HP-DERIVATIVES OF BLASCHKE PRODUCTS
C. N. Linden

1. INTRODUCTION

A Blaschke product B is a function defined by a formula

(1.1) B(z, {a,}) = z™ II n ( in ~ 2 ) ,

an# 0 'anl 1 - zan

where 27, (1 - |an|) < oo, Ianl <1 for all n, and m is the number of zeros in the
sequence {a,}. D. Protas [4] has shown that if, in addition,

(1.2) S fag ) =8 <

n

for some @ in (0, 1/2), then B' € HP, that is, the integrals

27 _

(1.3) S |B'(rei®, {a_})|[Pd6 (0<r<1)
0

are bounded when 0 <p <1 - a.

The work of O. Frostman [2, Theorem IX] shows that (1.2) with @ > 1/2 does
not necessarily imply the boundedness of the integrals (1.3) on 0 <r <1 for all
positive p.

In this paper we extend the theorem of Protas to higher-order derivatives as
follows, and give some relevant counterexamples.

THEOREM 1. Let k be a natuval number, and let {an} be a Blaschke sequence
such that (1.2) holds for some « in (0, 1—{—_}_—1) . Then, if m =(1 - a)/k, there is a
constant C(m, k) such that

(1.4) SZW

0

B(k}reif, {a 1™
B(reif, {a,})

dé < C(m, kK)S (1/2<r<1).

Hence B(X) ¢ HP for each p in (0, m].

At each subsequent appearance, the symbol C denotes a positive constant de-
pending either explicitly or implicitly on the parameters indicated. However the
value of C may vary from one appearance io the next.
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2. THE PROOF OF THEOREM 1
A proof of Theorem 1 in the case k =1 is included in Protas’s proof of the
boundedness of the integrals (1.3) when 0 <r < 1. In order to prove the generalisa-
tion, we proceed by induction, and suppose that the conclusion of Theorem 1 is valid

for k=1, 2, -+, v. Let

(2.1)

1
+2°

and put m = 1- We suppose that r is fixed in (1/2, 1).

o
v+1°

For convenience, we shall write B(z) in place of B(z, {a,}). Then the log-
arithmic derivative of B is given by the formula

B'(z) _ 1- rrzl
Blz) o (1-2za )a,-2)’

where r = ]anl. Thus the principle of induction can be used to establish the
formula

v+1 k
B(V+].)(z) B 1 B (Z)
(2.2) O 27 23 C(ny, n,, =+, ny, v) 11 5
k=2 j=1
5 ZV) (1-rd ﬁ.j v!
n oo (1-za )@, - z)¥ I’
where, for each k, the sum 2 is taken over all k- -tuples (nl, np, *--, nk) for
which n; +nz + - +nx=v +1 and nj > 1 for 1 <j < k. The coefficients
C(ny, np, -+, ng, v) are integers, not necessarlly nonzero.

Let S;(z) and Sy(z) denote respectively the two sums that make up the right-
hand side of (2.2). Then S)(z) is a linear combination of terms of the form

T(z) = H BB( ()Z) 2<k<v+1),
j=1

where n1+n2+ *+ng=v+1andnj>1 for 1 <j<k. Hence nj< v for
j=1, 2, ---, k, and Holder’s inequality implies

g3 (reif) | ™

k
27 ) 2 j
S | T(reif)|™ a0 < II S v do ’
0 0 B(re'’)

j=1

where tj= (v + 1)/nj. But then

njmt; = m(v+1) = 1-a,

and since (1.4) is assumed to be valid for k =1, 2, ---, p, and since Z) =1, we

1
j=1 tJ
obtain the inequality
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k

27
S |T(reif)[" a6 < II c(m, t;, nys
0] i=1
J

1/t
J = C(m, ny, nyp, -+, m, V)S.

The inequality 0 < m < 1 now leads to

2T .
(2.3) S |s (reif)|™do < C(m, v)s.
0
In considering the sum S,(z), we need to examine terms of the form
(@) = (1-2a) 7 (@, -2V (0<i<),

Tn,j

for which we have the estimate
27 _ m . .
S I'rnj(rele)[mdf) < 25 Il-rrne19| m|re19 -rnl'm(yﬂ)dt’).
0 ’ 0

Now, if r_ < 1/4, then |rel® - r | >r - r, > 1/4, while if r, > 1/4, then

. 2
|relfd - rnlz > 4rr, sin® /2 > %(%)
for 0 < 6 <7. Hence
lreif -r | > 0/4r (0<r <1, 0< 6 <m).

Similarly, by considering separately the cases in which r, < 1/2 and r, > 1/2, we
obtain the relations

-r,+86

. 1
|1-rr e'?| = ((1 - rr )%+ 4rr, sin® 0/2)1/2 > T

for 0<r, <1 and 0< 6 <7, and hence
2T ‘g | m T
‘S‘ ITn,j (I'el )l d9 _<_ C(m, V) S (1 - rn+ 9)-m9 -m(v+l)d6
0 0

< C(m, »)A - r)l-mW+2),

because m(y +1)=1-a < 1.

Since for each n the terms of S, are finite linear combinations of terms of the
form (1 - rﬁ)'rn,j, and 0 <m < 1, we see that

2m
5 |S,(reif)[mde < C(m, v) 2 (1 - r)1-mF+1) = c(m, »)s .
0 n

Together with (2.3), this shows that (1.4) is valid for k = v + 1. Thus Theorem 1 is
proved by induction.
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3. COUNTEREXAMPLES

The following examples indicate various ways in which Theorem 1 may be re-
garded as being best possible.

Let b be a Blaschke product such that

* rgn - zqn ®
(3.1) b(z) = II 5 = II b,(2),

n=11- rnnz n n=1

n
wheve Qp = Pn 2pn and pp, = 22 Jor n > 1, and let {a, } denote the zeros of b. Let
M be a natural number.

1
M+1

(i) Fo<p< and rn=1-(2pn)'1/6,then

2T .
L, (r) = SO [b(M)(reif)|™ a6

is unbounded on (0, 1) for Mm = (1 - B), while E::I (1- Ianl)a converges if and
only if a > 8.

1
M+1’ 'n

o
1. (r) are unbounded on (0, 1), while 27,-; (1 - Ianl)ﬁ converges.

=1 - (pl?; 2pn)'1/ﬁ, and Mm > 1 - B, then the integrals

() If 0<B<

(iii) If B = M i_ T and r =1 - (2pn)‘1/B, then, for each positive number m, the

o0
integrals 1, (r) are unbounded on (0, 1), while 23, (1 - lan % converges if and
only if a > B.

We note that P. R. Ahern and D. N. Clark [1, p. 122] have constructed an exam-
ple of a Blaschke product that has the properties illustrated in (ii) in the case M =1
and, in addition has its zeros converging to 1.

It follows immediately from our definitions that in cases (i) and (iii)

> - la )@ = D) pnzpn(l—afﬁ),

n=1 n=1

and the series on the right converges if and only if a > 8. In case (ii), we have the
series

27 (1-|a )P = 27 p;l,

n=1 n=1

which clearly converges.

We can complete each of the cases (i), (ii), (iii) by showing that, for each of a
sequence of values r increasing to 1, the function b can be factored so that the con-
tribution to the integral Im(r) arising from one of the factors is dominant. Because
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of the similarity of the proofs, we shall establish only (i) and forego the correspond-
ing details for (ii) and (iii). We continue by proving the following lemma, which en-
ables us to make suitable estimates of the factors of b.

LEMMA 1. Let b denote the Blaschke product defined by (3.1) in the case (i).
Foyv each natural number t, let

t-1 0
B, = vb,, By= II v,.
n=1 n=t+1

Then, for r = ry, we have the inequalities

27T . . .
(3.2) {7 6Pwet®)|1-F3a0 > cg, Bp,,
0

27 . : . . . s .
3.3) {7 bt )BI M et €)1 BT a0 <, k6, BRI PYTT Ge= 0,1, 1, ),
0

(3.4) 1B rei®)| < cl, Ball, exp(-p,,, 2P® P (0 <6 < am)

for j=1,2 -, M, and
(3.5) 1> |By(2)] > 1-c(p)aPt-17Pe)/B

(3.6) 1> |By(z)| > 1-CB)ay,(1-retth),

for |z| =r.

For the proof of this lemma, we need the following standard result; see, for ex-
ample, [3, pp. 92-96].

LEMMA 2. If a € (0, 1) U (1, =), and u is a natural number, then
K 27 )
Cla) < (1 - r)¥K(@) 5 [1-reftf]"%q0 < Cle) (0<r<1),
0

wheve K(a) = max(0, o - 1) and C(a) does not depend on L.

In the proof of Lemma 1 it will be notationally convenient to write q and y for
q; and 1/B, respectively. Then we can generalise the derivative formula

b(z) = -g(rq - v 9 (P(z)* - P(z)),
where

Pz) = (1-riz9)1,  P'(z) = %(P(Z)2 - P(2)),

to obtain, by induction, the formula
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bP(z) = 27 (12 - r"9)Q;(P(2), @),
where Q;(P(z), @) is a polynomial of degree j +1 in P(z) and of degree j in g with
leading coefficient j!. Lemma 2 shows that the inequalities 1 <k <j <M imply
27 S0y k(1 .
Jy = S | P(reif)|x(1-BViqe < clx, j, B).
0

Further, if 2 <k=j+1 <M + 1, then

k(1-8)  M(j+1)
R (T TSV

and Lemma 2 implies
Cli, 8) (1 - ¥)B-U-R3 < 5. < ci, B) (1 - rHP-L-PIS,
Thus the inequality (3.2) follows, since

2T : . .
S Ib,(;J)(rel‘g)](l"B)/J dé
0

J
> CG, B gt B(1-1DB - 2 Clk, j, BB (1 - r)(1-BYi > ¢, B) p,.
k=1

We prove the inequality (3.3) first in the cases k = j and k = 0. In the case
k =j, a minor amendment in the use of the triangle inequality in the preceding argu-
ment shows that

2 : . .
(3.7) S " 1p9rei®)| (-85 g8 < (i, B) p,.
0

In the case k = 0, we note that 2J(1 - |an|)a , summed over the zeros of B}, is equal

t-1 -
to 2oy p,2Pn" P Hence the substitution @ = 8 in Theorem 1 yields

27 . . . t-1
(3.8) SO |BU(re!)|(1-B)3d0 < €, B T pn < CG, B)pe-1

n=1

as required.

We can now complete the proof of (3.3) by applying Holder’s inequality in the
cases 1 <k <j. For the left-hand side of (3.3) is bounded above by

k/j (i-k)/j
2m : 2T : - .
(So lb(tk)(rele)l(l'ﬁ)/kde) (‘S‘o IB(lJ-k)(relg)“l'B)/(J"k) dB) ,

and we can use (3.7) and (3.8) to estimate the latter two integrals.
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In proving (3.4), we consider the logarithmic derivative of B, to obtain the
formula
2 -1
B)(z) = - > 0, (1 - r 2z B, (2)P,(2)?,
n=t+1
where B, ,, denotes the subproduct of B, with the factor b, omitted, and where
— dn 9ny-1
Pn(z) =(1-r Pz )",
Since
P (2) = 2 (P_(2)2 - P_(2)
n A n n ’
an application of the principle of induction establishes the generalisation
2 - 2 +k-j
- q q -
(3.9) B @ = Z 2 - ™™ 7 BE2) Qi(®a@), )
n=t+1 k=0
for j=1, 2, 3, ---, where Qj _k is a polynomial of degree j - k+ 1 in P,(z) and of

degree j - k in g, with coefficients depending on j and k.
When j = 1, the relation (3.9) yields the inequality

-1

. > q rqn
IBy(ret?)| < 20 2—— (0< 6 <27).
n=t+1 1 - rin

But since

q q -vP
n <gq,r'™=gq,(1-2 <qnexp(—qn27t) = q, exp (-p, 2

and p, > Py = ptz , it is readily seen that

|By(rei®)| < C(8) g exp (-pyyq 276 PEYY,

the inequality holds not only for B, but for all its subproducts B, , when n >t.
The application of an inductive argument to (3.9) establishes the general inequality
(3.4).

Finally, we need to prove (3.5) and (3.6). To prove the first inequality, we use
the relations

t-1 )
+9n _ 9n tll-rqn
1>|B1(r819)I>H—————>1—E——
n=11 - ranqn n=1 1 - rin
for 0 < 6 < 27, where
t-1 ) t-1
- I‘ -
n=11 - rqn n=1 n=1

n

49
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To prove the second inequality, we use the relations

. ® 1- roln
1> |Byreld)| >1- 2 =
n=t+] 1 - pn

for 0 < 6 < 27, where

- Pt+1-yP
rdn <(1-2 th)-qt+1 < exp(-pes) 2 t+1-y ty

and
121 (1-r®)<c@E@-rgth.

This completes the proof of Lemma 1.

We can now complete the proof of (i). The Leibnitz formula shows that

M
M ' ¥
b( ) _ > Mcj(stl)(J)B(ZM )
j=0

M-1
(M) M (k) g(M-k) (k) g(M-k)
b, 'B;B,+ 27 VCu(b BB, + (b, BB ).

The inequalities (3.2), (3.5), and (3.6) show that
2T (M) 16y1(1-8)/M
{7 6B, B,) re*%))| a0 > C(M, B)p,,
0
and the inequality (3.3) shows that

S I((b(k)B(M k)) (re19))|(1 'B)/MdG < ¢k, M, B) pk/Mpél\/i -k)/M
0

for 0 <k <M. The inequality (3.3) also leads to the inequality

k
27 _
0 S5=0

< C(k, M, B)p,

for 0 <k <M, a result which clearly holds also when k = 0. Using this, together
with the inequality (3.4), we find that
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27
‘S\ Ib(M)(reIG)|(1'B)/M de
0

> C(M, B)p, - C(M, B) prairs exp (-pey 2Pt PV - e, p) pit -1/ M pl/M

By our choice of p;, the right-hand side of the last inequality is asymptotically
equal to C(M, B) p,, as t — «. This completes the verification of (i).
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