A NOTE ON DIRECT INTEGRALS OF SPECTRAL OPERATORS
Edward A. Azoff

1. INTRODUCTION

It is easy to see that a decomposable operator is normal if and only if almost
all of its direct integrands are normal. The following theorem, stated by T. R. Chow
in [1], provides a corresponding characterization of decomposable spectral opera-
tors.

THEOREM 1.1. Let A be a bounded decomposable operator on the separable
Hilbert space H,

©)
A = SE Als) du(s) .

Then A is spectral if and only if
(i) A(s) is spectral for |-almost every s, with spectval measure E_,
(ii) for each Bovel set B C C, the function S — Eg(B) is measurable on %,
(iii) sup {u - ess sup [IES(B) ”, B a Bovel setin C} <,
(iv) lim(u - ess sup ” N(s)n ””n) = 0, wheve N(s) is the vadical part of A(s).

A gap in Chow’s proof was filled by M. J. J. Lennon in [6]. Lennon also gave
examples to show that the theorem would no longer be true if either of the conditions
(iii) or (iv) were omitted. On the other hand, both Chow and Lennon conjectured that
condition (ii) is redundant. In Section 2 of this note, we establish this conjecture,
essentially by reducing the problem to the (known) case of normal operators. As a
by-product of this technique, we show in Section 3 that every direct integral of spec-
tral operators is in fact a direct sum of spectral operators.

We use the notation established in [6]. In particular, all operators discussed
will be bounded operators acting on separable Hilbert spaces, and we follow
Dixmier’s formulation of direct-integral theory [2]. A complete discussion of spec-
tral operators can be found in [3]. Beyond the basic definitions, the main fact needed
below is the canonical decomposition of spectral operators; this material can be
found in the first four sections of [3].

2. REDUNDANCY OF CONDITION (ii)

The main result to be proved in this section is the following theorem.

THEOREM 2.1. Let s — A(s) be a measuvable field of spectral operators, and
write Eg for the spectrval measure of A(s). Then for each Bovel set B the field
s - E4(B) is measuvable.
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The reason this theorem is not an immediate application of von Neumann’s
measurable-choice principle is that there is no cbvious “countable process” for con-
structing E; from A(s). Our first lemma, which is well known, shows that for
fields of normal operators this is not a problem.

LEMMA 2.2. Theovem 2.1 is true if all the {A(s)} ave normal.

Proof. Since ||A(s)| depends measurably on s, we may assume that the
{A(s)} have norms uniformly bounded by some constant K. For each polynomial p
in z and Z, the field s +— p(A(s), A*(s)) is measurable. If B is a compact subset of
the plane, then there is a sequence {pn} of such polynomials that are uniformly
bounded on {z ]z| <K} and converge pointwise to the characteristic function of B
on {z| |z] <K}. Thus Eg(B) is the weak limit of the p,(A(s), A*(s)), and the field
s — E¢(B) is measurable for each compact B.

Now let # be the collection of subsets B of the plane such that the map
s b E¢(B) is measurable. Clearly £ is closed under countable unions and comple-
mentation. Thus & contains the o-algebra generated by the compact sets. ®

It was shown by J. Wermer [7] that every spectral operator of scalar type is
similar to a normal operator. The following lemma records several observations
that are implicit in Wermer’s proof.

LEMMA 2.3. Let S be a scalar spectral operatorv with spectval measure E.
Then there exists an invertible opevator T in the von Neumann algebra genevated by
S such that TST-! is normal. We always have the inequality |E| < |T| |T-1],
and it is possible to make both |T| and || T-1|| bounded by 2 |E|.

Proof. By Lemma 1 of [7], for each Borel partition 7 = {o; }{., of the plane
and each x € H, we have the relations

1 2 o , )
7oy I < Z Imosl® < alel? =

Set Ay = 27 E(0;)*E(0;). Then Aj is self-adjoint, and it satisfies the condition
Zﬂéﬂz <Ay <4|E|?. Since the unit ball of 2(H) is weakly compact, the A; have
a weak limit point A. Clearly, A continues to satisfy the inequalities

1 > <SA<4 ”E"2 Moreover, since Az E(g) > 0 for each partition 7 refining

4|2
{0, 0¢}, we see that AE(¢) > 0 for every Borel set o.
Set T =A!/2, Then 5 ||1E " < T < 2||E|, so that the last assertion of the

lemma is verified. Also, each E(o) belongs to the second commutant of S. Thus the
{A;} all belong to the von Neumann algebra generated by S, and hence so does T.

Let F(0) = TE(o)T-!. Then F(-) is a spectral measure that is self-adjoint,
since (F(0)x, x) = (AE(¢)T-1x, T-1x) > 0 for each x € H. That TST-! is normal

follows from the equation TST-! = SAdF, and the relation T-1F( - )T =E( -)
shows that [|E[ < [lT] [|T-1]. =
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Now let s — A(s) be a measurable field of spectral operators, and consider the
system of equations

SA(S) S+N,
*
” | s -xuy.

Here all operators except A(s) are unknowns: N is quasi-nilpotent, S and N com-
mute, X and Y are inverses of each other, and L is normal. In view of the pre-
vious lemma and the canonical decomposition of spectral operators, (*) always has
at least one solution. In fact, S and N are uniquely determined by A(s); but in gen-
eral, X and Y are not. By the norm of a solution to (*), we mean the maximum of
norms of the operators involved (including A(s)).

LEMMA 2.4. For each integer K, the set g of s in T for which (*) has a
solution of iorm at most K is measurable. Moveover, theve exist measuvable fields
S(-), N(-), X(-), L(-), Y(-) of solutions to (*) that are bounded on each ZTg.

Proof. Since the measurability of a field is not affected when the field is
changed on a set of measure zero, we may assume that A(s) depends Borel-measur-
ably on s. Also, in view of [2, Proposition 3, page 145], we can restrict attention to
the case where the underlying field of Hilbert spaces is the constant field corre-
sponding to some space Hy.

Let Gk denote the set of 6-tuples (s, S, N, X, L, Y) such that (*¥) holds for
A(s) and constitutes a solution of norm at most K. Since multiplication and adjunc-
tion are Borel maps on bounded subsets of £ (H(), we see that Gk is a Borel set.

By the principle of measurable choice [2, p. 332], 7,(Gg) is measurable, and there
exist measurable fields Sk( - ), Ng( + ), Xi( - ), Lk( ), and Yg( - ) whose common
graph lies in Gi. But because 7;(Gg) coincides with Z, the first statement of the
lemma is established.

Si(s) if se Z;,
Set S(s) = and define N( - ), X( - ), L( - ), and
SK(S) if s € EK\ EK—I:
Y( - ) similarly. This completes the proof. =
Proof of Theorem 2.1. Use the preceding lemma to write A(s) = S(s) + N(s) and
S(s) = X(s) L(s) Y(s), all fields being measurable. Let Fg be the spectral measure of

L(s). Since Eg is also the spectral measure of S(s), and Eg = X(s) F;¥Y(s), an ap-
peal to Lemma 2.2 completes the proof. B

In particular, condition (ii) of Theorem 1.1 is redundant. We close this section
with a variant of Theorem 1.1 that will be useful in Section 3. The norm estimates
in Lemma 2.3 could be used to convert the following proof into a proof of Theorem
1.1.

@
THEOREM 2.5. Let A = S A(s) du(s) be a divect integral of spectral opera-

tors, and choose measuvable fields of opervators as in Lemma 2.4. Then A is spec-
tral if and only if

(i) ess sup [|X(s)| < e,
(ii) ess sup [ Y(s)| <,
(iii) lim ess sup |N(s)»[|1/n =o0.

n
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P’roof Suppose A is spectral. By Lemma 2.3, we can write A=S+ N and
S=T" LT where L is normal. Since every operator-commuting with A commutes
with both S and N, and T belongs to the von Neumann algebra generated by A, all
operators involved are decomposable. In particular {neglecting a set of measure
zero), there exists a uniformly bounded family of solutions to (*). Thus (i) and (ii)
follow from Lemma 2.4, and (iii) follows from the fact that |N"|| = ess sup ||[N(s)".

Conversely, assume (i), (i), and (iii). Note that for each s, the operators L(s)
and A(s) are similar and hence have the same spectrum. Since the norm of a nor-
mal operator is equal to its spectral radius, it follows that |L(s)|| < [|A(s)||. Thus
all the fields constructed in Lemma 2.4 are essentially bounded, and it makes sense

©

to form their direct integrals. Now L = L(s) di(s) is normal, and condition (iii)

®
means that N = S N(s) du(s) is quasi-nilpotent, It follows that A = XLY + N is

spectral. H

3. DIRECT INTEGRALS VERSUS DIRECT SUMS

F. Gilfeather [5] has shown that every direct integral of quasi-nilpotents is a
direct sum of quasi-nilpotents. By applying Theorem 2.5, we can extend his result
to spectral operators.

THEOREM 3.1. Every divect integral of spectrval operators is a direct sum of
spectral operators. ,

@
Proof. Let A = S A(s) du(s) be a direct integral of spectral operators, and

fix a field s + A(s) representing A. Let the fields S( + ), X( - ), N( - ), and Y( - ) be
chosen as in Lemma 2.4. Smce each N(s) is quasi-nilpotent, the sequence of real-
valued functions s +— ||N(s)" ||1 ™ converges pointwise to zero. By Egoroff’s Theo-
rem, we can find a set E C Z of arbitrarily small measure such that convergence is
uniform off E. By taking E a little larger if necessary, we make the fields

s + X(s) and s — Y(s) uniformly bounded off E. Thus, by Theorem 2.5,

S A(s)du(s) is spectral. A standard measure-theoretic exhaustion argument
EC
completes the proof. &

As a particular instance of Theorem 3.1, we mention the fact that every opera-
tor A belonging to a finite von Neumann algebra of type I is a direct sum of spectral

operators. Indeed, A has a direct-integral decomposition A = S A(s)du(s), where
all the {A(s } act on finite-dimensional spaces and hence are spectral The reader

is referred to [4] for a discussion of a larger class of operators to which Theorem
3.1 applies.
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