THE MARX CONJECTURE FOR STARLIKE FUNCTIONS
J. A. Hummel

1. INTRODUCTION

In 1932, A. Marx [4] conjectured that for each fixed z, in the unit disc, the set
of possible values of f'(z ) for all f in the class of starlike functions is contamed in
the set of all values of k' (z) for |z| <|zg|, where k(z) = z/(1 - 2)2 is the Koebe
function. Marx showed that this must be true for |zg| < sin 7/8 = 0.382 ---. R. M.
Robinson [5], [6] improved the results of Marx, and more recently, P. L. Duren [1]
proved that the conjecture holds for lzol <o. 736

In this paper we present a counterexample, which shows that the conjecture is in
fact false. We also prove that every point on the boundary of the set of possible val-
ues is given by a function having at most two slits; this simplifies the problem con-
siderably.

First, we must state precisely the form of the problem as we shall investigate
it. Following Robinson [5], [6], we replace Marx’s original formulation of the prob-
lem by the investigation of the domain of variability of log f'(zg). This has the ad-
vantage of making the mappings involved univalent, at the expense of requiring care
in keeping track of the proper branch of the logarithm.

2. THE MARX REGION

Let U denote the unit disc {z: |z| <1}. Let #* denote the class of starlike
Junctions, that is, the class of all functions that are regular and univalent in U with
£(0) = 0, £'(0) = 1, and that map U onto a domain starshaped with respect to the ori-
gin. For zy € U, we define the Marx vegion for zg as

(2.1) M(zg) = {w: w=1logf'(zy), f € ¥*}.

The determination of the branch of the logarithm is fixed by the specification
that 0 ¢ M(zo) and that £(z) =1 £(tz) (0 <t <1). Then f,(z) = (z), and since

f.(z) = z +a, tz® + -+, we may let fo(z) = z. Each f, is in ¢*; hence log fi(z,)
(0 <t < 1) defines a path in M(zg) joining 0 to log f'(zg).

The set M(z,) is bounded, because of the well-known bounds on f'(z) for fe g*.
Since #* isa normal family, M(zO) is closed. It is symmetric about the real axis;

for if f(z) = 2o a,z" isin F* then Eanz“ is in ¥*.

The set M(zo) depends only on r = |zO| To see this, note that f € #* implies
e-i@ f(ei® z) € $* for every real «. From this one easﬂy shows M(zg) = M(| ZO|)
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For each r (0 <r < 1), define
(2.2) K(r) = {w:w=1logk'(z), |z| <r},

where k(z) = z/(1 - z)? is the Koebe function. Thus, k'(z) = (1 + z)/(1 - z)3. Again
we must specify the branch of the logarithm. We do so by requiring that 0 is in the
set and letting the path log k'(tz) (0 <t < 1) continuously define the branch.

Duren [1] observes that the mapping log k'(z) is starlike, and he proves that it
is convex for |z| < 0.886 ---. It is difficult to prove either of these facts, but one
easily sees that the mapping is univalent, by considering the image of the unit circle
z = elf under the mapping

w = log k'(z) = log[1+2)/(1-2)]-21log(1-2).

As 6 varies from 0 to n, (1 +z)/(1 - z) varies decreasingly along the imaginary
axis from « to 0, while 1 - z moves from 0 to 2 along the lower half of the circle
with center 1 and radius 1. It follows that the real part of w decreases from +
to -, while the imaginary part of w decreases from 37/2 to 7/2.

The Marx conjecture is equivalent to the statement that

(2.3) M(r) = K(r) ((0<r<1).

3. THE BOUNDARY OF THE MARX REGION

THEOREM. Choose r (0 <r < 1), and let w, be a boundary point of M(r).
Then wq = log fo(r), where fq is some function in F* mapping U onto the exterior
of at most two radial slits. That is,

fo(z) = z/(1 - ' ¥ 5)2s (1 - 192 5)2-2s ,

where ay , ap ,and s ave rveal and 0 <s < 1.

Remavk. The author has been told that this result has also been obtained by
Z. Lewandowski and A. Wesolowski.

Proof. Since M(r) is closed, there exists at least one function f; ¢ 9* that
will produce the boundary value wg = log f(r). Set
fo(r) = A, fi(r) = B,
where B = exp wg. Define
D(r, A) = {w:w=1'(r), f(r)=A,fe *}.
The point B is in this set, so that the set is not empty. Moreover, D(r, A) is

clearly closed and bounded.

If f; and f, are two functions in &*, then h = f(ll 't)ft2 is in ™ for each real
t (0 <t <1),if we choose the proper branches so as to obtain the correct normal-
ization at 0. This follows from the relation
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zf)(z) z £5(z)

zh'(z)
f,(z) * f,(z)

(3.1) hz) - (1-1)

and the fact that a normalized f is in &* if and only if zf'(z)/f(z) has a positive
real part in U.

If f)(r) = f,(r) = A, then h(r) = A also, and (3.1) thus shows that D(r, A) is a
convex set.

Next we show that B is a boundary point of D(r, A). Suppose to the contrary
that the open set V = {w: |w - B| <p} is contained in D(r, A). For each w; € V,
there must exist an f; € $* with fj(r) = w; and f)(r) = A. Let hg =f{l-s)f]

(0 < s < 1). Then the derivatives hg(r) determine a path from B to w; in V, and

log hi(r) will thus vary continuously from wq to log wj. It follows that the map-
ping w =log w carries V onto a neighborhood of wg. This contradicts the assump-
tion that wq is a boundary point of M(r).

Since B is a boundary point of the compact, convex region D(r, A), it must lie
on a supporting line. That is, there must exist some A = e!@ (@ real) such that
%AB = max{%\w: we D(r, A)}.
This is equivalent to the assertion that f; is a solution of the extremal problem

(3.2) max {RAf'(r): f(r) = A, f e 9*}.

We observe that f; might not be the only solution; but this causes no difficulty.

Note that (3.2) is an extremal problem with a constraint. The method of La-
grange multipliers can be applied to show that there exists a complex number A;
such that f; is also a (local) solution to the extremal problem

(3.3) max {R[Af'(r) + 1 f(r)]: f € 9*}.
(The applicability of the method of Lagrange multipliers will be discussed in Section
5, at the end of this paper.)

Theorem 3 of [3] then applies and shows that f,, the solution of the extremal
problem (3.3) must be precisely of the form specified in the conclusion of the theo-
rem. This proves the theorem.

4. THE COUNTEREXAMPLE
The boundary of the region K(r) of (2.2) is the image of |z| =r by the mapping

1+z

(4.1) b(z) = Iog—d'_—z)—3 .

Let z = reif; then the inward normal to the boundary is given by - ab(z)/dr. Except
for the factor 2/r, which is real and positive, this is

z(2 + z)

(4.2) n(z) = - 1-22)
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Notice that since n(z) # 0, the boundary of K(r) (0 <r < 1) is an analytic curve.

Every two-slit function f(z) of the type described in the theorem of Section 3
can be written as a combination of two Koebe functions:

l-s s
f(z) = (————— ) ( z )
(1 - e 1 z)2 (1 - elazz)2

As s varies from 0 to 1, we obtain a path that joins the two Koebe functions in the
space of starlike functions. Therefore log f'(r) also follows a path in M(r) joining
two points on the boundary of K(r). If we set

z) = rewl1 and Z, = relaz s
we easily compute that
1+ 2z; 1-z (zp - z;)
(4.3) log f'(r) = log———= +2s log( ) +1og|: 1+2s .
1-2)° 1-2; (1+2)1 - z,)

The proper branch of the logarithms must be chosen in a continuous manner.
We accomplish this in (4.1) and in the first term of the right-hand side of (4.3) by
choosing

|arg(1+2)| <7/2 and |arg(l - z)| < n/2
and letting
3b(z) = arg(1 +1z) - 3arg(l - z).

In the second term of (4.3), we similarly choose |arg(l - z;)| < 7/2 and
iarg(l - zz)l < w/2. The third term is more difficult. However, we see that if we
fix z, € U, then for each z, € U the value of the expression inside the brackets lies
in the half-plane not containing 0 and bounded by the line through 1 - s making an

angle
S O S Bl
B =argqj (z, +1)

with the real axis. We see that 0 <g; <7, and hence we may fix the branch of the
third term in (4.3) to have an imaginary part between -7 and +7. This is exactly
the principal value of the logarithm.

The tangent vector to the path defined by (4.3) at s = 0 is given by the expres-
sion

Z(ZZ-Z]_) 1-2z
(4.4) 2t(z, z,) = (1+zl)(1—z2)+210g(1-z;) .

In order to determine the angle at which this path leaves the boundary of K(r), we
compute the ratio

Hz, , z;) (2 - 2,)(1 - 2)) (1 - 29) 1-2z )

(4.5) Rz, 2y = n(z;)  z,2+z)(0-2;) z(2+z)) g (1= Z,

If R(z;, z,) has a positive real part, the path defined by (4.3) departs from
b(z;) in a direction leading into the interior of K(r). If %R(z;, z,) <0, then the
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path must go outside the Koebe region. That is, if there existan r (0 <r < 1) and
two complex numbers z; and z, with |zll = IZzl =r such that % R(z;, z,) <0,
then there exists a two-slit function f(z) such that log f'(r) is outside of the region
K(r). This would be a counterexample to the Marx conjecture.

With the help of a computer, we have investigated the function R(z, , z,) for
various values of r. When we found values that made the real part negative, we
searched further to fry to find the best values. That is, since

s {R(z] , zp)}
3 {R(Z]_ ’ ZZ)}I

T(Zl , Zz) = |

is the cotangent of the angle the path makes with the inward normal, we adjusted the
values a) = arg z; and a, = arg z, to obtain the minimum T. Some representative
results of the computations are listed in Table 1.

r Min T o ay
0.99 -0.303965 2.346 6.177
0.96 -0.084978 2.548 6.006
0.95 -0.040465 2.596 5.944
0.94 -0.002789 2.641 5.874
0.93 +0.029330 2.688 5.787

Table 1.

The computations suggest that a counterexample of the specified form exists for
each r > 0.94. Since the proof of the accuracy of numerical computations is tedious
at best, we offer here an example that can be checked by hand.

Using the machine computations as a guide, we set

Z1 = "99 " " 99’ 2 7 ga1 841

These two points are both on the unit circle. From (4.5) we compute the expression

R( ) - (390,224 + 48,778 ) 812 + 20091)
21, 22) = 317,057 58

882 + 15961\ (1, 1,173,845
+( 1885 )(21°g 84l ‘9)’

where 6 =7 - Arctan 28(1(2)39 . This gives the result
R(z,, z,) = -19.2629 --- - (38.759 =)i ,

and there is no question that the real part is negative. The continuity of R(z;, z})
then shows that there must exist z; and z, with Izll = IZZ| =r < 1 such that

RR(z,, z,) < 0. Hence the Marx conjecture is false.

Figure 1 shows a sketch of the region K(0.99). The lack of convexity is evident.
The dotted curve labeled y; shows the path defined by (4.3) from b(z;) to b(z,),
where

|z, = |22] =0.99, argz; = @;=2.346, argz, = a,=6.177.
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Figure 1.

A second curve, labeled v, , is similar, except that the endpoints are defined by
ap = 1.9889 and ap = 6.0650. This curve appears to be the one that goes farthest
outside K(0.99). It is clear from the figure that all points on the two curves lie
within the convex hull of M(r). We have computed other curves for various end-
points &) and @, and have found none that goes outside this convex hull. Thus, one
is led to the conjecture that M(r) is contained in the convex huill of K(r).

However, a careful search of examples for r = 0.99 found no two-slit functions
that come closer to filling out the convex hull of K(r) than the curve Y2 . It there-
fore seems unlikely that M(r) is actually the convex hull of K(r).

5. REMARKS CONCERNING LAGRANGE MULTIPLIERS

The method of Lagrange multipliers is not commonly applied to extremal prob-
lems involving complex quantities as in Section 3. There are also some complica-
tions in the use of the function class &*, since this is not a linear space. In this
section we give some of the details of the proof that a function fy extremal with
respect to (3.2) must also be extremal with respect to (3.3).

To be more precise, we shall show that corresponding to every solution f; of
the extremal problem (3.2), there exists a complex number A; such that if
f=1fy+e¢+o(e) (where ¢ denotes an “allowable” variation of the type used in the
proof of Theorem 1 in [3]) is in &, then

R{AE'(r) +2 1K)} = R{AEp(r) + 1) folr)} + ofe) .

This is all we need in the proof of Theorem 3 of [3] to establish that f; has the de-
sired form.

In its usual form, the method of Lagrange multipliers applies only to linear
spaces; but the set of functions in &¥* does not form a linear space. However, an in-
spection shows that the proof of Theorem 3 in [3] requires only the knowledge that
fy is extremal with respect to a set of allowable variations. In [2] and [3], it is
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shown that if fy is a function in F* ¢ is a point of U, and 6 is a real number,
then there exists a function 6f(z; 6, ¢), such that to each positive ¢ there corre-
sponds a function f € &* of the form

(5.1) f(z) = f,(z) +€0f(z; 0, £) +ofe) .

The 6f used here is that defined in [2], except that here we include neither the £ nor
the o(¢). In our case, the o(ge)-term is uniform for all # and ¢ and for all z ina
compact subset of U. While this is not specifically shown in [2], it is easily deduced
from the fact that the Schiffer variation has the same property.

Let 7 be the real linear space whose elements are finite linear combinations of
these 6f(z; 6, €), with real coefficients. Again, the proof in [2] shows that every ele-
ment of 7 is an allowable variation.

Next, we turn ¥ into an inner-product space. This can be done in many ways,
but the following is convenient. For each ¢ € ¥, set

o0

a2) = ¢ (F2) = RENOES

1 +rz

We see that cy(¢) = ¢(r) and c,(¢) = (1 - r?)¢'(r). For n=0,1,2, ---, define

a, (¢) = %c (4),

a2n+1(¢) = 3Cn(¢) .

With each ¢ in ¥ we have now associated a real sequence {a, tn-g- Fix R
(0 <R < 1). Since & is analytic in U, 27 @2R" < «, and

(¢, ) = ?O R o (¢) @, ()

is an inner product on 7.

Let ¥’} be the completion of ¥ with respect to the norm || qb” = (¢, »1/2 . The
elements of 7', may no longer be analytic in all of Uj; but they are analytic in some
neighborhood of r whose size depends only on R. The space ¥; is now a Hilbert
space.

Let A = el® be the complex number used in (3.2). Set A = o, +io 3, where o2
and o5 are real. Then

1
J(¢) =%A¢'(r) = m [0, () - 03a3(9)]

is a bounded linear functional on 7";. Since ¥ is a Hilbert space, there must
exist a ¢, € 7| such that J(¢) = (¢, ¢5) for all ¢ € ¥;. (This ¢ need not be the
function [Ro , - i03](z - r)/R3(1 - r?), since this function may not be in 7.)

Similarly, there must also exist ¢y and ¢, in 77} such that for each ¢ € 7,

ap(e) = (p, dg) and  a(¢) = (o, ¢1).
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Notice that ¢(r) = (¢, ¢g) + i(d, ¢1).
Next, let

(5.2) ¢4 = ¢ +t0opdg t0y¢,

where oy and ¢; are real constants chosen so that (¢4, ¢g) = (¢4, ¢;) = O (this can
be done by the Gram-Schmidt process, for example). Then

6al? = (ba, 0, +ogdg +016)) = (b, b)) = T(dy) = RAGY(x).

We shall show that the extremal property assumed for f, implies that % a¢y(r) < 0.
It follows that ¢4 = 0, and hence, for each ¢ € 7,

((f’, ¢4) (¢, ¢, +ag oo +01¢1) = J(¢) +0g 010(95) +0, Gfl((ﬁ)‘

]

R{rg'(r) +2,0(r)} = 0,

where A} = 0 - ioc) . This implies the desired result, as we explained in the second
paragraph of this section.

It remains to show that 9%ia¢y(r) < 0. Assume to the contrary that ¢y(r) = g,
with % { A8} > 0. We shall show that this leads to a contradiction of the fact that f,
maximizes R Af'(r) for all f € &* with f(r) = A. To do this we must approximate
¢4 € V') by some ¢ € ¥, then approximate f = fy + ¢ + o(c) by some h € ¥* with
h(r) = A, and show that these approximations can be made so that 8t Ah'(r) > RtAfy(r).

Suppose 0 <py < 1. In the steps that follow, we shall let p, (n=1, 2, ---) de-
note a complex quantity such that | pn| <npg. This convention allows us room to
make successive approximations at each stage. At the end, we choose p; small
enough to obtain the contradiction.

Clearly, ¢4(r) = 8, and by the choice of ¢y and ¢ in (5.2), ¢4(r) = 0. Since ¥,
is the completion of 7', there must exist a ¢ € ¥ such that

or) =p, and  §(x) =p +p,.

Since ¢ is an allowable variation, (5.1) implies that for each ¢ > 0 there exists a
function f(z) = f5(z) + £¢(z) + o(e) in ¥*. We can choose £ sufficiently small so
that if 0 <& <g(, then

flr) = A" = A+¢gp; and f'(r) = B' = B+ef+epy.

In order to use the extremal property of f;, we must have functions with value A at
z =r. We must therefore approximate this f by another function h such that
h(r) = A.

We do this by letting h = k§ #(1-s) where k; is a suitably chosen Koebe function
and s is a real number between 0 and 1. In this case,

log h(r) = s log k;(r) + (1 - s)log £(r) .

That is, log h(r) lies on the line joining log A' and log k,(r).

It is well known that G, = {log f(r): f € #*} is a convex set whose boundary is
defined by log[r/(1 - eifr)2] (0 < @ < 27). The value of log A is an interior point
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of G, , unless fy(z) = z/(1 - eit )2 for some 6. In the latter case, f; is a one-slit
function and the theorem is proved.

Since f is in #*, log A' is also in G, . Draw the straight line from log A'
through log A until it meets the boundary of G, at log k;(r), where

k(z) = z/(1 - etfl z)°. This determines k;, and
. - log A/A"
log k,(r)/A’
is a real number (0 < s < 1) such that h = k? £1-5) i in 9* with h(r) = A.

Next we show that h'(r) is close to f'(r). Let d be the distance from log A to
dG, . This d depends only on A and r. There then exists an g < g such that the
condition 0 <g <g; implies |10g A - log A'| < d/2 and hence

|log k,(r) - log A'| > d/2 .

Furthermore, since log A/A' = -log (1 + ep3/A), there exists an €, < & such that
0 <e <g, implies

s = gpgM,

where M is a positive constant depending only on A and r.

Now

£'(r) h(r) k}(r)h(r)
(1-s) i) +s N

BA l:rkll(r) h(r) ri'(r) h(r)]
A’ ki(r) r f(r) r :

h'(r)

(5.3)

The inequalities |rg'(r)/g(r)| < (1 +r)/(1-r) and |g(r)/r| < 1/(1 - r)2 hold
for each function in &. Let C be the expression in brackets in (5.3). Then

|c| <2(1+7r)/(1 - r)3, and there must exist an €3 < &, such that if 0 <¢ < g3,
then

oy BFe(B+py)
h'(r) = 1+epy/A

+epsMC = B+ep+eppK .

Here one easily verifies that the complex number K satisfies the condition
|K| <3|B/A| +5M|C| +1; since |B| = |f(r)| <(1+1)/(1 - r)3, this gives a
bound depending only on A and r.

The function h is in #*, and h(r) = A. Hence the extremal property of fo im-
plies that

R Aah'(r) < E)be(r) = NAB,
or, equivalently, that

e {rg+2rpgK} < 0
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for each € (0 <& <&3). We have assumed that ®t{Ag} > 0. This results in a con-
tradiction if we choose p, sufficiently small so that |py| < |8/2K|. Therefore, the
assumption must have been false. This shows that % {Aqu}(r)} < 0, and the proof is
complete.

REFERENCES
1. P. L. Duren, On the Marx conjecture for stavlike functions. Trans. Amer. Math.
Soc. 118 (1965), 331-337.

2. J. A. Hummel, A variational method for starlike functions. Proc. Amer. Math.
Soc. 9 (1958), 82-87.

, Extvemal problems in the class of starlike functions. Proc. Amer.
Math. Soc. 11 (1960), 741-749.

4. A. Marx, Untersuchungen iiber schlichte Abbildungen. Math. Ann. 107 (1932), 40-
67.

5. R. M. Robinson, Univalent majovants. Trans. Amer. Math. Soc. 61 (1947), 1-35.

, Extremal problems for star mappings. Proc. Amer. Math. Soc. 6 (1955),
364-3717.

University of Maryland
College Park, Maryland 20742



