$(\eta - \sigma)(\eta - \sigma^{\rm pq}), \quad \gamma^2 - \gamma(1 - \sigma^{\rm p})(1 - \sigma^{\rm q}), \quad (\eta - 1)(\eta - \sigma^{\rm pq+1}) + \phi_{\rm p,q}(\sigma)\gamma\eta \quad ({\rm see} \ (4.3a)).$$

If $Z_1^{S^1} = \sum_{i=0}^3 Z_{1,i}$ is the union of the isolated fixed points, then the Atiyah-Segal localization theorem [6, page 109] implies that $i_{Z_1}^* K_{S^1}^*(Z_1)$ is generated as a submodule of

$$K_{S^1}^*(Z_1^{S^1}) = \prod_{i=0}^3 K_{S^1}^*(Z_{1,i}),$$

by $i_{Z_1}^*(\gamma)$, $i_{Z_1}^*(\eta)$, and $i_{Z_1}^*(\eta^{-1})$, with the same coordinates as those of $i_X^*(\gamma)$, $i_X^*(\eta)$, and $i_X^*(\eta^{-1})$, respectively. These facts imply the existence of an R-algebra homomorphism

$$ω: h^*(Z_1^{S^1}) \to h^*(X^{S^1})$$

such that $\omega(h^*(Z_1))$ is the R-subalgebra of $h^*(X)$ generated by η , η^{-1} , and γ .

The preceding conclusions together with Proposition 4.5 applied to X and to \mathbf{Z}_1 imply the statement.

Remark. Theorems 1.1, 1.2, and 1.3 can be extended to smooth torus actions, as can be seen in [3].

5. APPENDIX. THE POLYNOMIAL STRUCTURE OF $\phi_{p,q}$ (4.3a)

LEMMA 5.1. Let p and q be coprimes greater than 1. Then, there exists a unique pair of nonnegative integers m and n such that

$$-mp + nq = 1, \quad m < q, \quad n < q.$$

LEMMA 5.2. If ϵ = $\pm 1,$ there exists exactly one pair of nonnegative integers m_{ϵ} and n_{ϵ} such that

$$m_{\varepsilon} p + n_{\varepsilon} q = pq - p - q + \varepsilon$$
.

Proof. For $\varepsilon = \pm 1$, we define

$$m_{\varepsilon} = -\varepsilon m - 1 + (1/2)q(1 + \varepsilon),$$

 $n_{\varepsilon} = \varepsilon n - 1 + (1/2)p(1 - \varepsilon).$

THEOREM 5.3. We have the equation $\phi_{p,q} = \sum_{a \in C_1} t^a - \sum_{b \in C_{-1}} t^{b+1}$, where

$$C_{\epsilon} = \left\{ jp + kq; \ 0 \le j \le m_{\epsilon}; \ 0 \le k \le n_{\epsilon} \right\} \quad \text{for } \epsilon = \pm 1.$$

Moreover, the elements of C $_1$ \cup {b + 1, b \in C $_{-1}$ } are pairwise distinct integers.

A proof of Theorem 5.3 is given in [3].

Example 5.4. We illustrate Theorem 5.3.

The sets C_1 and C_{-1} can be arranged as matrices, partially superposed. For example, let p=7 and q=10. Observe the arrangement

obtained by restriction from the matrix $\{a_{jk}, 0 \le j, k\}$ defined by $a_{jk} = j \cdot 10 + k \cdot 7$. Then C_1 (respectively, C_{-1}) is the maximal submatrix of (**) with vertex (p-1)(q-1) = 54 (respectively, (p-1)(q-1) - 2 = 52). This method, applied to different selections of p and q, produces quite different pairs (C_1, C_{-1}) .

COROLLARY 5.5. If $\epsilon = \pm 1$ and if p, q, p', q' are integers greater than zero such that (p, q) = (p', q') = 1, {p, q} \neq {p', q'}, and p'q' = pq + \alpha, where $|\alpha| \leq 2$, then

$$1 - t^{pq+\epsilon} \nmid \phi_{p',q'} - t^{\lambda} \phi_{p,q}$$
, for any $\lambda \in \mathbb{Z}$.

The proof of Corollary 5.5 is given in [3].

REFERENCES

- 1. M. F. Atiyah and I. M. Singer, The index of elliptic operators. I. Ann. of Math. (2) 87 (1968), 484-530.
- 2. G. E. Bredon, *Introduction to compact transformation groups*. Academic Press, New York, 1972.
- 3. I. J. Dejter, Smooth G-manifolds in a homotopy type and G-transversality to ${\bf CP^n}$. Dissertation, Rutgers University, 1975.
- 4. W. Iberkleid and T. Petrie, *Smooth* S^1 -manifolds. Lecture Notes, Springer-Verlag, New York (to appear).
- 5. D. Montgomery and C. T. Yang, *Differentiable actions on homotopy seven spheres*. *II.* Proc. Conf. on Transformation Groups (New Orleans, La., 1967), pp. 125-134. Springer-Verlag, New York, 1968.
- 6. T. Petrie, Smooth S¹ actions on homotopy complex projective spaces and related topics. Bull. Amer. Math. Soc. 78 (1972), 105-153.

Instituto de Ciências Matemáticas de São Carlos Universidade de São Paulo, 13.560-São Carlos-(sp); Brazil