SMOOTH S!-MANIFOLDS IN THE HOMOTOPY TYPE OF CP3
Italo Jose Dejter

0. INTRODUCTION

Four years ago T. Petrie [6] conjectured that if X is a closed, smooth, 2n-
dimensional homotopy CP™ that admits a nontrivial action of S!, and if h: X — €P™
is a homotopy equivalence, then h preservves Pontrjagin classes.

In the present paper we prove the conjecture for the case n = 3:

1
THEOREM 0.1. Lef X be a closed, smooth Sl-manifold such that X5 # X, and
let f: X — CP3 be a homotopy equivalence. Then

* Z(CP3) = A(]|X]),
where |X| denotes the undevlying smooth manifold of X,
A(X]) = (x;,/2) (sinh x;/2)"! € HY(|X]|; @),
and the elementary symmetric functions of the xiz give the Pontrjagin classes of

|X|. Inparticular, £ presevves the Pontvjagin classes of |X|.
Furthermore, a theorem of D. Montgomery and C. T. Yang [5] implies that there
is a bijective application

P:Z - {diffeomorphism classes of smooth manifolds homotopy equivalent to CP3}

such that, for every o € Z,
p,(P(a)) = (24a +4) 22,

where p, is the first Pontrjagin class and z is a generator of H2(CP3).
THEOREM 0.2. A closed smooth S! manifold X, homotopy-equivalent to CP3
1
and such that XS  # X, is diffeomovphic to CP3 .

Theorem 0.1 follows from Theorem 2.1, as indicated subsequently. This is inti-
mately related to the proof of Theorem 1.3, which completely determines the rational
torsion-free equivariant K-theory of X. ‘

1. EQUIVARIANT COHOMOLOGIES

Let G be a compact abelian Lie group that is topologically cyclic, in other
words, such that there exists a dense generator g in G. Let R(G) be the repre-
sentation ring of G. Let Z be a closed, smooth G-manifold such that ZG # Z, and

let ﬁE(Z) be the quotient of the equivariant K-theory K"(‘;(Z) by its R(G)-torsion.
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We assume K&(ZG) # @. Then the R(G)-homomorphism

K mk oy L nk (G

(1.1) iy K§(Z) = KE(Z™)

induced by the inclusion iz: ZCG — Z is a monomorphism, by the Atiyah-Segal local-
ization theorem [6, page 109], and the induced homomorphism (where F is the field
of fractions of R(G))

(1.1a) iy @ 1:: KEZ)R®F - KEEZO®F

is an isomorphism. For simplicity of exposition, we consider K&(Z) as an R(G)-
subalgebra of K&(ZG), that is, we identify K&(Z) with its image under i%; thus
K&(Z) ® F is not only a submodule of K&(ZC) ® F, but it also coincides with it.

If Z is simply connected and the tangent bundle 7Z of Z admits a spin€® struc-
ture [6, page 117], let

(1.2) 1d4: KE(2) — R(G)
be the R(G)-module homomorphism defined as the composition

R%(z) ¥ xi(rz) 24 R(G),

where ¢ is the Thom isomorphism of [6, page 119] and Ind is the Atiyah-Singer in-
dex homomorphism [1].

According to [6, page 123], Idé has an algebraic extension R(G) module homo-
morphism that we denote by

(1.3) EdZ: Kz — F,

and such that, if {Z?}f‘;é is the set of components of 7G , then

7 £-1
(1.4) Edg =tr| @ Eq; |,
i=0
where Ed;: KE(Z?) — F are R(G)-module homomorphisms. ¥ G = 8!, let
(1.5) h*(-) = Ksl( IR Q
and
(1.6) R=REH®Aa.

(See the universal coefficient theorem (U.C.T.) of [4].) Let
1
(1.7 A =h%2z), ©=h%z5), 1Id, = Id§‘1® 1, Edy = Ed§1® 1, -

THEOREM 1.1. Let T be a A-submodule of @ such that Edp(T) CR. Then
r'=A.

Proof. Let y € T. Define f € Hompg (A, R) by

f(x) = Edp(xy) .
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By the U.C.T. of [4], there exists a unique element A € A such that
f(x) = Idp(x)) = Edp(xy).

Thus Edp [x(x - ¥)] = 0 for every x € A. On the other hand, Edp also defines a
nondegenerate bilinear form

®RF = AQF — Homp (A® F, F)

(see (1.1a)). Thus X = y.

We recall that an S!-linear CP" is a smooth S!-manifold Y with underlying
manifold CP™ and such that the action of S! over Y is given by

to[z] = [wo; -5 wal,

where t € St, [z] =[zq; -*-; 2], and w; =taiz]-L for i =0, ---, n (with the usual
complex operations). We write
(1.8) Y = Y(ag, >+, ap) .
A closed smooth S! -manifold, homotopy equivalent to CP (usually called an
S1l-homotopy-CPY), is said to be Sl-exotic if it is not an Sl-linear CP™.
THEOREM 1.2. Ifa closed smooth Sl-manifold X is homotopy equivalent to

CP", wheve n < 3, and if XS # X, then theve exists either an S1-linear CP™ (see
(1.8)), which we denote by Z, , or an Sl-exotic CP3 of the only known type [4], de-
noted by Zy; in eithev case, there exists an R-algebra-isomorphism

(1.9) w: h*(Z?l ) — h*(xsl),

where j =0 or 1, such that

(1.10) w[h*(Z;)] € h*(X)
and
(1.11) [(Ed?f@ 1g) cw-1][h*(X)] c R.

The proof of Theorem 1.2 is carried out in Sections 3 and 4 for the two different
possible situations j = 0, 1.

The following is an immediate corollary of Theorems 1.1 and 1.2.
THEOREM 1.3. If X isa closed smooth Sl-mamjfold homotopy-equivalent to
CP™, where n < 3, and such that XS # X, then K*l(X) X Q is the vational K*1 of

either an S -linear CP™ or an S'-exotic CP> as in [4].

2. THE DIFFERENTIAL STRUCTURE

Let X be a closed, smooth S1-manifold in the homotopy type of CP", such that
1 1
XS" # X. The set of fixed points X° is the disjoint union [2]
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0-1
(2.1) xS = _Z) X.

of the fixed-point set components X;, such that X; is a cohomology (IZPki and

£-1

(2.2) 27 (k;+1) =n+1.
i=0

Le: n be the equivariant Hopf bundle over X [6, page 132}, and let v X; be the
normal S!-pundle of X; in X. Then there are integers Xij and a; such that as com-
plex Sl-modules, for x; € X;

n—ki

(2.3) (vXXi)Xi = 2 t°H and (n IXi)Xi =t
j=1

aj

The exponents a; are distinct, and they are determined, up to translation by a com-
mon integer [6, page 132]. We shall assume throughout that ag = 0.

We observe that
RS [71/(M) c K1),

a; kitl
where I = Hf;ol (n-thH)*' e R(Sl)[n].
Let ¢: R(S)[7] — K¥,(X) be the composition

RSN [1] = REH [n]/0) c K} (X).

For some positive integer h, let j, (@ =1, -, h) be an integer such that
0 <ja <4, and such that in {jl [T jh} there are at most kja + 1 distinct appear-

ances of j,, for each @ =1, -+, h. We write
h as
X Jay -1 1
(2.4) Wiy ® = @dg) oo TIL (g -t ™)™ | eRr(sY).
j=1

We point out the following generalizations of [6, Part II, Lemmas 2.1 and 2.3 and
Corollary 2.4], from [6, Part I, Proposition 5.2].

n-ki
(2.5) Yilt) = [ O (1 - ¢33 }[ I @-fiyt ] € R(sh)
j#i j=1

(up to units), and then
(2.5a) Y1) = %1,

which implies that
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n-—ki
(2.6) II |a - aj|k3”rl = I |xi]
j#i j=1

and

(2.6a) g.c.d.{|a; - ajl; j=0, >, 0-1;j#1i} = g.c.d.{'xij];j =1, -, n-k;}.

The numerical value of the last expression is independent of i (i =0, -+, £ - 1).

We say that the action on X is Sl—quasz'-linear if for every i such that
0<i<y,
(2.7) {lxij|; j=1, -, n-k;} = {Iaj - a;| repeated k;+1 times, j # i},

N

(where, in the right hand side, j =0, -+, £ - 1), or equivalently by (2.5), y¥;(t) =+t 1,
where N; € Z. Otherwise the action is said to be Sl-quasi-exotic.

[6, Part I, Proposition 5.2] implies that if for i # j, k;, kj < 1, then for some
A€EZ, '

a.-a-

(2.8) Piit) = (1 -t 1) 1 [gi(t) + 0 ¢5®] € RS (up to units) .

Together with Theorem 1.2, we prove in Sections 3 and 4 the following result.
THEOREM 2.1. 1dJ,(n")(1) = £1d}, (#*)(1), where

Y = Y(a; vepeated k;+ 1 times (0 <i < 2))

(see (1.8)), and wheve H is the equivariant Hopf bundle over Y.
Proof of Theorvem 0.1. The proof is obtained from Theorem 2.1, in the same

1
way as the one given for the case where XS is isolated, in [6, Part II, Corollary
2.12].

Remark 2.2.[6, Part I, Proposition 5.2] implies, with the notation of the present

section, that, if XS is isolated, then

£-1 n-kj
(2.9) 1a¥i(um) = 2 u@) e I (1 - &)1 e RGsY,
i=0 j=1

where u(n) € R(S1)[]/(1) C ﬁ;l(X) and the exponents A; are integers. Compare
with [4, Part II, Section 10].

When necessary, we shall make use of the distinction A; = 7@{ and

— X
Y3l in

%

jl'.“’jh

3. THE QUASI-LINEAR ACTIONS (2.7)

PROPOSITION 3.1. The statements of Theovems 1.2 and 2.1 ave tvue for any

n > 0, provided that X is S!-quasi-linear (see (2.7)) and XSl is isolated. Move
specifically, in this case theve exists an Sl-linear CP™, denoted by Zq, such that
Jormulas (1.9), (1.10), (1.11) kold for j = 0.
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Proof. We consider here the Remark 2.2. First, observe from 11/ e R (i#j)
(see (2.8) and (2.9)) that there exists € = +1 such that

l—.[ (3.1 - aJ) =€ H X.
j-'ﬁi j:l,...’n_k.
j:O,...'n

for i =0, 1, ---, n. (This observation implies already Theorem 2.1 in the present
case.)

Let Y be as in Theorem 2.1. By [6, page 130], the exponents AiY are null. As-
sume that ?L?f is also zero. Now, if n > 2,

X Y
€Voi5 - Vo5 € R(S')

for every i and j such that i # j and i, j # 0, implies that there exists k € Z such
that 7t = ka so that

eldy (n7X) = 1} (1).

This implies the statement.
In the remainder of this section and in Section 4, we complete the proof of the
results stated in Sections 1 and 2.
1
PROPOSITION 3.2. Assume that either n =3 and X°> is nonisolated, ov that
n < 3. Then X is S!-quasi-linear.

Proof. Consider the case n= £ =3 and (kg, k;, k) =(1, 0, 0) (see (2.1) and
(2.2)).

If ¢y # +tN for every N € Z, we see from (2.5) and (2.6) that the assumption
X0j Ia.J for j =1, 2 gives a contradiction; therefore we may assume xg;, Xg2 I a,
which implies that a, | a,. By (2.6a),

g.c.d.(|xo1 ], |x02]) = g-c.d.(|ar], |az]) = |ay].
Since |xq;| # |%02|, we may assume
laz| = |ai[pa  and  {[x0i/a1|} = {p, a},
where p and q are coprimes greater than 1. Then
lay - a;| = |a)[(pax1).

Since ¥, € R, we can assume [x21 [ = kp, and if k > 1, then |x22| =k'p,
where (k, k') = 1, and |xg,| = q, so that (2.6) gives a contradiction; if k = 1, then
|x,5| =k'q, and if k' > 1, then |x,3| =k'q, so that (2.6) again gives a contradiction,
as in the case k' =1.

If ¥, # +tN for every N € Z, then by (2.5) and symmetry we may assume
either

(@) x;y |a;; %12, %13 ]a, -2a;, or

(i) %11, %12, X33 |2z - 2, or
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(ili) x11, X125 X13 | a1 -
(Observe that (iv) x1;, X132 | a1; %13 ]2 - ap contradicts ¥ # +tN.)

Then, by (2.6) and (2.6a), there are mutually coprime numbers p; > 1, p, > 1,
p3 > 1, such that

for (i) and (ii), |a, - a;| = |2 | Hpj, {Ixij/all} = {pj},

for (iii), |a;| = |ay - a;| IIp;, {|x;5/az - 2))|} = {psp;; i # i}.

In particular, ¥, # +tN implies that either aj | a, -aj; or a; - a; [ a;. Since a
similar conclusion would arise if ¥, # itN, that is, if either ap | az - aj or
a - a] ] a,, we see that (i) or (ii) implies ¥ = itN, and therefore
{IXZi[ = 1]az], |a2|, lay - a; |} Then ¢, € R gives a contradiction.

Recall that if ¥ # +tN, then either a; I a or ap | aj . This observation and
(iii) imply {|xg;]} = {|a;|}. Then ¢4, € R gives again a contradiction. Similarly
for Y, # +tN.

Remark 3.3. When n < 3 and X is Sl-quasi-linear, then [6, Part I, Proposi-
tion 5.2] implies Theorem 2.1 and 1.2.

For example, if £ =3 and (kg, ki, kp) = (1, 0, 0), we can assume &; = aj /xoj,
for j =1, 2. Then ¥qq € R(S!) implies {zq +&;&0;, [Xol) =0, where z is the
first Chern class of 17| X (as a vector bundle in the nonequivariant sense) and the
various & j are the formal roots of the total Chern class of the direct sum of the

components of ¥ || X, with real S!-representation t 03, and [X] is the orienta-
tion class of X,. It turns out that there exists u; € Z such that

+t iy = (4 - 8T+ 2) (1 - £%9)72 € R(sY),

for i, j =1, 2 (i # j), which only happens when ;= 3aj. This implies our claims.

If £=2 and (ko, k;) = (1, 1), then {zg, [Xo]) = {a;, [X;]) (where z, is the
first Chern class of 7 | X; and [X;] is the orientation class of Xj), because there is
an isomorphism (tx.)z: Hp(X;) — H,(|H|) with (LXi)Z [X.]1=22n [|X]|]. Then

Yo1 € R(S!) implies xo) X0z = X11 X22, and Ygp; € R(S1) for j =1, 2 implies our
claims.

If ¢=2 and (ko, k;) = (2, 0), then (tx )4: Hy(Xp) — Hy(|X]) is an isomorphism
given by (LXO)4[XO] =4z N [|X|]. Since X, is of codimension 2 in |X|, we can
extend v|x| Xy to abundle v over X such that

(LXO)Z(Cl(V)) = 01( v |X| Xo) and (LXO)4[X0] = i'Cl(V) N [IXI]
Then, pl(XO) =(24a+ 3) zg can be substituted in J(XO) =1- p;(Xgp)/24 + ---, and by
means of ¥, € R(S!) and ¥, € R(S1) we get our claims.
4. S1-QUASI-EXOTIC HOMOTOPY CP>’S

According to Section 3, to prove the results stated in Sections 1 and 2 it is
enough to complete their proofs under the following assumption.
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1
Let n = 3, let XS be isolated, and let X be Sl-quasi—exotic (see (2.7)).
(4.1) Without loss of generality, we can assume g # +t™ for every m € Z (see

(2.4)).

PROPOSITION 4.1. Theve is exactly one a; that is divisible by none of the X0j>
for i =1, 2, 3.

Proof. To prove that at least one a; is not divisible by any of the X0j, for
i =1, 2, 3, we assume to the contrary that each a; is divisible by some X0j - By
symmetry, we consider three cases:

(1) x03 | a1, az; %01 |a3; (i) x03|a1, az, a3, (iii) xei [a; for i=1, 2, 3.

(iii) and (2.6) imply ¥(t) = +tN, a contradiction. By (2.6), each Xpj divides
some a;. This observation, symmetry, and the recent rejection of (iii) allow us to
assume, for (i), that x¢p | a3, and for (ii), that xq;, Xq2 | a3. Under these assump-
tions, we see that (ii) is a particular case of (i). Moreover, (2.6) implies
x93 | aj, Xok | 23, for =1 and 2, k=1 and 2. Then (2.6a) implies (a;, a,) = Xg3;
replacing t by t %3, we may assume x5 =1, (a;, a,) = 1, and |x0j| = b; |a; a,]
for j =1, 2. Again by (2.6), |asz| =bjbz|ajaz|, so that (because ¥ € R) we may
assume |a2| =1 and (b;, bp) = 1, and because Y # itN, we see that by > 1 and
b, > 1; therefore Y33 € R and (2.6) give a contradiction.

To prove the rest of the statement, assume that a; and a, are not divisible by
any of the x4;. Then ¥ (3 € R implies that a) - a3 and a; - a3 are not divisible by
any of the X33, and

(*) {1x051F = {x35]}.

On the other hand, it is easy to see the existence of the decompositions

|Xo1| = mp3pPz9), Ionl = mp3p;4dz, |X03| = mp];pz4ds3

into positive factors. Then our present assumption says that ]a3| = mpq, where
P=p;P2P3 and q = qpq;q2q3- Because of (2.6) we have the relation a; a, = m%p.
Because of (2.6a), |a1| = mp' and |a2| =mp", where p'p" = p. Therefore, (*)
implies

(p"qx1)(p'qxl) =1,
which is possible only if |as| =2]a;| =2 |a2|, which in turn is absurd.
COROLLARY 4.l1a. We can assume
xoifay for j=1,2,3, Xo1,%02]a2, X03]as,
and write
%01l =0, Ix02| =7, |az] = waa, |az| = [x03(8,

where p and q are positive coprimes and o, B, y > 0.
PROPOSITION 4.2. (a) o =8 =1.

(b) a; |x01, X025 X03-
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(c) p>1, g>1.
(d) Y2 # +tN, for every N € Z.
Proof. In the first place, observe that (2.6) implies

Y = |a1|aB,

and (2.5) implies that the common zeros of 1 - tlXOl l and 1 - tIXOZI are the zeros
of 1 -tY. Because of these facts together with ¢ # +tN | we see that either

i) vy | ay, or (ii) vy ] a3 . We shall prove the proposition for each of these two situ-
ations.

(i) ¥|a;. Here (a) and (c) hold. If a;{x03, by Yoz € R and (2.8), we can
assume

{]x2il} = {]a1lp |a1la, (pa+1) | 2; pq+xos3]},

which is possible only if a; pq + x93 =*1; therefore ¥, € R and (2.6) give

{1z} = {|31|, |a1|,pqi 1},

which is possible only if a; + x93 =41, which is absurd. This proves (b), and
I,DOZ € R justifies (d)

(ii) v|a3. Here aja | x01, X02, X03 - It follows, by (2.6a), that a = 1; there-
fore (b) holds. To verify (c), let us assume that to the contrary p = 1. Then
Y03 € R and (2.6) shows that

{|x3:/2;]} = {kB, k', K"Bx £ 1)x},
where x = |x03 /ay ], and kk'k" = Iqi xl, which is possible only if x = 1, and this
contradicts Yo # +tN. This proves (c), and ¥, € R justifies (d), thus allowing us

to verify that B =1 by means of the fact that (b) holds at the component X3, in the
following way: By (b) at Xy, 0' = |a3 ajlp-1| € z. 1f p> 1, then

g.c.d.(Bpa, B |pa+6'|)

can be determined to be the g.c.d. of two of b; = [aj - a2|/|a1| for j # 2. This
only happens if the third bj, that is, Bpq * 1, is equal to 1, absurd.

PROPOSITION 4.3. Let 6 € Z be determined by
lay 8] = |as|  amd  aj| |6-pal| = Jas - ap].
Then |6 - pql =1, so that we can write
goay = |lajle, e€gap = |aj|pa, eoaz = |a;|(pa+e),
where €g, €, £' =11 and
{1x0;/2, [} = {p, ¢, pa+e'}t, {|x;/a;]} = ip, 0, pa-¢}.

Proof. Part (b) of Proposition 4.2 applied to ¥, # +tN and the remark below
(2.6a) imply |6 - pg| = 1. The rest comes from ¥g, € R.
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.Subsequently, we shall make use of Section 5, in which we find a polynomial ex-
pression and properties of the element

(4.32) $p,qt) = 1 - tPH (A -t) (1 -tP)"1 (1 -1 e RSY).
PROPOSITION 4.4. (i) € = €'
@) {|xg;ld ={Ixz50F {lxe5l} = {Ix3j|}-
(i) x5 =-Ilxp;, IIxg; = - I xs;.

Proof. These conclusions are obtained by means of {1, € R, Yp3 € R, Proposi-
tion 4.3, Corollary 5.5, and the fact that the numerator in (2.8) for the data of Propo-
sition 4.3 necessarily takes the form ¢, 4 - tA ¢p1,q' for some integers A, p >0,

q' > 0 such that (p', q') = 1.

PROPOSITION 4.5. We can assume, if necessary by permuting the subindexing
of the fixed-point set components X;, that

ap = la1], az=laifpa, a3 =lai](pa+1).

Then theve exists an ovientation class (see the Thom isomorphism of [6, page
118}, or Section 1)

X *
asl € Ksl(TX)

such that for every u € K’gl(X) with (see (1.1))
) 3
1;(11) = (ul’ U, Us, 114) € K;1<XS ) = I_I() K;l(xi)

theve exists €y =+1 such that, if 0 = tai,
X
L 7y Ind (aSl 11) (t)
=(1-09)7 -1 - PP (uz-up) - (0 - oPY 7 (uy - up)].

(Theorem 2.1 will follow.)

Proof. We assume for simplicity that a; = 1. As in Proposition 4.4, (iii), by
means of ¥;; € R for i # j, we get relations of sign among the mtegers X that
permit us to obtain the following formula for the Index, where 6 Y(1) € :1 (7X)

is the orientation class of Section 1.
£oInd (63 u)

= (1-tP)-1(1 - ta)-1[(1 - tPaF L)1 (M3, - 1 0ug) - (1 - tPI71) 1 (P2, - My,
where the exponents A; are integers. (This implies Theorem 2.1.) Moreover,

pa+1|x3-2p, pa-1|rz-2;, and (pa+1)"1(a3-20) = (pg- 112 -2x1).
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We usé Ind(tS}S{I n¥td) € R for integers k and ¢ such that
+2=0 and A3+k(pg+1)+2£=0
to conclude Ay +k+ £ =A, +kpq+ £. Then Ind(6>s‘:1 nk*1tl) € R shows that
A +k+€=-1. Since
oy = n*tf o} € K% (1X)

is also an orientation class, the Proposition is proved.
PROPOSITION 4.6. Theovem 1.2 holds with j = 1 when X is Sl-quasi-exotic.

Proof. Consider the R-module homomorphism
f:h*(X) - R
given by f(u) = (u; - w,) (o - oP9)~1 | By the U.C.T. of [4], we have an epimorphism
¥: (X) — Homg (h*(X), R)

given by ¥(u)[v] = Ind(a;(l uv). Therefore, there exists y € h*(X) such that ¥(y) = {.

Comparing f and ¥ (see Proposition 4.5), we find that if i%(y) = (v, ¥, 755 73);
then ¥, =y3 =0 and y; =y, =(1 - ¢P)(1 - oP).

On the“other hand, [6] gives explicitly an example of an S!-exotic CP3 (we de-
note it by Z;), whose equivariant K-theory as an R(S!) algebra is

*

K () = RS, 0, v 13,

where J is the ideal generated by the elements

(n - 0)(n - 6PY), 2% - AL - oP)1-09), (n- D(n-0PI")+¢, (0)yn (see(4.3a),

1 3
If Z? = 21 0 Zl ; is the union of the isolated f1xed pomts then the Atiyah-
Segal localization theorem [6, page 109] implies that 12 (Z ) is generated as a

submodule of
* S
K% (Z)) H K%1(Z1 )

by iy L@, igl(n), and 1’51(1; -1), with the same coordinates as those of i%(y), i%(n),
and i%(n ~1), respectively. These facts imply the existence of an R-algebra homo-
morphism
1 1
w: h¥(23) — h*(x5)
such that w(h*(Z,)) is the R-subalgebra of h*(X) generated by n, 7! , and 7.

The preceding conclusions together with Proposition 4.5 applied to X andto Z 1
imply the statement.
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Remavrk., Theorems 1.1, 1.2, and 1.3 can be extended to smooth torus actions, as
can be seen in [3].
5. APPENDIX. THE POLYNOMIAL STRUCTURE OF $p,q (4.3a)

LEMMA 5.1. Let p and q be coprimes greater than 1. Then, theve exists a
unique paiv of nonnegative integevs m and n such that

-mp +nq = 1, m < q, n <gq.

LEMMA 5.2. If € =1, theve exists exactly one pair of nonnegative integers
mg and ng such that

mgp+n,q =pqg-p-qte.
Proof. For & =+1, we define

-em - 1+ (1/2)q(1 +¢€),

mg

ng =¢en-1+(1/2)p(1 - €).

THEOREM 5.3. We have the equation ¢p,q= Zaecl t? - Ebec_l th, where

Cg = {jp+kq; 0<j<mg; 0<k<ng} fore==+1.

Moreover, the elements of C; U {b+1,beC _1} arve paivwise distinct integers.
A proof of Theorem 5.3 is given in [3].
Example 5.4. We illustrate Theorem 5.3.

The sets C; and C_; can be arranged as matrices, partially superposed. For
example, let p="17 and q = 10. Observe the arrangement

0 T 14 21 28 35 42

10 17 24 31 38 45 52

(%) 20 27 34
30 37 44
40 47 54

obtained by restriction from the matrix {ajc, 0 <j, k} defined by ajx =j-10 +k-17.
Then C; (respectively, C_j) is the maximal submatrix of (**) with vertex

(p - 1)(q - 1) = 54 (respectively, (p - 1)(q - 1) - 2 = 52). This method, applied to
different selections of p and q, produces quite different pairs (Cy, C_1).

COROLLARY 5.5. If e =Xl and if p, 4, p', Q' ave integers greater than zero
such that (p, @) = (p', a') =1, {p, a} # {p', a'}, and p'q' = pa + @, where |a| <2,
then

1- th‘Ls‘r:ppr’q. - t7‘¢p’q, forany X € Z .
The proof of Corollary 5.5 is given in [3].
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