ON CONJUGACY CLASSES IN
THE TEICHMULLER MODULAR GROUP

Jane Gilman

Let S be a compact Riemann surface of genus g with n punctures, and let
M(g, n) be the Teichmiiller modular group of S. Let A(p, g, n) denote the number of
conjugacy classes of elements of prime order p in M(g, n). The purpose of this pa-
per is to obtain an explicit formula for A(p, g, n) when g > 2. (W.J.Harvey has con-
sidered this problem [1]. He obtained a generating function for A(p, g, 0) in [1], but
he has recently pointed out that his function actually gives the number of conjugacy
classes of subgroups of M(g, 0) of order p and not A(p, g, 0).)

Let |M}-;{[-’p| be the number of distinct (p - 1)-tuples of nonnegative integers
(ny, -, np_p) with

p-1 p-1
22 ng =T and 2 in; = x (mod p),
i=1 i=1

where T is a fixed integer. In Section 1 we obtain a set of invariants for each con-
jugacy class; these invariants make it clear that to compute A(p, g, n) we need to
know |M’.§. pl . In Section 2 we compute IM}pr I, and in Section 3 we compute

A(p, g, n).

1. INVARIANTS FOR A CONJUGACY CLASS

_Let S and S' be compact surfaces of genus g with n punctures, so that
S=S8-Qand S'=8'-Q', where Q and Q' are sets of n points on the compact
surfaces S and S'. Let h and h' be homeomorphisms of S and S', respectively,
whose pth powers are homotopic to the identity.

Definition. The pairs (S, h) and (S', h') are topologically equivalent if there is
a homeomorphism f of S onto S' with fhf-1 ~ h', where ~ denotes homotopy (see
[3]). This is clearly an equivalence relation.

LEMMA 1. (i) The number of conjugacy classes of elements of order p in
M(g, n) is equal to the numbeyr of topological equivalence classes of pairs (S, h),
wheve S is of genus g with n punciures and hP =~ identity.

(ii) For each pair (S, h) there is an equivalent paiv (S', h') in which h'is
conformal.

Proof. Fix a surface S. Given any pair (S', h'), let f be a homeomorphism of
S' onto S. Then (S', h') is topologically equivalent to (S, fh'f~!). Thus, to count
topological equivalence classes we need only consider pairs where the surface is
fixed. But (S, h) is equivalent to (S, h') if and only if h and h' are conjugate in
M(g, n).
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The second statement (ii) is an immediate consequence of the fact that every
element of finite order in M(g, n) has a fixed point in the Teichmiiller Space of S.

To count the number of conjugacy classes, we therefore need only look at topo-
logical equivalence classes in which the homeomorphism is conformal. We want to
describe a set of invariants for these classes:

Let h be a conformal automorphism of S of prime order p. With S, §’ and Q
as before, we see that h extends in a natural way to S. We call the extension h,

also, and we let tr h be the trace of the action of h on the first homology group of S.
Let T =2 - tr h. C.-H. Sah has shown [4] that h has precisely T fixed points on S.
Let Q=1{ay, =+, ant; let P={py, -+, pr} be the fixed points of h; let

PN Q=1{p;, -, pno} let Q- (PN Q ={qy, -, Qn-n,y}; and finally, let

Sg = (S-(PU Q))/<h> be of genus gp. The homeomorphism h permutes in orbits
of length p the points of Q that it does not fix. Thus p divides n - ng. Let
so = (n - ng)/p.

Let Fg be the fundamental group of Sp, and let ¥ be the defining subgroup of
the covering 7: S - (PU Q) — Sp. The group F( has the presentation

(X], ***y Xgotngs Y1, °°°» YT-ng, a1, °°°, &ggs by, =, bgO:
g
(*) 0
X1 Xsgtng¥1 Y T- -ng I [au ] = 1>
i=1
We let X = {x;, -, XSO+nO} and Y = {y;, -, YT-nO}- Since F is a normal sub-

group of Fp, F is the kernel of a homomorphism ¢ of Fo onto Zy, the integers
modulo p. The homomorphism must satisfy

(1) ¢(x;) =0 fori=1, -, 89,
(2) ¢(x;) # 0 for each i greater than sy,
(3) o(yp) # 0 for each i.

Let ker ¢ be the kernel of ¢.

Our aim is to identify h with a unique homomorphism of F; onto Z . Clearly,
h determines F.

LEMMA 2. Let ¢ and ¢ be homomorphisms of Fo onto Z,. Then
ker ¢ = ker { if and only if theve is an integey r with 0 <r <p and ¢ = ry.

Proof. Clearly, ker ¢ = ker ry for each nonzero integer r. Conversely, as-
sume ker ¢ = ker <b Let k = Y(x) for some fixed x in F with ¢(x) = 1. For every
y in Fo, ¢(yx ) = 0. Thus ¢(yx¢)) = 0. Therefore y(y) = ¢(y) ¥(x) o
() = ké(y).

We can identify a given homomorphism ¢ of Fgy onto Zp with a unique homeo-
morphism h¢ and surface S¢ as follows:

Let S be the covering of Sy with defmmg subgroup F = ker ¢, where ¢ satis-
fies (1), (2), and (3) above. Recall that S is the set of equivalence classes of pairs
(p, @), where p is a point on Sp and @ is a curve on Sy from a fixed base point qg
to p. The pair (p, @) is equivalent to the pair (q, B8) if p=q and @B8~! isin F.
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Let [(p, @)] denote the equivalence class of (p, ). The homomorphism ¢ induces a
homeomorphism hd) of § defined by h¢ [(p, @)] =[(p, @ + x)], where x is any element

of Fq for which ¢(x) = 1. The group of cover transformations is generated by h¢
and is isomorphic to Z, .

Since ¢ satisfies (1), (2), and (3), there exist a compact surface S and sets Q
and P of (respectively) n and T points on S such that P N Q contains ng points
and S=S - (PU Q). The homeomorphism h¢ of S is actually conformal, and it ex-
tends to a conformal homeomorphism h¢ of S with h¢(Q) = Q. By construction, h¢
has T fixed points. We denote the restriction of h¢ to S - Q by hg, and we let
S¢ = S - Q.

LEMMA 3. Let (S, h) be a paiv consisting of a compact suvface S of genus g
with n punctures and a conformal homeomorphism h of S of orvder p. Then there
is a unique homomorphism ¢ of F onito Z, such that h =hg and S =S¢.

Proof. Using the same notation as before, we have a covering
mS-(PUQ — So.

We let F be the defining subgroup of this covering, and we assume that F = ker ¢,
where ¢ is a homomorphism of Fg onto Z,. By Lemma 2, F = ker r¢ for all inte-
gers r between 0 and p, but F is not the kernel of any other homeomorphism.
S-PuQ =S and S= S¢ = Sr¢ for all relevant integers r. The (p - 1) covering
transformat1ons h¢, hap, ==+, h(p-1)p are all distinct. Exactly one of them, hy say,

must be the restriction of h to S - (P U Q), since this restriction is a covering
transformation and there are only (p - 1) covering transformations that are not the
identity. Since h and hy agree on S, they must also agree on Sp = S.

Remark. Let r and t be integers between 0 and p. Assume rt = 1 (mod p).
Then h,¢ = (hy)t.

In what follows, ¢ will always be a homomorphism of F; onto Zp, and Fy will
have presentation (*).

Notation. Denoting by l E[ the cardinality of the set E, we associate with ¢ the
two sets of integers

N(¢) = (n;, -, np_l), where n; = l¢-1(1) n X| s
S(¢) = (sg, >+, sp_l), where s; = [¢-1(1) n Y.
Remark. Since ¢ must preserve the defining relation of Fp, we see that
p-1
(4) 22 i(s; +n;) = 0 (mod p).
i=1

Notation. Let (S, h) be any pair satisfying the hypotheses of Lemma 3. We as-
sociate with h the two sets of integers

N(h) = N(¢) and S(h) = S(9),

where ¢ is the homomorphism of Lemma 3 with h = h¢
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Remark. N(h) and S(h) depend upon ¢. If
N(h) = (ny, -, ny.;) and N(hT) = (o, -, n]'p_l) ,

then n, = n;, where x = ri (mod p). The similar statement holds for S(h) and S(h%).

Next we fix one pair (S, h) with T and sg also fixed. There are a finite num-
ber of homomorphisms ¢ of F onto Z, with |¢~1(0) N X| = s. This is true be-
cause from each finitely generated group there are only a finite number of homo-
morphisms to a finite group. Let ¢;, ---, ¢,. be a complete list of all such homo-
morphisms, and let {(Si, hi)} (i=1, -+, r) be the corresponding surfaces and con-
formal automorphisms. (Here h; = h¢i and S; = S¢i). Taking a subset, and renum-

bering if necessary, we may assume that all of these pairs are distinct and none are
topologically equivalent. Note: If ¢; appears in the list, so does r¢;, for each r
(0<r<p-1). Let F;=ker ¢;.

For each pair (S', h'), the symbols S', P', and Q' have the obvious meaning.

LEMMA 4. Let S' be a compact surface of genus g with n punciures., Let h'
be a conformal automorphism of S' of ovder p. Assume 2 - tr h' =T and
|P'n Q’l =ng. Then (S', h') is topologically equivalent to (S;, h;) for some i.

Proof. We let F' be the defining subgroup of the covering
a': S - (Pru)/{n) — 8.

Let 7 be any homeomorphism of §'/<h'> onto §/<h> . We may assume that
7(7'(P')) = 7(P) and that 7(7'(Q") = #(Q). Thus 7 maps S; onto S, and induces an
isomorphism 7, of Fj onto F;. Assume h'=hy . Then o7l is a homomor-
phism of Fy onto Z,, with
n-ng

p

|wor;H) MO n x| =5 =

Thus Y o 'r,;l = ¢; for some i. We can easily see that 7 must lift to a homeomor-
phism 7 of S' - (Q' UP') onto 8; =8; - (P; UQ,), with Th'F-1 ~ h;. The rela-
tions 7(7(Q")) = 7(Q) and 7(7'(P")) = n(P) imply that 7 extends to a map of S' onto
S;, with 7h'7-1 ~ h;.

COROLLARY 1. The number of conjugacy classes of elements h in M(g, n) of

order p with tr h and sq fixed is equal to the number of distinct pairs (S;, h;) that
ave not topologically equivalent.

LEMMA 5. (i) If T > 0, thern (S;, h;) is topologically equivalent to (S hg),
wheve ¢ is a homomovphism of F, onito Zp that sends all hyperbolic generators
to 0.

(ii) If T = 0, all coverings of S, are topologically equivalent.
Proof. Let ¢ and ¥ be homomorphisms of Fy onto Zp. If o is an automor-
phism of Fy with ¢ =y o0, then (Sy, hy) is topologically equivalent to (Sy,, hy).

This follows from basic covering theory, which shows that the homeomorphism of S
that induces ¢ will lift to a homeomorphism of S¢ onto S,’b conjugating hg into hlp.

The proof of Theorem 14 of [1] shows that corresponding to each homomorphism
¢ of Fp onto Z, there is an automorphism o of Fp with the property that ¢oc
and ¢ agree on the nonhyperbolic generators and ¢ oo sends all hyperbolic
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generators to 0 except b;. If T # 0, using the notation of Theorem 14 of [1], we
replace 0 by o oY, where t is the integer satisfying t¢(yT_n0) = -¢(b;) (mod p).

If T=0,1let poo(b;) =r. Let x satisfy rx+1 = 0 (mod p). Let ¢(b;) =1, and
let ¥ agree with ¢ oo on all other generators of Fy. Let 7., 0., and 0 be auto-
morphisms of Fg that fix all generators except a; and by . Let 7x{(a;) =a; and
Ty(by) =bjal. Let 0.(a;) =a;b} and 0.(b) =b;. Let &(a;) =a;b; ajl and
6(b;) =ajl. Then Y0600 .07 =¢00.

THEOREM 1. The conjugacy class of an element h in M(g, n) of prime ovder
p is completely determined by S(h) and N(h).

Proof. Let {(Si, h;)} (i=1, ---, r) be as in the paragraphs preceding Lemma
4. It suffices to show that (S;, h;) is topologically equivalent to (S;, h;) if and only
if N(h;) = N(hj), S(h;) = S(hj), and tr h; = tr h;. But by construction, all of these
coverings have tr h; = 2 - T, and two conformal maps can only be conjugate if they
have the same number of fixed points.

By Lemma 5, if T # 0, we may assume ¢; (i =1, ---, r) sends all hyperbolic
generators to 0. If T =0, the theorem is just Lemma 5 (ii).

Assume (S;, h;) and (Sj, h;) are topologically equivalent, and let 7: S; — S;,
with 7h; 7! ~ hj. Since h; and hj are conformal, we may assume, replacing 7 by
the minimal quasiconformal map in its homotopy class, that 7 h; 1= hj, so that 7
induces an homeomorphism 7 of S, and thus induces an automorphism 7, of Fy
with 7,(F;) = F;. If ¢ = ¢;07,, one can verify that F; =ker . By Lemma 2,
¢j0 T, = k¢; for some integer k. We want to show k = 1. Let x and y be elements
of Fg with ¢;(x) =1 and ¢;(y) = 1. We compute

hi[(p, @)] = 7[(p, @ +x)] = [(F(p), T,(a) + 7,)],
h; 7[(p, @)] = hi[(7(p), T4(@)] = [(T(D), T4(a) +y)],

where p is any point on Sp and @ any curve from qg, the base point, to p. Since
h; 7[(p, @)] = 7hy{(p, @)], 74(x) - y is in the kernel of ¢5. Since ¢;(y) =1,

¢j074(x) = 1. But ¢jo7,(x) =k¢;(x) =1. Thus k =1 and ¢;07, =¢;. Since

7(Qj) = Qj, we see that 7(Pj) = Pj. Thus 7, maps the curves in X onto conjugates
of curves in X and does the same to curves in Y. Since Zp is an abelian group, it
follows that

7' ®) N x| = [(@jer )@ nX| for t=0, -, p-1,

|¢31(t)ﬂY' |(¢j07*)‘l(t)nY| fOrt:l’ ---,p_l.

Thus N(h;) = N(hj) and S(h;) = S(hj).
Conversely, assume ¢; and ¢; are two mappings such that
l:1® n X[ = [¢5') nX| for t=0, -, p-1

and |¢fl(t) nyj = Iqu'l(t) NY| for t=1, ---, p- 1. Corresponding to each pernruta-

tion o of the set {1, ~eey, 8o + no} , there is an automorphism of Fo that maps x;
onto a conjugate of x; (;) and fixes the elements of Y and the hyperbolic generators.
This is clear when we look at the automorphisms of F; generated by the permutations
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{og,41F G=1, -, s0 +ng - 1), where 05 ;11(x;) = X X541 %71, 04 541(x541) = x5,
and 0; ;;)(a) = a for all other generators a of Fy.

Similarly, every permutation of the elements of Y can be obtained, up to con-
jugation, by an automorphism of F,. Since these are type-preserving automor-
phisms, they are induced by homeomorphisms of Sy [2]. Since they do not inter-
change elements of the subgroups generated by X and Y, they extend to homeomor-
phisms of S/(h) and fix 7(Q) and 7(P - Q).

For each integer t with 0 <t < p - 1 and for each k with ¢;(x)) =t, we can
find a k' with ¢;(xk') =t, and thus we can define a permutation ¢ of
{1, -, ng + sof such that ¢, (xk) ¢ (x0 ) for k=1, -+, ny +sy. Similarly, we
can find a permutation v of {1 - ng} such that ¢;(y,,) = $;(Yy (m))- We let
T4 be the automorphism of Fj that maps Xj onto a conjugate of x; () for
k=1, .-, ng+sg and y,, onto a conjugate of y,,) for m=1, -+, T - ng. Let
7 denote the homeomorphism of Sy inducing 74. Then 7 gives the desired homeo-
morphism 7 of §; onto S;, with Th; 7-1 ~ h;.

Remark. J. Nielsen [3, p. 53] has found a set of invariants that describe a topo-
logical equivalence class. They are, of course, equivalent to ours. We can see this
by applying the Reidemeister-Schreier rewriting process to the subgroup F of Fg.
This involves calculations almost as long as the proof of Theorem 1. In this case

we prefer our set of invariants, because by giving condition (4) they make it clear
how to count x(p, g, n).

2. THE COMBINATORIAL PROBLEM

Notation. Let My D be the set of all (p - 1)-tuples of nonnegative integers
(ny, **+, np_y) for which El 1 n; =T. Let MT ,p Pe the set of all elements of
M, for which E 11 in; = x (mod p) whenever x =0, ---, p - 1.

Let N P be the set of all p-tuples of nonnegative integers (ng, -*-, np_l) with
Ep 0 n,=T. Let NT ,p Pe the set of all elements of N ,, for which
Epo in, = x (mod p) whenever x=0, -, p - 1.

It is clear that to compute A(p, g, n) we need to be able to compute IMT pl for
all T and x.

THEOREM 2. Let p be a prime number, and let T and x be integevs. Then
0 if x#0and T=0o0rif T<O,

IM}%,pI - 1 if x=0and T=0,

R-_pT P —l’I-‘T 2) +H(p, T, X) otherwise;

heve
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0 if T# 0 (modp) and T # 1 (mod p),

—% if T =0 (modp) and x # 0 (mod p),

-l+1 if T =0 (modp) and x = 0 (mod p),
H(p, T, x) = P

-{13 if T=1(modp) and x # 0 (mod p),

%-1 if T =1 (mod p) and x = 0 (mod p).

Pyoof. We want to compute |MT pl for arbitrary x. We can identify NT ,p
with Uy 0 MX by identifying (ng, ---, p-l) in NT,p with (n;, -, p-l) in
M7 _ “ng,p We 1dent1fy NT_, ,p With

T-1

ME _
U T 1- z,p U MT -Y,P
z=0

Thus IMJ%’pI = lN)']{:',pI - |N}r§_1,p|. Therefore, to compute |M"§-,p|, we need to
compute IN’%’pI for all x and T.

We shall show that

_1_(p+T—1) .
b T if T # 0 (mod p),
INT,pl_ %(p+$—1)~% if T = 0 (mod p) and x # 0 (mod p),

_1_(p+T—1)_%+1 if T = 0 (mod p) and x = 0 (mod p).

The theorem follows from this.

Assume first that T # 0 (mod p). We shall show that |N’r}’p| = |N§,p| for all x
and y. For any integers a and b, we let f, ;, be the mapping of Z, to 7, given by

sending i into the remainder when ai +b is divided by p. Assume that

a # 0 (mod p), so that a-1 makes sense. Let F map Np ,p toitself according to the
formula

F(Ilo, ) np-l) = (nf(O)’ Ty nf(p—l))'

It is easy to verify that F maps N D to itself and that F in fact maps NT ,p to
N a-l(x-bT)
T,p

If T # 0 (mod p), then for each x we can find a and b such that
a-1(x - bT) = 0 (mod p). Therefore F is a one-to-one map of NT . onto NT P

Thus |N7 [ = |NT | for all p, T, and x if T # O (mod p).
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Clearly, INT,pI = (p +$ -1 ) , since the latter is the number of ways one can

choose T objects from p objects, allowing repetitions. Thus

1/p+T-1
IN){"’P“E(p T )

when T # 0 (mod p).

Assume next that T = 0 (mod p). If x # 0 (mod p), then we can find integers a
and b such that a-1(x - bT) = a-! x = 1 (mod p). Thus INEPJ) = |NT | if x#0
and y # 0. We want to compute |N(r_)E pl. If T=0,clearly INT’pl =1.

If T >0, let S be the set of all p-tuples (ng, *-*, np_;) in N}r}’p with n; # O.
Then N7 =S5 U -+ U Sp-1, but this is not a disjoint union. Note that

|s%] = [N | and [sT 0o ST | = et

T | if the i) are distinct. Thus
_r,p

P
x _ (j+1)
Ngpl = Z D e st ooy
p-1
: X-(i1+"'+i-)
= Z}l 27 (-ptL) . INT—j,p J l + |S}(§ﬂ e ) S);—l ,
J:
where the inner sums extend over all j-tuples (i;, -, ij) with

0<i; < = <iy<p-1.

If j# p,then T - j# 0 (mod p). Thus in the sum on the right-hand side of the equa-
tion all terms except the last are independent of x. The last term is equal to

N}r}'};’p . Thus we can write IN}:;E,pI =y+ INB‘,pI, by repeated application of this

procedure, and y is independent of x. Since |N8’p| =1 and |N’(§,p| =0 for x# 0,
it follows that if x # 0, then [N | =y and [N3 [ =y+1. Since

_(p+T -1\ _
INT,pI_( T )“(p‘l)y+y+1,

we see that

3. THE FORMULA FOR X(p, g, n)
Definition. Let u(p, g, n, T) be the number of conjugacy classes of elements h
in M(g, n) of order p with 2 - tr h = T.
We shall first compute p(p, g, n, T), and from it, A(p, g, n).

THEOREM 3. Let p, g, and n be integers (p a prime and g> 2). If p # 2, let
kg be an integer with 0 <ko<p-1 and ko= 2 - 2g (mod p), and let
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.- [ 2g - (l;?p-_ZSp -1 ]

wheve | ] denotes the greatest-integer function. If p = 2, we let Ko = 0 when
g = 1(mod 2) and kg =2 when g= 0 (mod 2). Let ng be the remainder when n is

divided by p, and let b be the minimum of [(T - ny)/p]| and (n - 0y)/p when it is
positive, and zero otheywise.

b p-1
— X . pP-x
u(p, g, n, T) = 5(;) XZ_)O lMHO+sp.pl lMT-('fioJfSp),p‘I

when p # 2, T = kg (mod p), and 0 < T <Kkg + rp.
w2, g, n T) =b+1

T_%

2 2
In all other cases, u(p, g, n, T) = 0. The value of |M% pl is given in Theo-

rem 2.

Proof. Assume first that p # 2. Let S, §, Q, h, P and other notation be defined
as in Section 1. Recall that gg is the genus of the factor surfaces Sy and S/ (h),

and that g is the genus of S. The Riemann-Hurwitz formula implies that
g = pgo + (p - (T - 2)/2.
If S has an automorphism h of order p, then gy must be an integer. Thus
g - (p- 1)(T - 2)/2 is divisible by p, and this implies that T = 2 - 2g (mod p). An
automorphism of order p on S can have kg + tp fixed points, where

2¢ - (kg - 2)(p - 1)
ogtg[ p(p - 1) ]

The latter inequality follows from the requirement that gg be nonnegative. Thus
p(p, g, n, T) =0 if T# 2 - 2g (mod p) or T > kg + (r + 1)p.

when p =2, (mod 2), and 0 < T < 2g + 2.

Since n - ng must be divisible by p, the possible values for ng are
ng, ng+p, -+, Ny + bp, where b is the minimum of [(T - ny)/p] and (n - ng)/p.
This follows from the fact that iy +bp <n and [y +bp < T. Thus if T <Hy,
u(p, g, n, T) = 0.

Fix T and ng, and suppose n - ng is divisible by p. Assume T =kg+ mp,

where 0 <m <r and ng < T and ng < n with ng = ng (mod p). We want to show
that for these numbers and for each (p - 1)-tuple (n;, ---, np_l) and each p-tuple

(sg, =) Sp—l)’ where sg = (n - ng)/p and
p-1 p-1 p-1
2 s;=n, 2 (nj+s) =T, 2 i(n;+s;) = 0 (modp),
i=0 i=1 i=1

we can construct a surface S of genus g with n punctures, and a homeomorphism h
with 2 - tr h =T, N(h) = (nq, ---, np_l), and S(h) = (sg, -, sp_l).

The Riemann-Hurwitz formula shows that 2g - 2+ T = p(2gg - 2 + T). Thus, if
g > 2, then 2g5-2+T >0, sothat 2g5 - 2+ T +s; > 0. This means that we can
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construct a Fuchsian group F, with the presentation (*) given in Section 1. Let ¢
be the homomorphism of F; onto Zp, with

¢(x1) = ees = ¢(XSO) = O,

¢(Xso+1) == ¢(xso+sl) =1,
¢(xso+n0~sp_l) =t = ¢(Xso+n0) =p-1,
By1) = =+ = olyn,) = 1,

WY1y, ) = = $pn) =P 1.

In Section 1 we saw that corresponding to ¢ we obtain a surface S of genus g
with n punctures and a homeomorphism hg of S with tr hy, N(hg), and S(h¢) as
desired.

Thus, given any (sg, ‘-, 8p-1) and (n;, ***, n,_}) as above, for a fixed T and
ng = n - psg, we can construct a covering. Because each set of 2p - 1 integers de-
termines a distinct conjugacy class, we need only count the ways we can choose these
sets of integers where sy = (n - ng)/p.

We can let (n), -+, n,_;) be any (p - 1)-tuple with 21 1 n; =T - ng. Assume
that Z) 1 in; =y (mod p) Then (sy, '+, sp.1) canbe any (p - 1)-tuple, as long as

Ep s; =ng and E 1 is; = p - y (mod p). For each possible y there are there-

fore ] p| lMstl’1 l poss1b1e choices for (s;, -, s,_)) and (n;, =+, n_)).
Thus, for a fixed n,, we get E 0 |m) ng.p ol - [MED] “no, pl con]ugacy classes. But ng

can be nj +tp, where 0 <t < b This gives the formula for p(p, g, n, T).

The proof for the case p = 2 is the same, except for the analysis of the possible
values of T. In this case the Riemann-Hurwitz formula shows that T can be
kg, kg +4, -, 2g+ 2, where ky =0 if g = 1 (mod 2) and k; =2 if g = 0 (mod 2).
COROLLARY 2. Let p, g, and n be integers (p a prime and g > 2). If p # 2,
let ky be an integev with 0 <ky <p - 1 and ky = 2 - 2g (mod p), and let
[ 28 - (kg - 2)(p
d _[ plp - 1)
=2, let kg =0 when g =1 (mod 2) and ko =2 when g = 0 (mod 2), and let
r =(2g+2 - kg)/4. Let Ny be the remainder of n when divided by p, and let by, be
the minimum of [(kg +yp - ng)/p} and (n - 0y)/p.

If p# 2, then

- 1)
:l, wheve | ]| denotes the greatest-integeyr function. If

r bypl

A-(p}g)n)_E EZ)‘

y=0 s=0 x=0

+sp P l |Mllz::yp-(ﬁ'0+sp),p(
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The value of IM%’p[ is given in Theovem 2.

If p =2, let by be the minimum of [(kg+ 4y - 19)/2] and (n - fy)/2 when both
numbevs ave positive, and zevo otherwise; then

A2, g n) = 2 (by+1).
y=0

Proof. A(p, g, n) = 22 u(p, g, n, T), the sum being taken over all possible values
of T.
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