HOMOTOPY CLASSES OF MAPS BETWEEN PRO-SPACES
Jerrold W. Grossman

1. INTRODUCTION

A pro-space is an inverse system {XS} of spaces, though maps between pro-
spaces are not simply inverse systems of maps. The role of pro-spaces in ques-
tions about homology of nonsimply connected spaces and in shape theory is well
established [1], [2], [3], [4]. The philosophy is that more can be learned about
spaces by transferring the investigation to this larger, more general setting, where
nicer results hold, and then specializing back to spaces.

In [6] we developed the fundamental notions for a “homotopy theory” for the
category of pro-spaces indexed by the natural numbers. There was, however, no
explicit description of the set of homotopy classes of maps between two (nice) pro-
spaces. In the present paper we identify this set, [{Xs}, {Y<}], by showing that
there is a short exact sequence * —» K — [{X.}, {Y }] — C — *, in which both K
and C are limits of homotopy classes of maps involving the spaces comprising
{Xs} and {YS}. (In general this is an exact sequence merely of pointed sets.) We
also interpret this exact sequence as showing the relationship between the homotopy
category of pro-spaces and the pro-homotopy category studied by M. Artin and B.
Mazur [1], in which the set of morphisms between {X_.} and {Y } is the set C of
the sequence.

As a corollary we get a short exact sequence of A. K. Bousfield and D. M. Kan
[2] involving [X, lim Y¢]. An analogous result holds for “pro-homological algebra?;

we can identify Ext({MS}, {Ns}), for pro-modules {Ms} and {NS}, in terms of
Ext and Hom of modules. Finally, we can use this exact sequence to define the co-
homology groups of a pro-space, with coefficients in a pro-abelian group.

In Section 2, we briefly review notions of pro-spaces and limits. In Section 3,
the meaning of a homotopy between two maps is made more concrete, and we state
the main result. Applications are treated in Section 4, and the proof is given in
Section 5.

Note. D. A. Edwards and H. M. Hastings [5] have recently obtained many of the
results of this paper in a different homotopy category of pro-spaces.

2. PRO-SPACES AND lim!

In this section, we collect the facts about pro-spaces and lim! needed to state
the main theorem. A full discussion of pro-spaces can be found in [6].

Let @ be a pointed category. Then the category tow-@ has as objects fowers
in &,

--—)XS+1——>XS—+ e —» Xl—>XO:*,
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written {Xs}, and has as maps

Homtow—%({xs}, {Ys}) = lilin 1?._1‘)11 HOm%(Xi, YJ) .
J i

Denote by {*} the object of tow-@ each level of which is *; it is clearly the initial
and final object of tow-%.

Sufficient reflection on the nature of Hom, ,_ g ({X.}, {Ys}) will convince the
reader that every map f can be represented by a level map, that is, by a coherent
sequence of maps {fq X5 — Y.}, where {X;} and {Yg} are isomorphic in tow-%
to {Xs} and {Ys}, respectlvely. This can be achieved, for example, with a co-
final subtower of {Xs}. Thus throughout this paper we shall deal only with such
level representatives, and we leave it to the reader to see that we have really proved
statements about tow-# .

For the sake of notational simplification, we shall let p represent any map
Xsr1 — X within a tower. Thus the statement above that {f : X — YL} is co-
herent means that pf ,; =f p for each s > 0. Any map induced by such a map p
will also be denoted by p.

We are interested mainly in the case & = ¥, the category of pointed spaces,
that is, of pointed simplicial sets [2], [7]. Objects of tow-&, are called pro-spaces.

It was shown in [6] that tow- &, is a model category in the sense of D. G.
Quillen [9], that is, that tow- &, admits notions of fibration, cofibration, and weak

equivalence with certain fundamental properties, notably the following factoring and
lifting properties.

Factoring Property. Each map f: {Xs} — {Ys} has factorizations f = gh and
f=g'h', where

hi {X.} = {2}, e {zZs} = {vsh  wi{X} = Az}, g {zZ:} - {¥s},

and where h and h' are cofibrations, g and g' are fibrations, and g' and h are
weak equivalences.

Lifting Property. If f is a fibration and g is a cofibration in the solid-arrow
commutative diagram

{As} —> {Es}

,71
gl e lf

{Xs} I {Bs}

then the dotted arrow exists if either f or g is a weak equivalence.

The prototype model category is &, , in which fibrations are Kan fibrations, co-
fibrations are inclusions, and weak equivalences are maps that induce isomorphisms
on homotopy groups in all dimensions, at every basepoint.

Quillen [9] showed that one can develop homotopy theory in a model category,
much as one does in &, or in the category of topological spaces. In particular, we
define a homotopy between maps f{, g: {X - {Y } to be a map h: {X } — {Y }
for which the commutative diagram
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£V
{x,vx.} —5{v}
{ids\/ids}l d Th

{Xs} "('—e'——' {is}

exists, where e is a weak equivalence and {X,V X/} = {X } V {X,} is the direct
limit of the diagram {X.} < {*} — {X,}. If there is a homotopy between f and
g, then f is said to be homotopic to g. Further, define a fibrant object {Xs} to be
one for which {X.} — {*} is a fibration, and a cofibrant object {X } to be one

for which {*} — {X } is a cofibration. Then “is homotopic to” is an equivalence
relation on maps from a cofibrant object to a fibrant object. We form the Zomoiopy
category, Ho (tow-& *)’ by taking as objects the objects of tow- &, that are both

fibrant and cofibrant, and as maps from {X_} to {Y.} the set of homotopy classes
of maps, written [{X.}, {Y }]. As usual, we write [f] for the homotopy class of f.
Similarly, Ho (9’*) is the usual homotopy theory of pointed Kan complexes.

Because of the way fibration and cofibration are defined in tow-&,, all objects
are cofibrant, and the fibrant objects are the towers that are (up to isomorphism in
tow- &, ) towers of Kan fibrations --- = X ;1 — X4 — --- = X = *, such that each
X s has nontrivial homotopy groups in only finitely many dimensions.

If Xe &,, we shall denote the reduced suspension [7, p. 124] of X by SX.

Finally, we recall [2, Definition IX.2.1] the definition of lim! for a tower of

groups. Let -+ =2 G441 — Gg — -+ = Gg = * be a tower of groups and homomor-

. - - w w
phisms. Define an action of the group HS=O G on the set II s=0 Gg by

(80, €15 ) * (X0, X1, =) = (goxolpg) L, g1 x1(pg) "L, =) .

[~e]
Then lim! G = HS:O Gs/action. In general, lim! G4 is only a pointed set; but if
each Gg is abelian, then lz_rpl G, inherits an abelian group structure [8]. We leave
it to the reader to show that l(iin1 (as well as lim) is in fact a functor on tow-

(groups).

3. STATEMENT OF THE THEOREM

Let Ho (tow- 99*) be the homotopy theory of pro-spaces described in Section 2.

THEOREM. For {X }, {Ys} € Ho(tow-,), theve is a natural short exact
sequence

——

o
* — lim! lim [SX;, Y;] — [{x.}, {v.}] LA lim lim [X;, Yj] — ¥
i, pulie
N i j i

Remark. It is not necessary to assume that {XS} is fibrant. Moreover, the
proof does not use the fact that 7, Y, = 0 for almost all n.
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In this section we define @ and B; the proof that the definitions are sound and
the sequence is exact is relegated to Section 5. Before we proceed, however, we

need a more explicit description of homotopies in tow- SV* .

Let I be the standard 1-simplex (intuitively, the unit interval). Since we are
working with pointed spaces, we shall abuse notation somewhat and write X X1 for
the pointed space (X XI)/(* XI).

PROPOSITION 1. Suppose that {Xg}, {Ys} € tow-F,, that {YS} is fibrant,
and that f and g ave homotopic maps from {Xs} to {YS} . Then therve is a com-
mutative diagvam

{Xs vV Xs} &—* {Ys}

| I

{Xs} < {xX,x1}

in tow-&, in which the unlabeled maps ave the natural ones.

Proof. Since f and g are homotopic, there is a commutative diagram

{x,Vx} —Y& 5 (v}
{id vid,} l d TB
{x.} <—— {Xs}

with e a weak equivalence. By factoring e into a cofibration followed by a fibration,
both of which are also weak equivalences, we may assume that e is in fact already a
fibration. Next consider the solid-arrow commutative diagram

{xXsV X} 4 {Xs}

- e

{XSXI} . —> {Xs}

where the unlabeled horizontal map is natural projection and the unlabeled vertical
map is the natural imbedding {(idg X 0) \/ (idg X 1)}. By the Lifting Property, the
dotted arrow ¢ exists. Let h = h¢, and the desired diagram commutes.

COROLLARY 1 (Representation Theorem for Homotopies). Let f and g be
maps in tow- S, with the same domain and range, the range being fibvant. Then {

and g ave homotopic if and only if theve exist level rvepresentatives {fq: Xs— YS}
and {gs: X — YS} of f and g, vespectively, and a level map {hS: X XI— YS} .
such that hg( , 0) =f, and hg( , 1) = g5.

Proof. Choose a level representative of the diagram in Proposition 1.

Thus two maps are homotopic precisely when there is a coherent level homotopy
between level representatives of the maps. In contrast, two level maps {fs} and
{gs} represent the same element of lim lim[X;, Y;] if there exist level homotopies

—  —>

j i
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hg! £ ~ g, but not necessarily with phg,; = h p for all s. The theorem essen-
tially tells when such homotopies can be made coherent. Since lim lim[X;, YJ-] is
j i

simply Hom )({XS}, {Y.}), where Ho(#,) is the ordinary homotopy

tow-Ho (¥
category of pointed Kan complexes, the theorem shows that the projection
&, — Ho(&,) induces an epimorphism of sets of morphisms

Ho (tow- V*) — tow-Ho (Sﬁ*)

and identifies the kernel. Artin and Mazur [1] have studied tow-Ho (¥, ) in some
detail.

It is easy to define B. Let [f] € [{X.}, {Y.}]. Then B([f]) is the element of
l(i_m ILm [X;, Yj] represented by the homotopy classes of a level representative of f.
J 1
To define «, we first need the following obvious fact [9, p. 2.9].
PROPOSITION 2. Let X, Y € &,. There is a natural one-to-one correspond-

ence between [SX, Y| and the set of homotopy classes of homotopies from the con-
stant map *: X - Y lo itself.

For clarity in what follows, rather than using the simplicial definition of ho-
motopy, we shall compose homotopies h and j by letting h act on ? X [0, 1/2] and
letting j act on ? X [1/2, 1], and we write the result as j - h. This composition is
well-defined and associative up to homotopy.

We now define «. Since {Ys} is fibrant, we can assume {YS} is a tower of
fibrations. A class h in lim! lim [SXi, YJ-] can be represented by a sequence of
— -
j i
elements, the sth element in lim[SX,, Y_]. Without loss of generality we can as-
—
i
sume the existence of representatives [hg] € [SX.,;, Y.]; therefore hy is a ho-
motopy from * : X_ ., — Y toitself, h,: X | XI = Y_ . We define a sequence of
homotopies hg: X X1 — Y by induction on s. Let hy =* . I hg has been defined,
then hy,,; is a lifting of (hyp) - hg: X 4y XI— Y, that restricts to * on
Xs+1 X 0. Such a lifting exists because p: Y.} — Y is a fibration. Set
fs: Xg — Y equal to hi( , 1). Then a(h) = [{fs}].

A comment about the exactness of the sequence in the theorem is in order. In
general, we have only pointed sets, and exactness means that « is injective, B is
surjective, and the image of a equals 8-1(*). Of special interest is the case in
which {Xs} is a suspension S{Ws} = {sW}. Here [{X:}, {Y:}] has a group
structure, li_r_n lim[X;, YJ-] is also a group, and lim! li_l)n [8X;, YJ-] is an abelian

i1 51
group. One can verify that in this case o« and 8 are homomorphisms and the
extension is central.

4. APPLICATIONS

We first specialize to the case of a constant pro-space X, that is, a tower where
Xs =X for each s, and each p is the identity. The following proposition can be
loosely interpreted as stating that the functor lim from Ho (tow-#,) to Ho(¥,) is
—
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a right adjoint of the natural inclusion of Ho(¥,) in Ho (tow-&,); see [2, Section

XI.8] for a discussion of a similar situation with respect to the “homotopy inverse
limit” functor of Bousfield and Kan.

PROPOSITION 3. [X, {Ys}] = [X, lim Y ¢l.

Proof. The correspondence is given by B([{fs}]) = [lim f.]. To see that 8 is

well-defined, represent a homotopy between {f.} and {gs} by a level representa-
tive of the diagram in Proposition 1, where X = X for each s, and take the inverse
limit to produce a homotopy between B([{fs}]) and B([{gs}]). Clearly, 8 is bi-
jective, by the universal property of lim.

COROLLARY 2 (Bousfield and Kan [2, Corollary 1X.3.2]). If {Y.} is a tower
of fibvations in &4, then theve exists a natuval exact sequence

* — liml[SX, Y ] — [X, lim Y ] — lim[X, Y] — *.

Note that we have proved Corollary 2 only with the restriction that for each s,
the homotopy groups n,(Y) are trivial when n is sufficiently large. This is no real
restriction, however, because a tower {Ys} can be replaced by its Postnikov tower
{PsY s} (made into a tower of fibrations), where P Y is the sth Postnikov stage
[7, p. 33] of Ys.

Next we consider cohomology of pro-spaces, dealing here only with nontwisted
coefficients. Let {G.} € tow-(abelian groups). For n > 0, we can form the canoni-
cal fibrant Eilenberg-MacLane pro-space K({G.}, n), as {K(Gg, n)}. Define the

cohomology groups of a pro-space {Xs}, with coefficients in {Gg}, as

Hn({Xs}, {Gs}) = [{Xs} U {*}, K({Gs}’ n)]
COROLLARY 3. Theve is a natural shovt exact sequence

* — lim! lim H*-}(X;, G; — H'({Xs}, {Gs}) — lim lim HY(X;, Gj) — *.
— — — -

j i j i
In case 1G]} is constant, we get Artin and Mazur’s definition [1]

H*({X,}, G) = lim HY(X_, G).

In case {X S} is constant, we get a generalized cohomology theory
[ , lim K(Gg, n)] in which HO(*, {G,}) = lim G4, HI(*, {Gg}) = l(i_rnl Gs, and

H(*, {Gs}) =* (n > 2).

As a final application of the ideas involved here, we state an abelianized
analogue of the theorem (actually a special case of Corollary 3). The category tow-
(abelian groups) is, in a natural way, an abelian category [morphism addition, for
example, is induced by morphism addition in (abelian groups) at each level]. We can
try to relate the resulting constructs of pro-homological algebra to limits of con-
structs in homological algebra. In the following proposition, we consider the group
of extensions of one pro-abelian group by another.
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PROPOSITION 4. Let {M}, {Ng} ¢ tow-(abelian groups). Then theve exists
a natuval exact sequence of abelian groups
* — lim! lim Hom (M;, Ny — Ext({Mg}, {N;}) — lim lim Ext(M;, Nj — *.

— —

j i joi

5. PROOF OF THE THEOREM

We must prove that a) 8 is well-defined and Ba = *; b) B is surjective; ¢) «
is well-defined; d) « is injective; and e) ker 8 C im a.

a) The mapping B is well-defined, by Corollary 1, and Ba = *, since by con-
struction (a(h))g ~ * for each s.

b) To show that 8 is surjective, let {[g ]} represent an element of
lim lim [X;, Y;]; that is, let gs: Xg — Y5 be a sequence of maps that are coherent
5T
up to homotopy. We shall construct a level map {fs} of tow-&, suchthat {5 ~ g4,
then clearly B([{fs}]) = {[gs]}. Let fo = go. Assume, by induction, that fs has

been defined, and that f5~ g5 and pfg=1f,_;p. To define f44,, let hyy; be a
homotopy from pgg,; to fsp; since Y 1) — Y is a fibration, we can lift hg,) to a
homotopy from g ,, to f ;. Clearly, pf ,; =14p.

c¢) Next we show that a is well-defined. Note that o was actually defined on

IT 1im[SX;, Y;]. We show that each of the choices is immaterial. We observe
i
that every ambiguity arising from lim is absorbed in the definition of

—
Homtow_gp*[{Xs}, {¥.}]. Moreover, the choice of homotopy h or the choice

of lifting hy,,, introduces no ambiguity, because at each stage we can lift every
homotopy relating different choices to produce a coherent homotopy in

[{Xs}, {¥s}]

It remains to show that if sequences {hs} and {js} representing elements h

and j in HS lim [SX;, Y_] are related by the action that defines lim!, then

-i—) L et
a(h) = a(j). To this end, suppose h =k - j, where we represent k as a sequence of
homotopies {ks: Xg XI — Yg}. Thus we assume that hg = (kg p) - js - (Pksy1)~! .
Let kb =k. First make the choice of h'1 in such a way that the restriction to
[0, 1/3] is (k1) -!. Let j; (respectively, k;) be the restriction of hj to [1/3, 2/3]
(respectively, to [2/3, 1]). Clearly, this is a suitable choice of jj in the determina-
tion of a(j). Therefore hj =k -j; - (k;)-!. Clearly, k| is a homotopy between
j;(, 1) and h'l( , 1), and kyp = pk, . By induction, then, to get hl,,, we must lift

1]

(hip) “hg = (kip) - (sp) - (kgp) ™! - (gp) < dg - (pkgyy) ™t

(ksp) - G5p) +ig - (Pkgpy) ™t

We lift in such a way that we get (ks+l)_1 on [0, 1/4]; let js+1 be the restriction of
hg1 to [1/4, 3/4], and let ki, be the restriction of hiy; to [3/4, 1]. Then ji,,
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is a suitable lifting of (jsp) - js; also, ki, is a homotopy between j5,; ( , 1) and
hgy1(, 1), and kgp =pki,;. Thus {kL} is a (coherent) homotopy between a(h)
and a(j). This completes the proof that @ is well-defined.

d) By reversing the argument above we can show that @ is one-to-one. Indeed,
if {Hs} is a (coherent) homotopy between a(j) = {js( , 1)} and a(h) = {ni(, 1)},
let kg = (hg)~! - Hg - jg; it is easy to show that {h } = {ks} - {js}.

e) Finally, we show that ker § C im o. If {Hg} is a (noncoherent) sequence of

homotopies from * to fq: X XI — Y, let hg = (Hgp)~-! - (pHg+1). Then
[{fs}] = a({[hs]}), because we can choose h} = Hg at each stage.
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