EXISTENCE OF MARKOV PROCESSES ASSOCIATED
WITH NONCONTRACTION SEMIGROUPS

T. F. Lin

1. INTRODUCTION

The connection between contraction semigroups and Markov processes has been
extensively studied. However, the relation between noncontraction semigroups and
Markov processes remains virtually unexplored. The purpose of this article is to
generalize the definition of Markov processes so that a large class of noncontraction
semigroups is associated with Markov processes. Although the results of this arti-
cle can be extended to the cases where the state spaces are more general, we shall
consider only the case where the state space Z is the complex plane or a subset of
it and is topologically equivalent to a complete separable metric space.

For a measure Q on a measurable space (M, 8), let |Q|, QF, and Q! denote
the total variation, the real part, and the imaginary part of Q, respectively. If Q is
a signed measure, let Q" and Q- denote the positive and negative parts of Q.

An abstract probability space (M, B, Q) is a finite measure space with
QM) = 1. Q is called an abstract probability measuve. If ¥ is a sub-o-field of %,
let Q¢ denote the restriction of Q to ¥. An element G € ¥ is called a 9-null set
if |Qg|(G) = 0. Note that the previous definition of a ¥-null set G requires also
the condition IQI(G) # 0 (see [5]). Here we drop this condition, because a set G
with |Q[-measure 0 can be neglected. The set Ng = {(dQg/d|Q|g) = 0} isa -
null set that contains every other % -null set IQI -a.e. A ¥-measurable r.v. (ran-
dom variable) Y is said to be ¥-infegrable if |Y| is |Qg|-integrable. The condi-
tional expectation E(X ] %) (see [5]) of a r.v. X given a sub-o-field ¢ is the
IQ] - a.e. uniquely defined r.v. Y, if it exists, that satisfies the conditions

(1.1) Y is %-integrable,

(1.2) Y =0 on Ng,

(1.3) S YdQ = S XdQ foreach Ge ¥.
G G

If X is bounded, then E(X l ¥) exists if and only if the condition

(1.4) S XdQ = 0
G

is satisfied for each ¢-null set G (see [5, Theorem 2.1]). In the case where Ile

and |Q|g are equivalent, condition (1.4) is always satisfied and hence E(X | ¥) al-

ways exists. The following definition is a generalization of the classical definition of
a Markov process.
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Definition. A family of r.v.’s y(t) (0<t<T) on M, B, Q) is a Markov proc-
ess if E{f(y(s)) | o(y(w), 0 <u<t)} always exists and is o (y(t))-measurable for
each bounded, measurable function f and for 0 <t <s < T.

2. EXISTENCE THEOREM
Let B = B(Z) denote the Banach space, with supremum norm, of all bounded,

measurable, complex-valued functions on Z. We write fo=w - lim f, for {f,} C B
if p(fy) =lim p(f) for every finite measure p on the Borel field § of subsets of

THEOREM 2.1. Let S, (0 <t < T) be a semigroup of linear opevators on B
satisfying the conditions

(2.1) S¢l =1,
(2.2) S¢f = w-limSif, éff=w-lmi,,
(2.3) [St]l < exp(ot)  for some b >0.

Then theve exists a Mavkov process x(t) (0 <t < T) such that
E{f(x(s +1)) | o(x(u), 0 <u<s)} = S f(x(s))

Jor fe Band s <t+s<T.

The proof of this theorem is similar to the case when {S;} is a contraction
semigroup, except that we need to use Theorem 2.3 below, which is our main result.
Let Q = ZIO’T] and x(t, w) = w(t) for w e @ and 0 <t <T. Let # denote the o-
field generated by the field @ of all cylinder subsets of  (see [3, p. 108]), and let
Fi=0(x(), 0<ut) for 0 <t <T. Itis easy to see (see [1, p. 51]) that {St} is
associated with a (complex) transition function P(t, x, F), which is defined on
[0, T] X Z X 3, such that P(t, x, F) = S;Ix(x), where Ir denotes the indicator func-
tion of F. In addition to the properties satisfied by an ordinary transition function,
P(t, x, F) satisfies also the condition

(2.4) sup |P|(t, x, Z) < exp(bt) (0<t<T),

X

because of condition (2.3). Let P denote the usual set function on @ defined by

P(t, x, F). Then P is countably additive (see [3, pp. 107-111]). Taking into account
(2.4), we have the inequality |P| () < exp(bT). Therefore, P can be uniquely ex-
tended to ¥ so that (2, #, P) becomes an abstract probability space.

LEMMA 2.2. Let G € & be a cylinder set, and let D € @. There exists a
cylindey set Dy € F such that

P@GD) = | ppap,
GDt
where Pp IS an F -measurable function and is bounded by ebT

Proof. Let G = {(x(ty), ---, x(t)) € E} (0<t; <+ <ty <), E € #B(Z),
D = {(x(s;), -+, x(s ) € F} (0<s, <--<s,), Fe B(Z™). If s, <t, then
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D € #,. Hence Dy =D and pp=1. Assume that 5 <t <syy; for some k <m.

Let Proj denote the first n +k coordinates’ projection from Z»*™ on zotk and
let A = (Proj)(E X F). Then the set

D¢ = {(X(tl), ooy x(ty), x(sq), o0, x(sp) € A}

is a cylinder set in & (. For each a € A, let (E X F)(a) denote the section of E X F
at a. Let s = max(t,, sy); then it is easily seen that

P(GD) = S ppdP,
GDy

pp(w) = S S P(spyq - S, %(s), dyyyy) = Pls, - St 1» Vo1 9m) s
(EXF)(a(w))

where a(w) = (x(t;, w), *--, x(t,, w), x(s;, w), -+, x(sy, w)). It follows from (2.4)
that pp is bounded by exp (bT).
THEOREM 2.3. IPJ- | and 'Plg are equivalent.

Proof. Let P,=P, and |P|, = |P[ . It is clear that |P,| is absolutely

Fy
continuous w.r.t. IPlt To see the converse, let H be an #;-null set. For each
€ > 0, there exist cylinder sets {FJk} (j=r,i; k=4, -) of gt such that

ik
HCUFfl,

n

2 PINFEL) < gePT,

n
for each j and k. Let {G } be the collection of all nonempty intersections of the
form FrJI L F};; F;‘ . The family {G,,| consists of cylinder sets of #,. It fol-
lows from (2.5) that, for each j and Kk,

#HcUc,,

m

(2.6)
jk ik/ ik -bT
23 PING,) < 2 PI(FY) <eePT.

m n
For each m and D € ¥, Lemma 2.2 implies that
|P(DG,) | < ePT|P.] (G-
Therefore, we obtain the relation

(2.7) |P| (G,,) < 4 sup |P(DG,)| < 4ePT |P| (G-
De @
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Now we combine (2.6) and (2.7), and we find that

|P|(®) < 2 |P|(G,) < 4ePT 25 |P|(G,,) < 16¢.

Since ¢ is arbitrary, !Pl (H) = 0. Thus [PIt is absolutely continuous w.r.t. lPtI.
This proves Theorem 2.3.

COROLLARY 2.4. E{f(x(s +t)) | # .} exists for each f € B and
0<s<s+t<T.

Pyroof of Theorem 2.1. Let X = f(x(s + t)),

Y = S.f(x(s)) = jz P(t, x(s), dy)f(y),

and ¥ = F5. Using Theorem 2.3 and the fact that Stf € B, we see that Y satisfies
conditions (1.1) and (1.2). From the construction of P on @, it is easy to verify that
X and Y satisfy condition (1.3) for each cylinder set G € ¥ and hence for each

G € 9. Therefore,

E{f(x(s +t)) | Fot = 8f(x(s))

and x(t) (0 <t < T) is a Markov process. This proves Theorem 2.1.

3. EXAMPLES

(a) Let {S;} be the semigroup of linear operators on B(R) defined by

Sif(x) = S glt, y - x)f(y) dy,
R

where g(t, x) = (2nt)-1/2 exp (tp? /2 - x2/2t + ipx) with p a real constant. Then con-
ditions (2.1) and (2.2) are satisfied. Also, |[Si|| = exp(tp2/2). The semigroup {S;}
is associated with a continuous, real-valued process (see [5]) whose transition den-
sity function is g(t, y - x).

(b) Let K(x, y) be defined on Z X Z so that sup,

SK(X, y) dy' =0 and

sup,, S |K(x, y)| dy < . Let K denote the integral operator on B(Z) with kernel
K(x, y). Then the solution u(t, x) of the Cauchy problem

u _
TR
u(0) = £

has an integral representation. More precisely, u(t, x) = E,_{f(x(t)) }, where x(t) is
equivalent to a jump process with waiting distribution e-tdt and jumping distribution
K(x, y)dy + 6(x - y)dy, where 6(x) is the Dirac function with unit mass at zero. For
a discussion of this, see [2, p. 317]). If Z =[-1, 1] and K(x, y) = cos n(x - y), then the
transition function can be found explicitly. Indeed,



EXISTENCE OF MARKOV PROCESSES 371
P(t, x, dy) = (' - 1)cos 7(x - y)dy + 8(x - y)dy .

In this case EX{ cos m(x(t)) } = et cos mx. Hence " etK” >et.

Let K be the infinitesimal generator of some semigroup of operators satisfying
conditions (2.1) to (2.3). By using the Markov property, we can discuss the integral
representation for solutions of the perturbed equation

ou _
3t Ku + Vu,
u(0) = £.

In particular, if Vu = v(x) u(t, x), then (see [4, pp. 168-171])

ut, x) = E, {exp ( St v(x(s)) ds) £(x(t)) }
0

under adequate assumptions. However, this is not the main interest of this article.
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