AN L, ANALYTIC FOURIER-FEYNMAN TRANSFORM
R. H. Cameron and D. A. Storvick

INTRODUCTION

The concept of an analytic Fourier-Feynman transform was introduced in 1972
by M. D. Brue [2], and it was defined essentially as in (0.2) below. It was based on
the analytic Wiener and Feynman integrals [3], for which we now give simplified
definitions sufficiently general for this paper.

Definition. Let C[a, b] be the space of real continuous functions x( - ) on [a, b]
for which x(a) = 0. Let F be a functional such that the Wiener integral

J0) = S FOL/2 %) ax
Cla,b]

exists for almost all real A > 0. If there exists a function J*()) analytic in the
half-plane ® A > 0 such that J*(A) = J(A) for almost all real A > 0, then we define
this “essential analytic extension” of J to be the analytic Wiener integval of F over
Cla, b] with pavameter X, and for % A > 0 we write

anwk

j‘ F(x)dx = J*(\).
C[a,b]

Definition. Let q be a real parameter (q # 0), and let F be a functional whose
analytic Wiener integral exists for ® A > 0. Then, if the following limit exists, we
call it the analytic Feynman integrval of F over Cla, bl with pavameter q, and we
write

anfq anwy
(0.1) S F(x)dx = lim F(x) dx .
C[a,b] A — -ig Y C[a,b]
NA>O0

On the basis of these definitions, we can define Brue’s transform as follows:
Definition. If q # 0 and if for each y € C[a, b] the analytic Feynman integral

a.nfq

(0.2) T3F = S : ]”F(x+y)dx
Cla,b

exists, then TZ';F is called the analytic Fouriev-Feynman transform of F.

Actually, Brue used a slightly more general definition of the analytic Feynman
integral, but restricted the definition of his transform to the case q = -1, using the
case q =1 as the inverse transform.
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He applied this definition to various classes of functionals defined on C[a, b]
and also to a class of analytic functionals defined on the space of complex functions
whose real and imaginary parts are both in C[a, b]. In this complex case, his re-
sults are beautifully symmetric, as the space is transformed into itself by TT, and

T’{‘T”_‘l F =F. However, his results for real functionals are not symmetric, and they
require either strong or complicated hypotheses. His final theorem deals with

functionals of the form
b
exp { S 6 (t, x(t)) dt } ,
a

which seems to be of interest to physicists, but of all his theorems it has the strong-
est hypotheses. The Ll(—oo, ) Fourier transform is one of the basic concepts upon
which Brue’s paper is based.

In the present paper we work with simple hypotheses, and by using the L,
Fourier transform and Lj-theory generally, we obtain symmetric results for func-
tionals defined almost everywhere on C[a, b]. Our method requires the concept of
the scale-invariant limit in the mean in the L,(C[a, b])-sense, which is defined
below.

Throughout the paper, the term Wiener measurable will mean measurable with
respect to the uncompleted Wiener measure or “strict Wiener measure”, as in [7].

Terminology. We shall say that two functionals F(x) and G(x) are equal s -
almost everywheve if for each p > 0 the equation F(px) = G(px) holds for almost all
x € C[a, b], in other words, if F(x) = G(x) except for a scale-invariant null set. We
denote this equivalence relation between functionals by

F = G.

Definition. Let {H,} and H be measurable functionals such that, for each
p >0,

lim g |H,(py) - Hlpy)|%dy = 0.
n —» o0 C[a,b
Then we write
1.i. m. (ws) H, = H,

n—>

and we call H the scale invarviant limit in the mean of Hy, over C[a, b]. A similar
definition is understood when n is replaced by a continuously varying parameter.

We use a limit of this type in defining an L, analytic Feynman integral and an
L, analytic Fourier-Feynman transform, as follows:

Definition., Let q be real, q # 0. If

anwl

G(y) = Li.m. (wg) F(x, y)dx
A — -iq Cla,b]
RA>o0

exists for a functional F measurable on C[a, b] X C[a, b], we write
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m anf

(0.3) GW)=S[ ]meN&
Cia,b

and we call G the (scale invariant) Ly analytic Feynman integral of F over C[a, b]
with pavameter q. The letter m appearing before the symbol anf above the integral
sign is intended to distinguish this Feynman integral, which depends on a limit in the
mean, from the earlier Feynman integral defined in equation (0.1).

We note that the existence of (0.3) presupposes that for each p > 0 the analytic

anWA

Wiener integral S F(x, py) dx exists for % x > 0.
Cla,b]

Definition. Let q be real, q # 0. We define the L, analytic Fourier Feynman
transform of ¥ by the formula

m anf,

(Tq F)(y) = F(x +y)dx,
Cla,b]

whenever the integral on the right hand side exists over C[a, b]. (We note that T4 F
is defined only s-almost-everywhere.)

We remark that if F is measurable and TqF exists, then TqF is measurable.
We also call Tq F the mean Feynman transform of F.

We next define three classes of spaces of functionals to which Tq applies.

Definition. Let £, be the space of functionals F that can be expressed in the
form

F(x) = f[x(t), -, x(ty)]

s-almost-everywhere on C[a, b}, where a <t; <t, < --- <t, <b, and where
f € L,(R") and f is Borel measurable.

It will be shown that if F € «/,, then TqF exists, TqF € A4, and
(0.4) T qTqF = F.

Notation. Let A, = {(t;, -+, ty)] a <t; <ty < <t, <b}.
Definition. Let A, be the space of functions f defined and Borel measurable
on A, X R™ such that f(t;, -, ty; ---) € L2(R") and

N,(f) = sup iy, ==y tn; =) ]| < +e.
{t],--- th) €Ay

In particular, we interpret < to be the set of complex constants, and if fg € g,
then Ny(fy) = |fo|, and we note that o is the set of Borel measurable functions f
on [a, b] X (-, ) such that supa <t<b £, - ) || <o

Remark. It can be shown that if f € o ,, then for almost every x € C[a, b] and
all p >0,

S A Sf(tl’ eyt px(ty), o, pxty)) dty erdt, <-teo
n
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The proof is similar to the proof of Lemma 2 of [6].

Definition. Let &, be the space of functionals F such that, for some function
fe x,,

(0.5) F(x) = S-A-- Sf(tl, ey tns x(ty), e, x(ty))dtg - dty

for s-almost-all x. We shall call this function f a defining kernel for F. In par-
ticular, we interpret % to be the space of constant complex-valued functionals. If
Fe 9, we take f = F to be the kernel of F and write No(f) = [f].

As before, it will be shown that Tq is defined on ¥ ,, maps &, onto itself, and
satisfies (0.4) on &,,.

Finally, we build a larger space by using sums of functionals chosen from each
of the spaces ¥ .

Definition. Let & be the space of functionals F such that there exists a se-
quence {Fn} with F, € &, having corresponding defining kernels f, € A, such
that

F~ 2 F,
n=0
and
(0.6) INJEDTH™ = on3/%)  as n—+w.

We shall call {Fn} a defining sequence for F, and {fn} a corresponding kernel
sequence.

Again, it will be shown that if F € &, then TqF exists, TqF € ¥, and
T_qTqF = F.

We shall also show that & contains some interesting functionals; indeed if & is an
entire function of order less than four and 8 € 21, then the functional

b
0.7) F(x) = & S o(t, x(t)) dt

belongs to the space &, and thus TqF € ¥ and T_qTqF = F.

Since we shall use Plancherel’s theorem and related theorems, it will be con-
venient to introduce a short notation for the type of limiting integral that occurs in
their context.

Notation. We denote

) ¢°
. n
Li.m. S_A S_A (uy, *++, uy; vy, vty v)du; eedug

A —x

(Vvise-vp)

by
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(v)p® (n) peo
S vos ‘S‘ @(ul, e un; vy, "'9Vn)dul"°dun'
-0 -o0
We shall refer to such an integral as an “Ly-limiting integral”.

In the proofs of Lemma 1 and Theorem 2, we shall refer to a Lemma 1 of [8]
that is the n-dimensional extension of Lemma 1 of [5]. For the convenience of the
reader we state it here.

LEMMA H. Let A >0 (A # 0), and let f € La(R"). Let

g(Vl y 7T vn)

(35S

—00 -0

o0

n
f(ul ’ ---, un) exp(" % E (uj - vj)z)dul ces dun .

j=1
Then g e L,(R"), and
lell < Il

If R =0, the integral is to be interpreted as an L,-limiting integral; moreover, in
this case
lell = ]l -

1. THE EQUIVALENCE RELATION =

In this section, we explain why the Wiener limit was defined so as to be scale-
invariant. We shall show that the transformation Tq preserves equivalence classes
based on the relation ~ . We have not defined F = G to mean merely F(x) = G(x)
almost everywhere on C[a, b] because such an equivalence relation is not preserved
under the transformation Tq. Indeed, we shall exhibit two functionals such that
F(x) = G(x) a.e. but (TqF)(y) # (TqG)(y) on a set of positive Wiener measure.

THEOREM 1. If q is veal (q # 0), if F, and F, are measurable and F = F,,
and if TF, exists, then T,F, exists and

Proof. Let p and ¢ be any two positive numbers, and let F = F; - F,. Then
F(Vp%+02u) =0 for almost all u € C[a, b], and thus

S |F(Vp2+02u)|du = 0.

C[a,b]

By Bearman’s Lemma (see [1] or Lemma 2 of [7]),

5 |F(px +oy)| dxx y) = 0;
Cla,b]x C[a,b]

therefore F(px + oy) = 0 for almost all (%, y) € C[a, b] x C[a, b]. Thus for each
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p > 0 and each o > 0, o] F(px + 0y)dx = 0 for almost all y € C[a, b]. Since F
Cla,b

is measurable, we see by Fubini’s theorem that for each ¢ and for almost every

y € Cla, b],

S F(px+oy)dx = 0
C[a,b]

for almost every p. Thus, for each ¢ and almost every vy,

5 [Fi(px + 0y) - Fa(px+ oy)]dx = 0
C[a,b]
for almost every p > 0, and therefore

anwh
S [F,(x+0y) - F(x+oy)ldx = 0.
Cla,b]
But since Tq F; exists, there exists a function J (A), analytic in %t x > 0, such that

‘g FI(A‘I/ 2x+0y)dx =J() for almost all real positive A. Consequently, the
C[a,b]

same is true for F,, and therefore

anwh

‘S‘ Fz(x+cy)dx
C[a,b]

exists for all positive ¢ and almost every y, for ® A > 0. Moreover,

anW}\' anWA
S F,(x+oy)dx = S\ F,(x + oy) dx,
.YCla,b] Cla,b]
and Ty F, exists and
T F) ~ TqF,.
Countevexample. In [4] it was shown that there exists a Wiener measurable set
C; € C[a, b] such that m(C;) =1 and m(pCy) =0 if p >0 and p # 1.
Let F(x) = 1 and

1 on C1 s
G(x) =
0 elsewhere.

Then F(x) = G(x) almost everywhere, and if q # 0, (TqF)(y) = 1. Moreover, by
Bearman’s Lemma, for each X > 0,

5 [S G(A—l/2x+y)ax]dy = S G(VAT+12)dz.
Cla,b] C[a,b] Cla,b]
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But G(VA-1+1z)=0if VA-1+1z ¢ C;, and hence G(VAr-1 +1z) =0 for almost

all z. Hence, since G(VA-1 +1z) =0,

S Gr-1/2x+ylax = 0
Cla,b]
for almost all y. Hence
(TqG)(y) =0
for almost all y, and
(TgF)y) # (T4Q)y) a.e.
even though F =G a.e.

This example shows the importance of calling sets in Wiener space equivalent
only if they differ merely on scale-invariant null sets.

2. THE TRANSFORMATION Tq APPLIED TO FUNCTIONALS F €

In order to show that Tq F exists and that T _qTq is the identity transformation
when F € .« , we shall first prove two lemmas.

Notation. Let y = ¥(t) = [@m)™(t; - a) - (t, - t,_)]1/2.

LEMMA 1: Let

F(x) = f(x(t)), -+, x(t) € A&,.

Then, for each y € Cla, b] and each X with R\ > 0, the Wiener integval in the rela-
tion

anWA
(2.1) F(x +y)dx = h(y(t,), y(t,), ---, y(t,), )
C[a,b]
exists; here
(=¢] (n) 00
h(Wl ’ » Wi A) = hn/Z.}, S ) S (Vis o, V)
- 00 -0
(2.2) X
n
[(vi - vio1) - (wy - wiop)]
exp(-% 2 —L tl i ] i1 dvy---dvy
j=1 -1
for all real values wy, -+, wq (notation: vo=wg=10). Moreover, for fixed

W1, -+, Wn the function (w1, ---, Wn, A) is analytic in X for R\ > 0; also
h(--, A) € LR,

(2.3) InC-, 0l < ]l
and for each p > 0,

(2.4) S [n(oy(ty), -+, py(ty), M) [2dy < p-2y [£]|>  jor ;x> o0.
Cl[a,b]
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(To make nonintegral powers of complex X (R X > 0) well-defined, we shall as-
sume [argA| < /2, and we choose the branch A% = exp[z(log [x | +i arg 2)].)

Proof. If A is real and positive and y € C[a, b], then

S FOl/2x +y)ax = (12 x(ty) + y(ty), o, A2 k() + y(tn)]dx
C[a,b] C[a,b]

(=] (n) > o]
= v S ces ‘S\ f[}\_l/zul +Y(tl), Tty h_l/zun +Y(tn)]

-CO -0
n 2
1 < (uj-uj-1)
exp(— 5 j:E (tj = tj—l) duj --- du,

= \n/2 y Soo (n) Soo f(vy, =+, vp)

—-00 -0

2wy - vion) - () - yo]?
exp(- % 27 . ! l(tj — tjfl) )-1 )dvl ceedvy,

(2.5)

h(Y(tl), Ty Y(tn)’ 7‘-) .

It is easy to see that for each real (w;, ---, wy), the function h{wj, -+, wp, A)
is analytic in A for % A > 0 and thus the Wiener integral in (2.5) has an analytic ex-
tension to % X > 0, and consequently the left member of (2.1) exists and equation (2.1)
is true.

We now transform (2.2) by setting

! Vj - vj‘l 1 WJ B Wj_]_ .
(2-6) V. = ———— and w. = ———— for j= 1’ =, N,
SRR SR ATER T
so that
j j
2 Vig-txg VL:Vj and 27 Vi -tk W1l<:Wj;
k=1 k=1

thus we obtain the formula

n
h(Jtl-tOw'l, oy 20 Vg - trq wlg,x)
k=1

0 0 n
en = (2)7 T (e D T )

-o0

n
exp -% 22 (v; - wi)z) dvj -+~ dvy,.
j=1
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If we define

n
h*(wy, =, WL, A) = h(\/tl -ty Wy, e, 27 Vi - g Wi, A) = h(wy, ==+, W, A)
k=1

and
n
£*(vp, ey V) = f(‘tl "o Vi, s 2 Vi - o "1'<) = vy, 5 Vi),
k=1

equation (2.7) becomes

2 n/2
wo, v = (g5) " §

o0 [}

(n) S v, e, )

—-00 -

2.

n
exp (— AT - w__fl)z)dv'l e dvy, .

By Lemma H, |h*(---, M) || < ||[£*]], that is,

n 2
® (n) 0% ' '
S e S h(\/tl Tt W), oy 2 Vi - Gt w]'n) dw} - dw,,
-0 -00 k=1
n 2
o0 (n) o
< S S f(x/tl Tty Vi, e, 20 Vo -t v1'<) dvy -+~ dvy;

- 00 -0 k=1

applying the inverse transformation of (2.6), we obtain the inequality

‘S‘ e S Ih(wl JRETIN Wn: h)] dWl eoe dwn

-00 -C0

%) (n) %)
S S PP ‘S\ If(vl , Vn)lz dVl ...dvn’
-0 -00

and inequality (2.3) is established:
"h(', "ty % A)" S ”f” .

To establish (2.4), we note that

S |h(py(t,), -+, py(ty), A)|?dy

Cla,b]
n 2
(n) S°° 2 ( (uj ~ uj_y) )
= - h(pu;, -, pu,., A)|“exp{ - ————— Jdu; ---du
Y S . ' puy pug, ' p io1 Z(tJ _ tj—l) 1 n

-0

o0
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o0

© (n) ,
S :}/ ‘S\ .r-l- S lh(pul, see pun, A)Iz dul --.dun S }/ ”f”zp-n ;
- 00

- 00

thus (2.4) is established and the lemma is proved.

Remark. For each function g € L,(IR"), we see by the Schwarz inequality that

£

—-00

[~ o]

n
glvy, vn)exp(— 2 Aj[(Vj - Vi) - uj]2 )dv1 ceedvy
j=1

< Tl (2)™ 1ay a1/

for all positive A, ---, A, and all real uj .

LEMMA 2. Suppose that £ € L(IR"), that q is real (q # 0), and that
a=tg<t; <..-<t,=b. Let g be given by

o0

(v}e® (n)
g(vl, Tty vn) = ('iq)n/z'y VSl n S f(uls "ty un)

- -0

(2.8)

n 2

. [(ui - us_y) - (vi-vi_1)]

exp u 2 L ! — . s duj---du,,
2 j=1 t;-t5

wheve uy=vy=0. Then g € Lo(IR") and

) L o] 0

S w'('n') S_wg(w, "**, Vn)

n 2

; [(vi - vi_1) - (u; - u;_1)]

exp —HE . J — ] i-1 dvy r--dv,
2 i=1 tJ tJ_l

(u

f(ul: *tty un) = (1q)n/2 Y

(2.9)

Jov almost all vy, ++-, u,. Moreover,
(2.10) lell = Dzl

Conversely, if g € L,(R®) and (2.9) defines f, then f € Lp(IR"™), (2.8) kolds a. e.,
and (2.10) is valid.

Proof. Let p = |q|, so that q =+p. Since f € L,(IR"), it follows that
t* € L,(R"), where

f*(zl y Zn)

(2.11) R n t, -t 1/2 n
:exp(i%Z zJZ)f(( lp O) zl,"‘,_E

Let us write
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(2.12) g = F¥,
where # denotes the n-dimensional Fourier transform. We shall show that

(2.13) g = (xi)/2g*,

where

g*(“71, e “GJ

(2.14) . to—ta\1/2 TR T 1/2
=expl FL£ 20 wl )¢ ?(—l—-——o) Wl,"’,:FE (-‘l—-‘Ll-) w: }].

By the definition of the L, Fourier transform, we see that
g(Wl , Tty W)

(2.15) ( i

-1 -n/2 n) (g -

= L.i.m. (2m) SDA Sf (zy, = zn)exp(l 2 wjzj)dzl dz,,

A— o0 J=1

where D is a monotone family of bounded regions such that U A Da =R, Since
we wish to make the transformation

(2.16) zj = (uJ- - uj_l)(p/(tj - tj_l))l/z,

we choose Dj to be the image of D = [-A, A]" under this transformation. Making
the transformation above and also the transformation

(2.17) wi = F(vj - vi_p) (p/(t; - 6 )12,

we deduce from (2.15) that

ty - tg\1/? Doti-ty (M2
= Li.m (27:)'“/25(?-)Sf(( 1 0) 2y, ey 2 (J Jl) Zj)
A—o A P j=1 p '

j=
. (n)
= l.i.m ; Sf(ul, , uy)
Ao A
. n e ) o (ve - vl )12 J2, P -1/2
ig [(u_] u_]—l) (VJ‘VJ—I)] n
S CE SRR SRS L YR R
j=1 J J- j=1
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Thus g defined by (2.8) exists, and g € L,. Therefore
n
exp( 1573 )g(wl, ce,w) = @D glvy, o, vy

1/2

_ (i_i)n/Zg(T_(tl ;to )

n
(ii)n/zexp(ilg 27w ) g¥wy, -0, W)
Thus

g = (xi)n/2 g%,
and (2.13) is established; from (2.12) it follows that
(2.18) g* = (i) /2 g%,

By the Plancherel theorem
le* = lle*lt

and
f*(zl y "ty Zn)
(2.19) @)
—(_1)n/2 1.i. m. (27)™?/2 S Sg (Wy, =, W )exp(-l 2 W; Z; )dwl - dw
A —o0 j=1
Equations (2.11), (2.14), and (2.19) imply that

exp( %;} ) ((tl;to)l/z g) (-t-_:pi-i)l/zzj)

:]_ J:1

S a0\ 1/2 D t-t (172
=+i)n/21.i.m.(2ﬂ)'n/25 S( hoto ) Ty, e, 7D ()

A— o0

n

n
exp( -12— 27w )exp(—i 27 Wj Z3 )dw1 serdwy .
: J=]-

Making the substitutions (2.16) and (2.17), we obtain the relation
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(n)
flug, =, uy) = (1q)n/2y11 m, S - ngl’ e, V)

A — o0

exp( Eq % [y - uj‘li - (vj - Vj‘l)]z)dvl e dvy,

t. - ti_
j=1 j -l

and (2.9) is established. Moreover, from (2.9), (2.11), and (2.14) we obtain (2.10),
and thus the direct statements of the theorem are proved. The converse follows if
we interchange f and g and replace q by -q.

Remavk. The hypotheses of Lemma 2 imply (2.18) with f* and g* defined by
(2.11) and (2.14). Conversely, if £* € L, and (2.18) holds, then (2.8) holds with g
and f defined by (2.11) and (2.14).

THEOREM 2. Let q be veal (q # 0), and let
(2.20) F(x) = f(x(t;), ---, x(ty) € A

Then the mean Feynman tvansform of F,

(2.21) G = T4F,
exists s-almost-everywhere on C[a, b], and

(2.22) G(y) = gly(ty), -, y{t) €
For veal wy, -+, Wy, the function g is given by the formula

(w)r® (n) o=
glwy, =, wy) = (-iq)™/ 2 S S f(vy, =, v,)

(2.23)
exp(lq Z) [(v; - v 1£) - i i - wi-) P )dvl v,
j=1
(v = wg = 0). Moreover,
(2.24) lell = 1l -

Proof. By Lemma 2, g defined by (2.23) exists and is of class L,. By Lemma
1, for 1A > 0 and y € C[a, b], the analytic Wiener integral below exists, and

a nWA

(2.25) { oy TV = ), ¥(E2), -, v, ),
Cla,b

where h is given by (2.2) (of Lemma 1).
Thus, to establish (2.21), we shall show that
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m anfq
S F(x+y)dx = gly(ty), -, y(t,),
C[a,b]
that is,
Li.m. (wg)h(y(ty), y{t2), -+, y(tn), A) = gly(ty), =, y(tn).
A= -i
mx>g

In other words, we must show that for each p > 0,

(2.26) lim JQ) = 0,
A— -ig
RA>0

where

(2.27) IR = lgpy(ty), -, py(ty) - hpy(ty), -+, py(ty), A)|*dy .
Cla,b]
a,b

To simplify our next computation, we introduce the following notation for the
Gaussian density function p(u, t).

Notation. Let ply, t) = (27t)~1/2 exp {-u?/2t} and
n
P(v, t,n) = II {D(Vj - Vi1, (&5 - o)/,
j=1

— —
where v = (vy, -, vp), t=(t;, -, ty), top = a, and vg = 0.

Expressing g and h by means of P, we have the equations

(W) i (n) e —_ — —
(2.28) g(wl’ Ty Wn) = S o S f(vl y T Vn)P(V -w, t, - IQ) dv; -+ dvy,

and

© (n) g —_— — —
(2.29) h(wy, ==, Wy, A) = S S f(vy, o, vp) P(v - w, t, A)dv - dv,,.

- 00 - 00

Evaluating the right member of (2.27) by Wiener’s formula, we see that

J(n)

© (n) * 2
cee lg(pwl s 7t pwn) - h(pwl s "t pwn, A)' P(W, t, 1) dwl s
-00

-0C

(2.30)

® (n) %
= p-nS - S |g(z1, "',Zn)"h(zl’ s Zno A)IZ

- 00 -0
P(p-17z, 1, 1)dzy -+ dz,.

Substituting (2.28) and (2.29) in (2.30), we obtain the formula
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pay =

o0

(w)e « ——s
W‘S‘ (x) S f(vy, -+, vp) P(V - 2, %, -iq) dvy --- dvy

oo -0 - 00 -00
®© (l‘l) o —_— 2 —_ —
- S S vy, =+, vo) P(v -2, T, N dv, =+ dv,| Plp-1lz, t, 1)dz; - dzy .
00 -0
Let
- 0 if |vj| <A for j=1, =, n,
fA(V) =

tv)  if |v;| > A for some j (j=1, -, n).
Then, by the triangle inequality
o0

[an(A)]l/Z _ |j (WKoo {I.l_) S vy, =, vy) P(—\;- (- ),_t: -iq) dv} - dvy,

-0 -0

@ (n) ~ - T
S nj f(vy, =, va) POV - (+), 8, A dvy dvy [Pl (), 1)1/2

-00

A ) oA s -
S -(“) S f(vl’ Ty vn) [P(V - ()t -i9)
-A -A

MmA

- PG - (), M]dvy - dv, Ppt (4), T, DY/?

(w)p® o — —
+yl/2 S . S falvy, =+, vp))P(v - (-), t, -ig)dvy -~ dv,
-0 -~ 00
) 1) R .
+yl/2 S . S fa(vy, =, vp) P(v - (+), t, A)dv) -+ dvy|| = I} +1 +13.
-0 -00

By Lemma 2 and by (2.3) of Lemma 1 applied to f5 instead of f, we see that
I <2l amd 13 <M 1al.

To estimate I;, we note that ”f Al =0 as A — +=, Corresponding to any
positive number £, we can choose a number A large enough so that

ltall < e/4yl/2.

Then, for |A» +ig| <1 and %2 >0,
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[pr g2 < 1; +8/2
{ S‘” (n) 5‘”

1/2
P(p-1'w,t, 1) dw; - dw, } +e/2 .

A A
(n) f(vy, -, v IP(v - w, t, -iq) - P(v - w, t, A)]dv, ---dv
A A 1 n 1 n

By the continuity of P(V,_f: A), the difference of the two values P has the limit zero

as A — -iq (%A > 0), for each v and w. Moreover, the integrand of the interior
integral is dominated by the function

ZY(IQI + 1)1’1/2 If(VI, B Vn)l ’

which is integrable on [-A, AJ®. Consequently, the interior integral approaches
zero as X — -ig (%A > 0), for each fixed w. Moreover, the integrand of the outer
integral is dominated by the quantity

A A
(n) — —
2y (|a| +1)7/2 SA XA |#(vy, =+, Vo) |dvy - dv, P(p-lw, t, 1),

which is integrable with respect to wy, ---, w, over R". By virtue of dominated
convergence, I; — 0 as A — -ig (R > 0),

[an(A)]l/z <e,

and (2.26) is established. Thus, by (2.25) and (2.27), the theorem is proved.
THEOREM 3. Letq beveal (q # 0), and let ¥ € . Then

(2.31) T qTqF = F.

Proof. Since F € 5, we can express F by (2.20), with f € L,(R"). By Theo-
rem 2, Tq is given by (2.21), with (2.22) and (2.23). Since G € ,, the functions G
and g satisfy the hypotheses placed on ¥ and f in Theorem 2. While G is not de-
fined uniquely by the equation G = TqF, we see by the definition of TqF that any two
representations of it, say G; and G, satisfy the condition G; = G,. Since
Gy e A, and Gy € Ay, both T_qG) and T_gG exist. Moreover, by Theorem 1,
T _q G, = T_qGz, and T_qTqF is uniquely defined up to the equivalence relation =~.

By Theorem 2, T_4 G is given by the identity
(2.32) T qG = H,

where H(z) = h(z(t)), ---, z(t,)) and h € L,(R") and
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(u)p® I
h(l.I1, STty un) = (iQ)n/Z'y 5 e 5 g(V]_, "ty vn)

(2.33)

oxp (_ iq % [(vj - v5-1) - (u; - “5-1)]2)dv1 e av

j=1 t -t

for real values uy, *:+, u,, with ug = vy =0.

From (2.9) of Lemma 2 and (2.33), it follows that h(u;, -, u,) = f(u;, ---, up)
a.e. in R™, and hence for each p > 0,

h(pu;, -+, pu,) = f(pu;, ***, pu,) a.e. in R".

Thus H = F, and (2.32) implies that (2.31) holds and Theorem 3 is proved.

3. THE TRANSFORMATION Ty APPLIED TO FUNCTIONALS F € I

The following lemma concerning analytic Wiener integrals will enable us to es-
tablish the existence of T4 F for F € ¥;.

LEMMA 3. Let

(3.1) F(x) = S n Sf(tl, eyt x(t), -, x(E)) dEy - dt

wheve F € &, and f is the defining kevnel of F. Then, for each y € Cla, b] and for
RA> 0, the analytic Wiener integrval

anw

(3.2) S F(x +y)dx = S S hity , -+, ty3 y(t), -+, yE); A dt) --dt,
Cla,b] Ay
exists; heve

oo 0
h(tl,'":tn;ul7""un;7\) =An/275 S f(tlx'"; tn;vl,""vn)

-0 -00

(3.3)

n - ous - (v: - vi_1)12
exp(—%z[(u'] 4-1) - (5 - %-1) )dvl---dvn

j=1 -4

Jor all veal uy, -+, uy with ug = vg = 0. Moveover, for RA >0 and
(ty, ==, t,) € &y, hity, ==, ty; ==5; A) € Lp(IR®) and

Intey, -, tos s D < JEy, =y tas )| < Ny,
N(h(:+-5 -=+5 1)) < Ny(f).

Finally, (3.2) can be written in the form
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anwh
S F(x +y)dx
Cla,b]
anwh
= e a0 x) v, e, x(t) + vty -ty
Cla,b] ¥ 8y
anwh
= ‘S\ An S (Sc[a,b] f(tl » s tns x(tl) + Y(tl): Tt x(tn) + Y(tn)) dx)dtl seedty ,
and
anw n/4 3 "
A IAIZ) I:r(4)] 3n/4
F(x +y)dx <( = (b - )"V N _(f) .
Sc[a,b] N B R r(2+1) )
Proof. Let
(3.4) O(ty, -, th; x) = £y, -, ty; x(ty), -, x(t,) .

Then, for each (t|, -+, ty) € Ap, the function ®(t;, -+, t,; - ) satisfies the hy-
potheses of Lemma 1. Thus, for ®x > 0,

anw
A

(3.5) S (I)(tl » s tn; x+y)dx = h(tl » s tns Y(tl), ) Y(tn); 7\) ’
Cla,b]
where

00 )
h(tl’ I tn; u;, *°*, Up; A) = hn/z Y S ."S f(tl: ) tn; Viy Vn)
~-00 ~00

‘ v 1) - (s - e )]
exp(_% 5 [(v; - vj_1) - (uj - uj_1)] )dvl - dv,

i1 (& - £

for real uj, ***, u, (ug = vg = 0).
Moreover, for each (f;, -+, t;) in A, and each (u;, ***, u,) in IR™, the func-
tion h(t;, -+, th; uy, **+, un; A) is analytic in A for % 2 > 0. Furthermore,

B(tp, w+oy tn; o5 2) € Lp(R?)  and  [[hty, o, ty5 -5 M < [l -, tas )]

Now, for positive 2, it follows from the n-dimensional generalization of Lemma
1 of [6] that the integrand of the left member below is measurable, and by virtue of
Fubini’s theorem and Schwarz’s inequality
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S 5 Slf(tl: eyt AU 2x(t) +ylty), e, A1 2x(t ) +y(t,y))|dt; -+~ dt dx
Cla,b] ¥ #n

SZ; S Sc[a . |£| dxdt, - dt,

n

2
15~ (5 - 950 )
exp| - = ——— du; -+ du dtl'"dt
( 2.0 &-4.0) n "
® (n) px
= S oee Slnlz'y S R S 'f(tl’ sty v, Tty vn)l )
An -C0 -0
n

R - Y —vit- 2
exp ( - l E [(VJ VJ-l) (Y(t_]) Y(t_]-l))] dVl andtl . dtn
2 j=1 t_] - tj-l

<J g e

B [(vs - vi_q) - (3(ts) - ylt: )] 1/2
[S « exp(_h 5 1o VJ_I)t (yt(tJ) y(t;-1)] )dvl_“an] i
~00 ~00 i~ j"‘l

j=1

) S A S (Z%)HM[(H - a) ety -ty )T AN dty oty

< (X n,4.[r(g):ln
—(4n) 1_,(3n )

(b - a)37/4N,(f) < +o .

T+1

Here we have used Dirichlet’s integral [9] to evaluate the integral over A, .

The finiteness of the left member justifies the use of Fubini’s theorem in an

© () . -
oo oy OB 0 ae, ) sV 2u 4y, = V20, 4yt -
n - 00 -0

dt

argument establishing an equation similar to that above, but without absolute-value

signs. Hence, using (3.1), (3.4), and (3.5), we obtain for positive A the equation

-1/2 = . .
(3.6) Sc[a,b]F(h X +y)dx SAnSh(tl, y tns yEp), o, ylty); Mdty - dty, .

We now show by Morera’s theorem that the right-hand member is analytic in A, for

RA>0.
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For R > 0, we see by applying our Remark following Lemma 1 to equation
(3.3) that
n/4

Ih(tl y 7Ty tn’ Uy, **°, Uy, h)l < N (f)(4 ERA) [(tl - a)"'(tn = tn-l)]_ll4

and hence

§oe §inter, o)t v, o, it ety -,
n

n 3y
< ( Mz) /4[;1"_(4_)_:]_(]0— 2)37/ 4N, ()

ATRA (Q )
7+ 1

Thus, by dominated convergence, we see that the integral
S A. Sh(tl s 7 tn; y(tl)’ Tty Y(tn); h)dtl "'dtn
n

is a continuous function of A. Integrating with respect to A this expression around a
closed contour I' in ® X > 0, and applying Fubini’s and Morera’s theorems, we de-
duce from the analyticity of h in the half-plane % A > 0 that the right member of

(3.6) is analytic for %X > 0. Thus S Fo /2
Cla,b]
sion to %A > 0, and (3.2) is established and Lemma 3 is proved.

COROLLARY TO LEMMA 3. Under the hypothesis of Lemma 3,

x +y)dx has an analytic exten-

n
anwy I: I‘( %):l (b - a)3n/4(2ﬂ.) —n/4Nn(f)
S Fx+(-)p)dx|| < p-n/2 : 3 )
Cla,b] W P(T + 1)
where | -+ [ denotes the L,(C;[a, b])-norm.

Proof. Using Fubini’s Theorem and (2.4) of Lemma 1, we see that

Sc[a,b]

anw)\

2
S F(x + py) dx
C[a b]

dy

2
§ore Ty, ooy s oy, o, py(ei Nty | ay

Sc[a,b]

SC[ b]S A, §S o ey, s s vy, s oy 2)

h(sy, =<, sn; py(sy), =, py(sp); M) dty *** dt, ds) - ds, dy

S ces S S cee S S h(tl’ ...)E(Sl’ "')detl .”dtndsl ...dsn
An A,

C[a,b]
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< SAnS ‘S‘x;lS/SC[a,b]'lh(tl’ ) {Zdy ‘/‘S‘C[a,b] Ih(sl; - Idedtl s dt ds; ---ds,
< SZ' S SZ' Sp—ny(tl, et ) 2908y, 0, 8)V/2[N(B)]2dt, - dt _ds, -+ ds,,

[=(3)T N

(b - 2)>2/4 (27) /4 N_ ()

THEOREM 4. Let q be rveal (q # 0),let F € &,,, and let £ be its defining
kernel. Then T4F, the mean Feynman transform of F, exists and is of the form

(3.7) M) = § o §altn, )t vle), -, v aty -ty

wheve g € A, and

(w)p® (n) p®
g(tl’ e, tn; Wl’ oo, Wn) = (_iq)n/z Y S een ‘S‘ f(tl’ e, tn; vl’ cee, Vn)
(3.8)
. n A - (we - we 2
exp (% 5 [(y VJ_:) t(wJ wj-1)] )dv1 vy, .

- -ty

J_]_ J A
Moveover,
(3.9) N (g) = N (f) < +e .

Proof of Theovem 4. We define a function & on A, X C[a, b] by
(3.10) Blty, =, ty; x) = £f(ty, -, ty; x(ty), -, x(t,)).

For each point t;, ---, t,, the function ® satisfies the hypotheses of Theorem 2, and
thus by (2.21) and (2.22), for each (ty, -+, t,) € A,

anw hy

(3.11) 1l.i.m. (wg) B(ty, =, tyy x+y)dx = glty, -, ty v, =, y(tn),
A — -ig C[a,b]
RA>0

where g is given by (3.8) and | g(t;, =, t; <) = ey, -, ty )| Thus

Nn(g) = sup ”g(tl, eyt )” = sup "f(tl, eyt )” = N_(f) < +o .

Moreover, it follows from (3.8) and the measurability of f that g is Borel measur-
able on A, X R™. Further, Lemma 1 implies that for %2 > 0,

a nWA

(3-12) -S‘C[ b] (I)(tls Tty tn; X+Y)dx = h(tI, "ty tn; Y(tl): "ty y(tn); >t):
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where h is given by equation (3.3) of Lemma 3. Thus, for each positive p, the func-
tion (2.27) in the proof of Theorem 2 satisfies condition (2.26), and therefore

lim |h(ty, -, ty; py(ty), =, py(ty); A)
A — -iq YC|a,b]
RNA>O0

2
= g(tls MY tn; PY(tl), Ty pY(tn))l dy =0.

In order to use the dominated-convergence theorem, we note that by Lemma 1, for
each p >0,

1/2
(5 [n(ty, =, tn; py(ty), ==, pylty); A)[? dy) < p /29 1/2N,(f)
C[a,b]

and

1/2
(S Ig(tl’ ry tns PY(tl), B pY(tn))IZdY)
C[a,b]

© (n) o
= (7 S o S lg(tl: Tt tn; PW,, **°, pwn)lz

n 2 1/2
1 (WJ - Wj_l) )
exp(-—z—————————_ dw, -~ dw
2550 (- t.0) "
< pl2|glty, =, ty; ) | p0/2 < y1/2p-n/2N (f) < 4.

Hence we have the inequality
§ gy L 7 YD, s Y0 = 6, b e, py(t) |2 dy
Cla,b

S 4p'n[(2ﬂ)n(t1 - tO) "'(tn - tn-l)]-l/Z[Nn(f)]z < +°°’

and since the second member is integrable with respect to t,, ---, t, over A,, we
see that

A — -iq
RA>0

(n)
lim ‘R S S ]h(tl y "7 tn; pY(tl); Tty py(tn); 7“)
Ay C[a,b]

- glty, v, ty; pylty), 0, py(t,))|Paydt) +-dt, = 0.

Using Fubini’s theorem, and keeping the same arguments for h and g, we have
the equation
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lim S S S Ih - g|2dt; - dt,dy = 0,
A— -iqg YC[a,b] ¥ &n

RA>o0

and hence, by Schwarz’s inequality,

lim S SE-SYh-lemd%

A—-iq YCl[a,b]
RA>0

2
dy = 0.

Thus, by (3.2) of Lemma 3, and since f is the defining kernel of F, we have proved
for each p > 0 that

anwh
lim .g F(x + py) dx
X —-ig YC[a,b]}“C|a,b]
RA>0

2
(n})
- 5§ et st pvie), o, prit Dty ety ay =0,
. |

and Theorem 4 is proved.
COROLLARY TO THEOREM 4. Under the hypotheses of Theorem 4,

(3.13) (T F)y) = S}S; ((wqats, ) ta; NGty - at,
where
(3.14) Blty, =, ty; x) = fty, -, ty; x(t)), -, x(t)).

Pyoof. From (3.11) and the definition of the mean Feynman transform it follows
that

Blt1, =y tas YED, s ¥(t) = (Tq@(ty, =, to; - NE).

Thus, by (3.7), we see that

(TqF)y) ~ SZ' S(Tq‘l’(tl, oy by DY) dty e dty,

and the corollary is proved.
THEOREM 5. Let q be real (q # 0), and let ¥ € ¥ ;. Then T qTqF = F.

Pyoof. By the corollary to Theorem 4, we have (3.13) and (3.14). From Theo-
rem 2, it follows that chb is given by

(Tq@®(t1, =, tns " NG = glt1, =, ta; yED, =, i),

where for each t, -, t,,, g € Lq(an) and

letty, -5 tns =) = 1y, oy 05 )] < NGO < oo
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Therefore, by virtue of (2.23), g is given by (3.8). By Theorem 4, g € & , and thus
g satisfies the hypotheses imposed on f in Theorem 4. By two applications of the
Corollary to Theorem 4, and by Theorem 1 and Theorem 3, we obtain the relation

(n)
T qTqF = T_q{S-A:- Schp(tl, ey by - )dty ---dtn}
n

4. THE TRANSFORMATION T, APPLIED TO FUNCTIONALS F € &

Our next lemmas establish an inequality relating the Wiener norm of a functional
in & to the norms of its corresponding kernel sequence.

LEMMA 4. If F € &, and { is a defining kernel for F, then

§ n
l: 1"£4) :' (b - a)3n/4(27)-n/4N_(f) .
1“(—4rl+1)

Proof. By applying the Fubini Theorem, the Schwarz inequality, and the Dirich-
let integral formula [9], we obtain the relations

Sc[ b] Sl -gc[ b] S'A“ S‘g}i' Sf(tl’ "y b x(ty), o, x(t)

f(sy, ==, Sp; x(8y), =, x(s,)) dt; -+~ dt, ds; ---ds, | dx

IFlyw <

< Sx;l S S A § Sc[a’b] |£] |£] dxat; - dt,ds; = ds,,
(e § 8 S T T e sty s w2

B (u; - ui_p)? — ® () p”
exp (_% __J___J_._) du]. ...dun ’)/(S) S E. ‘S\ lf(sl’ ceey sn; Vi, **°, vn)lz
j=1 m i

tj - tj_l
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<IOF o § 0o (091 /2 et - dtas - as,

— 2
= N, OF [ o S nerza, ---dtn]

- <2w>-n/2[Nn<f>]2[ §i S -t - 01 ety ---dtn]

= (Zw)'n/Z[Nn(f)]z[ r(%) ]zn[r( %—‘1 + 1) ]_Z(b - a)3n/2

Thus Lemma 4 is proved.

For use in Theorem 6, we shall need to apply Lemma 4 to F(px), because the
Wiener limit has to be scale invariant.

Remavrk. Under the hypotheses of Lemma 4, we have for p > 0 the inequality

2

3 n
IF@C- N ]w < p/2 ——-:(,’—nil— (b - a)3n/4 (am) /4N, (1) .
r(f+1)

4

LEMMA 5. Let F, € &, and let f, € H,, be a kevnel for F, for n=0, 1, -+
Suppose also that

[N, (£)]-1/ = o(n3/4) as n— -+,

Then it follows for all positive numbers p that

co

(4.1) 2 Fa o)y, <+,

n=0

and the series Z):lo:o Fo(px) converges absolutely for alinost all x € Cla, b] and
converges in the L,(Cla, b])-mean and in the L,(C[a, b])-mean. In fact,

[+0)
F= 2 F oe 4.
n=0"
Moveover, for each y € Cla, b] and each p > 0,
o0
(4.2) 27 S | F o (px +y)| dx < +e.
n=0 “ C[a,b]

Proof. By the Remark preceding this lemma,

IEall - Dy < 0072 _LG/AT 4 ay3n/4(am)n/AN, (£,

3n
r(4+1)
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and hence, applying the root test and Stirling’s theorem, we see that (4.1) holds.
Since the Lj;-norm over Wiener space is dominated by the Lj,-norm over Wiener
space,

(4.3) 2 an(,ox)I dx < +«,
n=0 “CJa,b]

An application of the monotone-convergence theorem implies that

0]
22 |F (px)| < += a.e. on C[a, b].
0

Since the translation theorem for Wiener integrals does not allow us to proceed
directly from (4.3) to (4.2), we must examine the corresponding kernels of the func-
tionals F,, .

For each y € Cl[a, b] and each p > 0, let

H (x) = F (px+y),
so that

(4.4) H_(x) = S 5 Shn(tl, o, b x(ty), o, x(E)) dby e dt

where
(4.5) hylty, ==, tg; ug, ==, uy) = f4(ty, oo, th; pup +y(Ey), oo, puy +yEL).

Since by hypothesis

F(x) = 55- S fo(ty, oo, tys x(ty), ooy x(t ) dt) - dt,
n

whenever the integral on the right exists, it follows that (4.4) holds whenever the in-
tegral on the right exists. From (4.4) and (4.5) it follows that H, € & and that h
is a kernel for H, and N (h,) = p-»/2N(f,).

Thus H, and h, satisfy the hypotheses of this lemma, so that (4.3) becomes

[+0]
2 S |H, ()| dx < +e;
n=0 “C[a,b]

thus (4.2) is established and the lemma is proved.

THEOREM 6. Let F € &, and let q be veal (q # 0). Then TyF exists and
TqF e & and

T_qTqF = F.

Proof. Let {F,} be a defining sequence for F, and let {f,} be the corre-
sponding kernel sequence. By Theorem 4, TyFn exists and
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(TaF)®) = Go) = (0 (entr, ) ta v, o, vt oty -,

where g, € o, and G, € &, . Moreover, N,(g,) = N,(f,), and therefore

[N, (g )t/» = on3/%)  asn—o,

since F € &. By Lemma 5 applied to {G } we see that E -0 Gu(y) converges
absolutely a.e. on C[a, b]; and if we let

G(y) = 27 Gnly),

n=0

we see that G € . We wish to show that TqF ~ G. Let

anWA
(4.6) H,(y, 2) = S F_(x+y)dx .
C[a,b]

The right-hand side exists, by Lemma 3, and it is analytic in A for ®#x > 0, for
each y € C[a, b]. Let @, ={x| x| <r, ®*x > 1/r} for each r > 0. By the last
inequality in the statement of Lemma 3 and by (0.6), for each r > 0 and each

(=]
3(; ; C[a, b], the series En=o H,(y, ) converges uniformly in A for x € 2,.. We
efine

H(y, ) = 27 H_(y, %)
n=0

for y € C[a, b] and %A > 0. Then, for each y € C[a, b}, the function H(y, 1) is
analytic in the half-plane # X > 0. For real A > 0, we see from (4.6) and the proof
of Lemma 3 that

H (v, A) = SC[ . F 01/ 2x 4 y)ax

for each y, and from (4.2) we see that

0

S E F A"1/2x+y)dx = Z) F,("1/2x +y)ax
C[a b] n=0 C[a,b]
(4.7)

I
™ 8

H_(y, 2) = H(y, A).
0

1]

n

Thus H(y, A) is the analytic extension of the first member of (4.7) to ® 2 > 0, and

anwh )

H(y, ») = S 27 F (x+y)adx.
C[a b] n=0
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By the proof of Theorem 1,

anw
A

H(y, ) = ‘S\ F(x+y)dx .
C[a,b]
To prove that Ty F exists, we consider for each p > 0 the relations
2

o0

27 [Hulpy, 1) - Gyloy)]
=0

S [H(py, 1) - Glpy) |* dy = S
Cla,b] Cla,b]

2

[>e] (o] 2
27 [Halp( +), 1) - Glp(* )] s( 20 JHL(p( <), 2) - Gulp( ) IIW) -
W n=

n=0

Each term in the series in the last member tends to zero as A» — -iq.

By the Corollary to Lemma 3, the Remark following Lemma 4, and (3.9) of
Theorem 4, we have the estimate

I 5.C ), 2) - Gole( - Ny < 1Halo( ), My + |Galol - ) ||

T

— 3n
I-'(—4—+1)

(b - a)30/4(27)n/4N_(f,) .

Hence, by the root test and (0.6), we obtain for each p > 0 the inequality

ZNHC ), 2 - GoleC- N w
0

2ol T3 ]

3n
0 F('Z'f'l)

(b - a)’n/4 (2n) /4N _(f,) < +%.

Since each term ”Hn(p( ), A) = Gnlp( *)) ||w tends to 0 as A — -iq (R > 0), we see
that Eo ”Hn(( o, A) - Ga(( - )p) IIW — 0 as A — -iq (®#2 > 0). Thus, TqF exists
and T F =~ G.

[+ o0
Thus we have shown that Tq Eo F, = Eo TqFn, and since TqF € ¥, we see,
using Theorem 5, that

(o] 0 >8] <0
T 4T F“T_qTq%F ~T_q203Tanz ?T_qTanz Zo)Fn=F,

and the theorem is proved.
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5. THE TRANSFORMATION Tq APPLIED TO ENTIRE
FUNCTIONS OF INTEGRALS

We now prove that under mild conditions, functionals of the form (0.7) are ele-
ments of &.

[>o]
THEOREM 7. Let ®(z) = 2J__o a,z" be an entive function of ovder less than

Jour, let 6 € K|, and let
b
F(x) = @ S o(t, x()dt |.
a

Then F € &, and therefore for veal q (q # 0), TqF € & and T_qTqF = F.

Proof. The general term of the series defining F is

Fn(X) = an(Sb- 6 (t, x(t)) dt) =a, ‘S‘b (n) Sb 10 o(t: X(tj)) dt; «--dt,

a J:l

= a, n! SAn.S‘ -Hl G(tj, x(t;)) dty -+~ dty,
j=

where we have used (0.5) and the fact that the product of the functions 8 is a sym-
metric function of -t;, ---, t,,. Thus

F(x) = S}Q an(tl, eyt x(ty), e, x(t) dty - dty
n
where

n
folty, =5 tas wp, o, up) = agnt IT 0G4, u)) .
j=1

Now

n
N, (f,) = sup laynt II 0(t;, uj) I
(tl,---,tn)€An j=1

n
< sup lan[nt IL 65, <)) < nt|a,| [N (0)]® < +e.
(ty,--,tp)€ A, j=1

N

If € > 0, then

__n-l_og_p_. < 4 - &
log 1/|a,|

for all sufficiently large n (since & is of order less than 4); therefore

lan| < n-n/(4-8).
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Using Stirling’s formula, we deduce that

INGJED) |1/ < [0t |2y | 1M/2N;(0) < [n1]H/2n-1/(4-8)N(0) = o(n3/%) as n —+w.

[>e]
Since F(x) = 27,_0 Fpo(x), it follows that F € &, and Theorem 7 now follows from
Theorem 6.

Since there is considerable interest in function-space integrals of functionals of

the form
b
exp ( 5‘ 6 (t, x(t)) dt),

we point out that Theorem 7 applies to functionals of this type.
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