PRIMITIVE GROUPS, MOORE GRAPHS, AND
RATIONAL CURVES
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0. INTRODUCTION

Roughly speaking, a Moore group is a primitive permutation group in which the
orbits of the stabilizer of a point actually achieve a certain theoretical bound on
their sizes. Such groups appear to be fairly rare; we prove some results limiting
the possibile degrees that Moore groups of fixed rank may have. First, we use
standard methods to reduce the problem to the study of certain graphs called Moore
graphs. With each possible diameter for Moore graphs we associate a polynomial in
two variables, one of which corresponds to the degree. - (Note that the standard -
group-theoretic and graph-theoretic meanings of “degree” do not correspond here; -
the degree of a permutation group is not the degree of the corresponding graph. The
terms are defined in Sections 1 and 2.) Theorems from Diophantine geometry then
yield information about reducibility and integral roots of this polynomial, which in
turn gives information about possible Moore graphs of the given diameter.

1. MOORE GROUPS

Let G denote a primitive permutation group of rank k + 1 on a finite set , and
for each element a of @, let G, denote the stabilizer of «. If for some a we ar-
range the orbits of G, in the order of increasing size, then the rate of growth of
these orbits is subject to some restrictions (see [13, Section 17] and [12, Proposition
4.5]). In particular, if the order d of A, the smallest nontrivial orbit, is strictly
smaller than the other orders, then the latter are bounded by d(d - 1), d(d - 1)2,

-+ -,d(d - 1)k-1 If these bounds are actually attained, we call the group a Moore
group of valence d. Moore groups of rank 3 are classified in [1] and [6]. A partial
classification follows from graph-theoretic results in [9].

THEOREM 1. For each ever vank, theve are only finitely many possible
valences (hence only finitely many possible degrees) for a Moove group.

THEOREM 2. Foy each vank k + 1, the sel of integers that are not possible
valences for a Moove group of vank k + 1 contains an avithmetic progression.

Definition. A function f from § to the integers is called a komogeneous weight
Sfunction if EGGA £(89)/f(a%) is independent of o € G.

THEOREM 3. For each k 2 5, there are only finitely many d for which there
exists a Moove gvoup of vank k + 1 and valence d with a nonconstant homogeneous
weight function.

The proofs will be given in the fbllowing sections.
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2. MOORE GRAPHS

We make £ into an undirected graph by putting an edge between a9 and 69,
for all 6 € A, o0 € G. These graphs have been studied for arbitrary permutation
groups in [12]. In particular, it is known that if in our case the group is a Moore
group of rank k +1 and valence d, then the resulting graph is of diameter k and
degree d and has the maximum number of vertices subject to these conditions.
Such graphs are called Moore graphs. The following theorems on Moore graphs
imply the corresponding theorems on Moore groups.

THEOREM 1'. For each odd diameter, theve are only finitely many possible
degrees for a Moove graph.

THEOREM 2'. For each positive integer k, the set of positive integers d that
are not degrees of any Moore graph of diameter kK contains an arithmetic progres-
sion.

For each graph, we consider functions from the vertices to the complex num-
bers. We define the adjacency map A on this vector space by saying that at éach
vertex the value of A¢ is the sum of the values of ¢ at the adjacent vertices. The
map A is represented, with respect to the.obvious basis, by the adjacency matrix of
the graph.

A homogeneous weight function for a primitive permutation group is an integral-
valued eigenvector of the A of the corresponding graph, and its eigenvalue is there-
fore rational. Conversely, each rational eigenvalue of A gives rise to such a ¢,
whose values may be taken to be integers. Theorem 3 will therefore follow from
Theorem 3'.

THEOREM 3'. For k > 5, theve ave only finitely many d for which a Moove
graph of diameter Kk and degree d can have a rational eigenvalue other than d.

The gap between our nonexistence results and known existence results is enor-
mous. For each k, the (2k + 1)-gon is a Moore graph of diameter k. For k = 3,
there are no others. For k = 2, there is one of degree 3 (the Petersen graph), one
of degree 7, and possibly one of degree 57, but there are no others (see [9]). If
there is one of degree 57, it does not arise from a Moore group [1]. No other Moore
graphs are known. Nonexistence results for many values of d and k are obtained,
by entirely different methods, in [5].

Note that for each degree and each diameter, there are only finitely many
Moore graphs; in no known case are there more than one.

3. THE GEOMETRY OF THE POLYNOMIAL OF MOORE GRAPHS

For each regular connected graph there is a monic polynomial f, with integer
coefficients, such that f(A), applied to a vector (function) from the natural basis, is
identically 1 (or, equivalently, such that {f applied to the adjacency matrix gives the
matrix all of whose entries are 1); the polynomial f of smallest degree with these
properties is called the polynomial of the graph (see [8]). Its zeros are distinct,
and they constitute the set of eigenvalues, other than the degree of the graph, of A.
It is easy to see that for a Moore graph the polynomial depends only on d and k. If
we let f(x, y) denote the polynomial of a Moore graph of diameter k and degree
d =y + 1, then the f; satisfy the relations
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f1(x,y) = x+1,
f2(x,y) = x¢+x -y,
(%, y) = xf (%X, ¥) - v (%, y)

(for details, see [9]).

It follows immediately that f). is monic in X, so that in each solution of the
equation fi(x, y) = 0 in which y is an integer, x is an algebraic integer; hence the
only rational solutions in which y is integral are integral.

We construct the corresponding homogeneous polynomials Fy = Fi (X, Y, 2),
which satisfy the formulas

F, =X+%, F,=X*+X%Z-YZ, ¥, =XF,-YZF, .
1 2 k+1 k k-1

If we let Gy = G (X, Y) and Hy = H. (X, Z) denote the polynomials by which the
highest powers of Z and Y, respectively, are multiplied in ¥, , then

Gy =1, G =X-Y, Gaps1 = -YGop.ys Gayyz = XGppyp - YGyys
Hy =X+2, H,=-2Z, Hyyy =XHy -~2ZHy 1, Hyy, = -ZHy .
From this it follows by a simple induction that

Gorep = YR, Gop = ()KL xy®-! 4+ YY),

Hypq = CR(+1)xz8+ 2z ) Hy = (-)kzZE,

Geometrically, this means that if C; is the curve in the projective plane deter-
mined by Fj = 0, then

(i) Cak4+1 has a k-fold point at (0, 0, 1) with k-fold tangent Y = 0, and a
(k + 1)-fold point at (0, 1, 0) with k-fold tangent Z = 0 and simple tangent
k+1)X+2Z =0,

(ii) C,x has a k-fold point at (0, 0, 1) with (k - 1)-fold tangent Y = 0 and
simple tangent kX +Y = 0, and a k-fold point at (0, 1, 0) with k-fold tangent Z = 0.

This is enough to show that the Cy are of genus zero, that is, can be para-
metrized. In fact, it gives us an explicit parametrization. The quadratic curves
having tangent Y =0 at (0, 0, 1) and Z =0 at (0, 1, 0) form a pencil, which is
given by the equation pX2 +AYZ = 0. Each has intersection multiplicities 2k at
(0,0, 1) and 2k +1 at (0, 1, 0) with Cpy ] , and intersection multiplicities 2k - 1
at (0, 0, 1) and 2k at (0, 1, 0) with Cp; . Hence each has exactly one further inter-
section with each C, . Conversely, each point of Cj (other than (0, 0, 1) and
(0, 1, 0)) is contained in exactly one curve of the pencil.

4. PROOFS OF THE THEOREMS
Proof of Theorem 2'. The curves are, in particular, irreducible. Hence, by

Hilbert’s irreducibility criterion [7], the set S of integral y, for which fi(x, yg) is
irreducible in Q[X] is infinite; by results in [3] and [10], the set S even contains an
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arithmetic progression. But A. J. Hofmann and R. R. Singleton have shown [9] that
for such yg there exists no Moore graph of degree d =y +1 and diameter k. This
completes the proof.

We return to the affine plane and derive explicit formulas for the parametriza-
tions. Here our quadratic curves take the form -tx2 +y = 0, and the remaining in-
tersection with f,(x, y) = 0 is solved for by substitution.

A simple recursion shows that

f101(%, tx2) = xFey(t) +xK-ley (1),
where
eo(t) = el(t) =1 5 ek+1(t) = ek(t) - tek_l(t).

In particular, the degree of e is [k/2]. An argument of Sturm type shows that
no two consecutive ey have a common root, and that each e) has distinct roots, all
of which are real. The parametrization of the affine part ¢, of C, is given by the
equations

x = -ep_y(t)/erlt), y = tx®.

We denote the rational function of t describing y by h(t). Note that it is of de-
gree k in t.

Proof of Theorem 3'. For k > 6, x has three distinct poles; for k = 5, x has
two and y has another one at t = . Hence, by C. L. Siegel’s theorem (see [11, pp.
242-245]), there are only finitely many integral points on cy ; hence, by an earlier
remark, there are only finitely many integral values yg for which fi(x, yo) has a
rational root, in other words, such that the adjacency map of a Moore graph of di-
ameter k and degree d = yg + 1 has a rational eigenvalue other than the degree.

Proof of Theorem 1'. Suppose that for some k there are infinitely many pos-
sible degrees for Moore graphs, hence, again by [9], infinitely many integral values

yo of y for which fi(x, yg) is reducible. If we let x;, X3, ***, X,. denote the zeros
of f(x,y) in some algebraic closure of Q(y), then for some S C {1, 2, -+, r}, the
field
L=Q(y, 6= 5 xg) 2= 2 xgxg, s 6= 1L x)
a€S o,B€S aE€s
a#Ff

has infinitely many places that take y and the £; to rational integers. By Siegel’s
theorem, L is of genus zero, and we can choose a uniformizing parameter z such
that L = Q(z); since the ring of integers has only finitely many units, Siegel’s theo-
rem further tells us that z can be chosen so that y and the &; are polynomials in z
with rational coefficients, say y = g(z). Hence f(x, g(z)) is reducible as a poly-
nomial in Q(z)[x].

This implies that [Q(x, z) : Q(z)] = [Q(t; z) : Q(z)] is less than [Q(x, y) : Q(y)].
Hence h(t) - g(t) is reducible.

Now, by Proposition 2 of [4], this implies that there are rational functions h;
and h, and polynomials g, and g, such that

(i) deg(hy) > 1, degl(g;) > 1,
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(i1) hy(hp(t)) = h(t), gi(gx(z)) = gl2),

(iii) the splitting fields of h;(t) - y and g;(z) - y (in a fixed algebraic closure
of Q(y)) coincide (we denote this field by M),

(iv) hy(t) - g,(z) is reducible.

Now consider a place of M taking y to «. We compute its ramification over
Q(y) in two different ways.

If we adjoin a root tg of the equation h(t) - y = 0 to Q(y), then each place ex-
tending y = « has ramification degree 1 or 2, since the poles of h(t) are of degree
1 or 2. Hence the same holds for roots of the equation h(t) - y = 0. Since the
ramification is tame, it follows that if we adjoin all the roots we still get ramifica-
tion 1 or 2.

Now if we adjoin a root of the equation g(z) - y = 0 to Q(y), the ramification
degree of each extension of the place y = « is the degree of g;. Hence, since the
ramification is tame, it follows that if we adjoin all the roots, the ramification de-
gree is still the degree of g;. We conclude that the degree of g, is 2 and
[M: Q(y)] = 2. Hence the degree of h; is 2, and the degree k of h is even.

Remark 1. It seems reasonable to investigate the properties of the Galois
group G of the splitting fields of h(t) - y over Q(y). For example, one could prove
Theorem 1' for even diameter k if it could be shown that G, acting on the roots of
this polynomial, has no system of imprimitivity of order k/2.

Remark 2. Recent work of A. Baker and J. Coates [2] has lead to effective
bounds on the integral points of curves such as those considered here; in some
cases, the effective bound yields a practical bound. This could be used to determine
all Moore graphs of a prescribed diameter admitting a homogeneous weight function;
however, the calculations might still be unfeasible at the graph-theoretic level.

5. ELEMENTARY ANALYSIS OF THE INTEGRAL POINTS

We can use the parametrizations above to get some information on the integral
points of ¢, . For such points, t = y/x% is rational, say t = u/v, where u and v are
relatively prime integers. In the expressions for x and y, multiply numerator and
denominator by a high enough power of v to make them polynomials in u and v.
Then our recursion formula for the polynomials e, shows that if x and y are inte-
gers, then no prime can divide the bottom of the expression for x. For even Kk, this
is also sufficient; but for odd k, there must, in addition, be no prime dividing v.
Hence we have the following result.

PROPOSITION. Tke integral points on cx ave given by
(i) integer solutions t of the equation e (t) =+ 1, if k is odd,

(ii) integer solutions u, v with (u, v) = 1 of the equation vk/2 e (u/v) =x1,4i k
is even.

(For odd k, this gives Theorem 3' without the use of Siegel’s theorem.)

In particular, for k = 3 the only integral points are seen to be (0, 0) and (1, 0)
(as is shown in [9]). The only integral points for k = 5 are (0, 0) and (1, 0), and for
k =7, they are (0, 0), (-1, 0), and (-1, 1). Except for the last (which corresponds to
the regular 15-gon) these points do not arise from Moore graphs.
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However, for k = 4 there are infinitely many solutions of the equation
- 3uv +u? = +1. We obtain them by taking (v - 3u/2) + v5u/2 to be a unit in
(1/—), that is, a power of (1 - V5)/2. It is not known whether any of the solutions

come from Moore graphs. The values t = 2, 2-;—, and 3, for example, would corre-

spond to degrees 18, 64, and 75, respectively, quite beyond the range of elementary
calculation.
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