FINITE GROUPS OF R-AUTOMORPHISMS OF R[[X]]

Matthew J. O’Malley

Let R be an integral domain with identity, let X be an indeterminate over R,
let S be the formal power series ring R[[X]], and let G be a finite group of R-
automorphisms of S. If SG={h ¢ S? #(h) =h V ¢ € G}, then we call SG the ving of
invariants of G. In [10], P. Samuel shows that if R is a local domain (that is, a
Noetherian integral domain with unique maximal ideal M) and R is complete in the
M-adic topology, then there exists a f € S such that SG = R[[f]].

In recent papers, O’Malley [7] and J.-B. Castillon [1], [2] have considered the
same problem. O’Malley shows that the same conclusion holds if R is a Noetherian
integral domain with identity whose integral closure is a finite R-module. In [1],
using simpler techniques than either Samuel or O’Malley, Castillon extends Samuel’s
result to the case when R is a quasi-local domain that is a complete Hausdorff space
in its maximal ideal-adic topology. In [2], using the results of this author [6], [7],
and [8], Castillon proves that SG = R[[f]] if R is a Noetherian integral domain with
identity. The specific results of [2] are contained in Theorem 5 and the corollary of
this paper.

In this paper, we prove the following more general result.

THEOREM 1. Let R be an integral domain with identily, let X be an indeter-
minate over R, let S be the formal power sevies ving R[[X]], and lel G be a finite

group of R-automorphisms of S. If f = H¢€ G ®(x) and SC denotes the ring of in-
variants of G, then SG = R[[f]].

We make strong use of Theorem 2.6 of [8] and Corollary 5.8 of [6]. In Section 2,
observing an easy extension of a proof given in [1], we derive a result (Theorem 4)
of prime importance in our proof of Theorem 1. In Section 3, we prove Theorem 1.

1. NOTATION AND TERMINOLOGY

All rings considered in this paper are assumed to be commutative and to contain
an identity element. We use the symbols w and wg to denote the sets of positive and
nonnegative integers, respectively, and the symbols C and C to denote containment
and proper containment, respectively. If R is a ring, then J(R) will denote the
Jacobson radical of R, and S will denote the formal power series ring R[[X]]. I

©0 .
g =E =0 ciX1 is a nonzero element of S such that the first nonzero coefficient of g

is ¢y, then we say g has order k, and we write O(g) = k. If d is an element of R,
then (d) will denote the ideal of R generated by d.

If A is an ideal of R, then the collection {Ak}, . of ideals of R induces a
topology, called the A-adic topology, on R. We write (R, A) to denote the topologi-
cal ring R under this topology. It is well known that (R, A) is a Hausdorff space if
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and only if ﬂ kew AKX =(0). We say that (R, A) is complete if each Cauchy se-
quence of (R, A) converges to an element of R.

2. THE CONDITION S = R[[f]]- 1+ R[[f]]- X + --- + R[[f]] - X!

Throughout the paper, G = {¢; }J=, will denote a finite group of R-automor-

phisms of S; by f we denote the product H?:l $;(X), and by SC the ring of invari-
ants of G. Since R[[f]] € 8¢, even when R contains proper zero divisors [7, Corol-
lary 3.5], the difficulty in any attempt to show that SG = R[[f]] lies in showing that
sS C R[[f]].

The following theorem, while not explicitly stated in [1], is essentially proved
there. It should be noted that a crucial requirement in the proof of the theorem is
that ¢;(X) # ¢;(X) if i # j. This is true because an R-automorphism of S is unique-
ly determined by ¢(X) [9, Theorem 4.5].

THEOREM 2. Lef R be an integral domain, and suppose that T is a subring of
S such that ¢(t) =t for each ¢ € G and each t € T. If

¢ Cc T-1+T-X+--+T-X2"1,

where n is the cardinality of G, then SG = T. In particular, if T = R[[f]], then
SG = R[[f]]-

Recently, O’Malley [8] has proved the following result.

o0 .

THEOREM 3. Let R be a ring, and let h = Eizo a;lX1 € S. Suppose that for
some n > 1, a, is a unit of R, and that the ideal A = (ay, a;, ---, a,_;) of R gen-
evates a complete Hausdovff topology on R. Then {1, X, ---, X0-1} is a free-
module basis for S over R[[h]].

n
Thus, if R is an integral domain, and if the coefficients of f = II i-1 %(X), £

(e} .
being written as a power series Eizo a; X', satisfy the hypothesis of Theorem 3,
then

S = R[[f]]- 1 +R[[f]]-X + -+ + R[[£]] - Xx™1.

Hence, by Theorem 2, we see that §G = R[[f]].

Now, if R is an integral domain, and if

o0
¢, (X) = 27 b(jl)XJ for i=1, ---, n,
j=0

then, for each i, (R, (b&i))) is a complete Hausdorff space and bgi) is a unit of R [6,

Corollary 5.8]. It follows that if f = Ek:O a, XX and B = (b(()”, e bé}n)
)

o ), then ay is
a unit of R and A =(ay, a;, ***, a,_;) € B. Moreover, since (R, (bf)1 ) is complete
for each i, then (R, B) is complete [4, Proposition 2]; hence, if (R, B) is also a
Hausdorff space, then it follows that (R, A) is a complete Hausdorff space [7, Corol-
lary 2.2]. In particular, if B is a principal ideal, generated by bg)i) for some i, then
(R, A) is a complete Hausdorff space. Therefore, we have proved the following
theorem.
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THEOREM 4. Let R be an integral domain, and suppose that G = {¢;}i-, is a
- A
finite group of R-automorphisms of S, wheve ¢;(X) = 27 3=0 bgl) X for each i. If

B = (bgl) y Tt bgn)) and if ﬂkew BX = (0), then S =R[[f]]. In particular, if
B= (b(()i)) for some i such that 1 <i <n, then SC = R[[f]].

Since b{l) € J(R) for each i [6, Lemma 5.1], it follows that if

N G = ),

kew

then (R, B) is a Hausdorff space. In particular, if R is Noetherian, then

ﬂke w @ (R))X = (0) [5, p. 12]; thus, we have the following corollary.
COROLLARY. Under the hypothesis of Theorem 4, if ﬂk€ © (J(R))k = (0), then
SG = R[[f]]. I particular, if R is Noethevian, then SS = R[[f]].

Remark. In general, if R is a ring and C = (¢, ***, cp) is an ideal of R such
that (R, (c;)) is a complete Hausdorff space for each i, it is not true that (R, C)
must be a Hausdorif space. However, the only examples of which this author is
aware involve rings T containing zero divisors. Moreover, for each such ring T,

the ideal C satisfying the condition ﬂk €w ck # (0) has the property that there

exists d € C such that ﬂkw (d)k # (0). Specifically, R. Gilmer [3] has con-
structed a ring R with zero divisors for which the ring S = R[[X]] admits an R-

automorphism sending X onto aj - X, where n:zl (ap) # (0). Therefore S isa
complete Hausdorff space in its (ag - X)-adic topology and its (X)-adic topology (by
Theorem 4.5 of [9]), but is not a Hausdorff space in its (ag - X, X)-adic topology.
However, in the case of a domain R, if C = (¢, -, cp) is an ideal of R such that
(R, (c;)) is a complete Hausdorff space for each i, then it can be shown that for each
d € C the topological ring (R, (d)) is a complete Hausdorff space.

It is now clear that if R is a domain and if the condition that for each
i=1, ---, p the topological ring (R, (c;)) is a complete Hausdorff space guarantees
that (R, (cy, -, cp)) is a Hausdorff space, then Theorem 4 proves the main result
of the paper. However, since we do not know the validity of this implication, we
develop another approach to the problem, in the next section. We make strong use

of the special case of Theorem 4 in which B is generated by bgi) for some i.

We conclude this section with a theorem that may be of some interest in itself.
A special case of the result is needed for the proof of Theorem 1. The more general
result is closely related to Theorems 2.1 and 2.6 of [8].

THEOREM 5. Let R be a ring, and let h € S be such that (S, h) ¢s a complete
Hausdovff space. By Theorem 2.2 of [9], there exists a unique R-endomoyvphism Yy,
of S that maps X onto h. Let R[[h]] denote the range of Yy, . If T is a subving of
S containing R[[h]], and if M denotes the R-submodule of S with basis
{1, X, ---, X0-11 "then the following are equivalent.

(i) T=hT®M and h is regulav in T.

(i) {1, X, -+, X*"1} is a free-module basis for T over R[[h]], and ¥, is
one-to-one.
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Proof. (i) — (ii). Since hT N M = (0), we see in particular that hT N R = (0),
and hence, by Lemma 2.5 of [8], ¥, is one-to-one. The remainder of the proof fol-
lows that of Theorem 2.6 of [8], and we omit the details.

(ii) — (). It g = E?:'Ol (Z}

0

o Or()h )XJeT then

n-1 0o
g = (ré0)+rél)X+ -I-r(()n"l)Xn'l) +h< 27 ( 27 rgj)hi'l>Xj)

j=0 \i=1

is an element of hT + M, and therefore T = hT + M. Suppose now that

n-1

hg = rg+r| X+ +r, X e hTN M,

n-1 w0 o .
where g = Ej:o (Eizo cgJ)hl)XJ. Then

n-1 co
and since {1 X ..., X211 ig a free-module basis for T over R[[h]], we see that

i+ E h'*! = 0 for each j. But, since’

z,l/h(—r + E c 1“) = -+ 27 e J)hlﬂ

i=0 i=0

and since Y, is one-to-one, it follows that ry = cgj) =0 for all i and j. Therefore,

hg =0 and hT N M = (0). Finally, we observe that the proof shows that if hg = 0 and
g € T, then g =0, so that h is regular in T.

3. FINITE GROUPS OF R-AUTOMORPHISMS OF R[[X]]

Throughout this section, G = {‘1’1}?:1 will denote a finite group of R-automor-
phisms of S, where, for each i =1, -+, n, we let ¢;(X) = E;ozo bgi)Xj = B;.

We begin with two lemmas.

LEMMA 1. Let R be a ving, and suppose that V| and Y, are R-automor-
phisms of S, where Y;(X) = EZO:O aj(i)Xj =y for i=1,2. Then the following state-
ments are true.

(i) If (R, (a l))) is a Hausdorff space, then the constant term of ¥, 0¥ ,(X) is
an element of the ideal (a(l) (2 ) of R.
(2)

(ii) If ay € (ay), then o) =uay, where u is a unit of S, and ag” =cag/,
where c¢ is the constant tevm of u and hence is a unit of R.

Proof. (i). Clearly, 1,0101//2( X) =y, (a,) =y, (EJ Oa( )XJ) . Since (R, ( (L) )
is a Hausdorff space, (R, (a l))) is a complete Hausdorff space [6, Theorem 4. 10]
and it follows from [6, pp. 65-66] that the constant term of ¥ ;(a,) is equal to
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n .
lim, Ejzo aJ(Z) (a(()l ))J , where the limit is taken in (R, (agl) )). But
n n
2 al® @Y = a@ +all) - T @ @i,

0 . j
J:O j=

—

and hence
n n
oo o (2) (ANG _(2) (1) .. (2) (,(1)yi-1
hhmj:o a (aO ) ay  tag hgn ijl a; (ao ) A

Thus, the constant term of ¥} ©Y,(X) is of the form a(()z) + agl) *r, where r € R;

hence (i) is true.

b b
(ii) Suppose that a; € (@,). Then there exists h = Epzo h,X € S such that

(o] [~ e] [>e o0
o = 27 alxd = 25 thp° 27 aé‘z)Xq = 2 dek,
j=0 7 p=0 q=0 k=0

where d, = Ep+q:k h, a((lz) for each k € wg. Therefore, equating coefficients of

like powers of X, we see that

agl) =dg = hoa(()z), a(ll) =d; = hoa(lz)—I—hla(éz) .

Thus, since a(gz) € J(R) [6, Lemma 5.1], and since a(ll) and a(lz)

Theorem 4.5], it follows that the element h aﬁz) = a(ll) - h; a(()z) is a unit of R [11,
p. 206], and hence h is a unit of R. Therefore, h is a unit of R [12, p. 131}, and
(ii) is proved.

are units of R [9,

In particular, we note that if R is an integral domain and y is an R-automor-

o .
phism of S such that ¥(X) = o = Ej:() a; x’, then (R, (ag)) is a complete Hausdorff
space [6, Corollary 5.8]; hence Lemma 1 is applicable to the elements of G, if R is
a domain.

LEMMA 2. Let R be a domain, and suppose that  is an R-automovphism of
S such that Y(X) = a. Then, for each k € w, the ideal (aX) is (a)-primary. In par-
ticular, fov eachh i =1, -, n and each k € w, the ideal (Bi‘) is (Bi)-primary.

Proof. Since R is a domain, (XX) is (X)-primary for each k € w; because ¥ is
an isomorphism of S onto S, the result follows.

We can now prove the main result of the paper.

Proof of Theorem 1. First we observe that (S, (f)) is a complete Hausdorff
space [7, p. 253]; as a special case of Theorem 5, it follows that if SC = {SG (PR,
then SG = R[[f]]. We propose to show that SG = {SG(PR. Since R C §C and f ¢ SG,
where O(f) > 1, it suffices to show that SC ¢ 3G + R. Moreover, if

e i G G G
g= Eizo g; X € S, then, since g5 € S, we see that g - gy € S~. Therefore, in
order to establish the relation SG C fSG + R, it suffices to show that if g € SG and
O(g) > 1, then g € fSC. The remainder of the proof deals with this last statement.
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0 s
Let T = {¢1(X)}?:1 = {Bi}?:l , where B; = Ejzo b(l)XJ for each i. We define
an equivalence relation ~ on T by saying that B; ~ ﬁj 1f and only if 8; and Bj are
associates (that is, if and only if there exists a unit u; ij of S such that 8; =u; BJ ;
note that since R is a domain, this is equivalent to the condition (181) = (B ). The
relation ~ partitions T into k disjoint equivalence classes E;, -, E (1 <k <n).
After suitable renumbering of the mappings ¢;, we may suppose that By, -+, By are
representatives for the equivalence classes Ej, -, Eyx, respectively (in other

words, that E; = {8 € T| (8) = (;)} for each j=1, -+, k). Then T = UJ 1 E; t
follows from Lemma 1 (ii) that if u # v and B, € E, and Bs € E_, then B, §/ Bs)
and B, ¢ (B.).

For ] = 1’ ceey, k, let
= {gr e 7| b5 € bgH}, By = {4 € 6] p(®) = € U5}

Note that if O(B;) = 1, then B; belongs to the equivalence class {8 € T| (8) = (X)}.
It follows then that E; C Uj for each j; but the equivalence class determined by X is
contained in each Uj ; in particular, X € UJ- for each j.

We show that H; is a subgroup of G for each j. Since X € Uj, the identity
automorphism belongs to H; for each j. Let ¢., ¢ € H;. By Lemma 1 (i), the
constant term of ¢, 0 ¢.(X) is an element of the 1dea1 (b(r) b{*)). But by definition

of H; and Uj, both b ) and b(s) are elements of (bo ) and hence ¢, 0 ¢ (X) € ;.
Therefore ¢.09, € H . Finally, if ¢_ € H , where ¢_ is not the identity automor—
phism, then ¢ . € G and hence ¢,. has f1n1te order say q Therefore, ¢q L qb
and, extending Lemma 1 (i) by induction, we see that 4’1- € HJ. .

For j=1, -, k, let f; = HqSeHj HX) = H3€Uj B. Then, by definition of Uy, it

follows from the special case of Theorem 4 that
= {a € 8| ¢(a) = a for each ¢ € HJ-} = R[[§]].

k
Moreover, since G = U j=1 HJ- , we see that

k

k
-Ns-=N R[[]] .
j=1 j=1

Since O(f;) > 1, it follows that if g € SG and O(g) > 1, then g € f;R[[f;]]. For each
i, let g =1t;1;, where t; € S.

Since E; C Uj, we see that f; —HﬁeU B E(HBeE B) let f; = h; (HBGE B)
where h; € S. By definition of Ej, if 8 € E;j, then B) = (BJ) hence, it follows from
Lemma 1 (ii) that for each j there exists a unit u; of S such that II Ber; B =Y B;?J' ,
where €; is the cardinality of the set EJ- . Therefore, for j=1, -+, Kk,

e e
g = thyuBy = wihy

where Wj € S.
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Now, in particular, g =w BT —WZBS € (sz3 ). Since Bl d (BZ) and since (622)
is (Bp)-primary (Lemma 2), it follows that w, € (BZ %). Let W)= V2B2 , where
vy € S; hence g =Wy 31 =V, Bz Bl . By an easy induction argument, it follows that

g=w H j=1 B , where w € S. Moreover, from the definition of the sets E and by
Lemma 1 (11) 1t follows that there exists a unit v € S such that

g =v" WVHBJ=V'IW B) ( gl =tf,
j=1 BeE, BeE

where t =v-!w e S. Finally, we observe that if ¢; € G, then tf = g = ¢.(g) = ¢;(t) £.

Thus, since R is a domain, it follows that ¢;(t) = t, so that t € SY. Therefore
g e fSG and our proof is complete.

Remark. In general, Theorem 1 is not true if R contains zero divisors (see
[10]). However, as was observed in [10] for the case of a local ring, there is a
partial result if R is Noetherian and contains no nonzero nilpotent elements. In
particular, if R is a Noetherian ring, if G is a finite group of R-automorphisms of

k k
S, if {P;};_; is the set of minimal prime ideals of R, and if (0) = ni:l P;, then
each ¢ € G induces an R/P;-automorphism ¢;" of R/P;[[X]], for i=1, -+, k. If,
for each i = 1, ---, k, the group G has the additional property that ¢." # y.° when-
ever ¢, ¥ € G and ¢ # {, then, following the proof indicated in [10] and using
Lemmas 3.7 and 3.8 of [7], we can show that S° = R[[f]], where f= Il 4. 5 ¢(X). The

crucial requirement is the condition that ¢, ¢ € G together with ¢ # y implies that
¢¥ # ¥ for each i; an example given in [10] shows that this does not hold in general.
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