ON THE ISOMORPHISM
OF DISCRETE SUBGROUPS OF SL(2, R)

Alladi Sitaram

The purpose of this paper is to give a sufficient condition for the isomorphism
of two discrete subgroups T and I'' of SL(2, R) in terms of the norms of the prim-
itive hyperbolic elements of I' and I"'. The proof exploits some well-known proper-
ties of the Selberg zeta function [3].

1. INTRODUCTION

Let G be the group SL(2, R) (that is, the group of two-by-two real matrices of
determinant 1). Let I' be a discrete subgroup of G such that I'\ G is compact. We
shall also assume that I’ contains no elements of finite order. It is known (see [1,

p. 11]) that under these assumptions I' contains only hyperbolic elements. (An ele-
ment y € I' is said to be kyperbolic if it has distinct, real eigenvalues.) An element
vy € T is said to be primitive if it is not a positive power of any other element of I
clearly, each conjugate of y will also be primitive. Let {Py} (¢ =1, 2, ---) bea
complete set of representatives of the primitive hyperbolic conjugacy classes of T,
and let N{Py} be the norm of Py (if A; and Az are the eigenvalues of Py, then
N{Pqy} =[max (||, |x2])]?). We are now in a position to state our theorem:

THEOREM. Let T and I'' be discrete subgroups of G (= SL(2, R)), without
elements of finite order, and such that T\ G and T''\ G ave compact. Let
ny, np, - be the norms of the primitive hyperbolic classes of I', where
n, <n, <., and let m; be equal to the numbey of primitive classes whose norm
is exactly n;. Let nj and mj| be similarly defined for T'. Then, if n;=n; and
m; = mj for all i, the subgvoups T and T' ave isomovphic (as abstvact groups).
(Note. Tt is known [2], [4] that N{Py}a-; has no accumulation point, and

therefore we can write the norms of the hyperbolic elements in the order of increas-
ing magnitude.)

Before giving the proof, we require some more facts. Let
H={2Z;Ze€Cand SZ>0}.

Then, since I' is a subgroup of SL(2, R), I" acts on the upper half-plane H, and
under the assumptions on I, '\ H is a compact Riemann surface and T is its
fundamental group. Let p be the genus of I"\ H. Then, again under the assump-
tions on I, p> 1. In [3], A. Selberg introduces the zeta function

o0

zr(s) = II IT [1- (n{pP,H)5™].

@ n=0
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The following properties of Z1(s) are of interest to us (for proofs, see [2] or [4]).

(A) The expression on the right converges to an analytic function for % s > 1.
However, Z 1(s) has an analytic continuation to the entire complex plane. (In fact
Zr is an entire function of finite order.)

(B) If k is a nonnegative integer, then s = -k is a zero of Z of multiplicity
(2k + 1) (2p - 2) (these are the so-called #rivial zeros of Z1; recall that p = genus
of T'\ H, and in our case p > 1).

2. PROOF OF THE THEOREM

The fact that n; = n; and m; = mj for all i implies Z(s) = Z1(s). In particu-
lar, Z1(s) and Zy(s) have the same zeros, and by comparing the formula for the
multiplicities of the zeros at s = -k, we find that p = p', where

p=genusof T\ H and p' = genusof I'" \H.

Since '\ H and I'" \ H are compact Riemann surfaces, this implies that I\ H and
I''\ H are homeomorphic. But, as we have already observed, I is the fundamental
group of '\ H and I'"' is the fundamental group of I''\ H, and therefore I and I
are isomorphic (as abstract groups).
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Added January 23, 1976, After writing this paper, the author finds that his re-
sult can also be deduced from the work of H. P. McKean [H. P. McKean, Selberg’s
trace formula as applied to a compact Riemann suyface. Comm. Pure Appl. Math.

25 (1972), 225-246].
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