SPLITTING LOCALLY COMPACT ABELIAN GROUPS
Ronald O. Fulp

The results of this paper constitute a part of a continuing investigation of the
splitting problem in the category of locally compact abelian groups. More precisely,

assume that A >¢% B 9—>> C is an extension of A by C in the category £ of lo-
cally compact abelian groups (the morphisms of £ are continuous homomorphisms).
Under what conditions on A and C does the extension split? The papers [2] and [3]
gave partial answers to the question, under various connectivity assumptions on A
and C, respectively. In [1], the same problem was studied under the additional as-
sumption that the extension be a pure exact sequence. The present paper is parallel
to the development in [3]: we assume that G is a torsion-free group or a torsion
group, rather than connected or totally disconnected (these analogues are suggested
by Pontryagin’s duality theory). Of course, this change of hypothesis greatly changes
the problem; but our technique is similar to the technique used for the analogous
problems in [1], [2], and [3], in that our investigation is basically homological.

More specifically, we determine the groups G in & for which the extension
(1) G>>Y—=>X

splits for each X in the class ¢, where € may denote either the class of all locally
compact, abelian torsion groups or the class of all locally compact, torsion-free
abelian groups. We also determine the groups H in & for which the extension

(2) X>>Y —> H

splits for each X in & with the same two choices of @ as in the last statement.

In [2], we developed considerable homological apparatus for dealing with such
problems. Suffice it to say that one may develop the extension functor in the cate-
gory £ along the lines used by S. MacLane [8] for R-modules. There are topologi-
cal difficulties, but these are solved in [2]. One uses the usual definition of equiva-
lence of extensions and the usual definition of Baer sum of extensions to make the
class of all extensions A >—> B —=> C into a (discrete) group Ext(C, A). The
group Ext(C, A) has the usual functorial properties. One point should be mentioned:
the definition of an extension is tailored to meet the requirement that if

e
A >¢% B >—>> C is an extension, then ¢(A) is isomorphic to A in the category ¥,

and 6 may be identified with the natural mapping B —>> B/¢(A) = C. In order to

make such identifications, we define an extension A >-¢% B—=>> C in ¥ to be an
exact sequence, where ¢ is an injective morphism of £, where 0 is a surjective
morphism of &, and where both ¢ and 8 are required to be open onto their respec-
tive images.

Once the group Ext has been constructed, we can rephrase the problems (1) and
(2) above as follows: (1) determine the groups G of & for which Ext (X, G) = 0 for
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all X in @, and (2) determine the groups H in # for which Ext(H, X) = 0 for all
X in @.

Regarding notation, we follow [2] and [3], which in turn follow MacLane [8]. We
use E. Hewitt and K. Ross [7] as our reference for facts and notation concerning
topological groups. Briefly, if G is a group in 2, then G denotes the identity com-
ponent of G, and G” denotes the Pontryagin dual of G. Also, R denotes the additive
group of real numbers with its usual topology, and Z denotes the subgroup of inte-
gers of R,

THEOREM 1. If G is a group in 2, then Ext(T, G) =0 for each torsion group
T in £ if and only if G is divisible.

Proof. First assume that G is a group in % and that Ext(T, G) = 0 for each
torsion group T in Z. Then, for each positive integer m,

0 = Ext(Z_,G) = Ext(Z_ ,%G) = G/mG,

where # G denotes G stripped of its topology. Thus G is divisible.

Conversely, assume G is divisible. Observe that G* is torsion-free and thus,
if C is any compact torsion group, then

Ext(C, G) = Ext(G", C") = Pext(G", C").

Since C” is bounded and reduced, it is discrete, reduced, and algebraically compact
(see [4]). Thus C" is a pure projective object of Z (see [1, Proposition 8]). Thus
Pext (G®, C") =0 and Ext(C, G) = 0. Note, however, that it follows from Theorem
24.30 of [7, page 389] that T contains a compact open subgroup C. Consider the
exact sequence:

(*) Ext(T/C, G) —> Ext(T, G) —> Ext(C,G) = 0.

Since T/C is discrete and # G is divisible, Ext(T/C, G) = Ext(T/C, #G) =0 (see
[2]). Thus it follows from (*) that Ext(T, G) = 0. The theorem follows.

THEOREM 2. If G is a group in 2, then Ext(G, X) =0 jfor each torsion-free
group X in & if and only if G =R™ @ (@, Z), wheve m is a positive integer and o
is a cardinal,

Proof. First, because R™ @) (@), Z) is a projective object of & (see [9]), it is
clear that Ext (R™ D (®, Z), X) = 0 for each torsion-free group X in 2.

Conversely, assume that G is a group in & and that Ext(G, X) =0 for each
torsion-free group X in #. The sequence

Hom (Gg , X) —> Ext(G/Gy, X) —> Ext(G, X) —> Ext(Gg, X)

is exact, and Hom (Gg, X) = 0 for each totally disconnected group X. Thus
Ext(G/Gg, X) = 0 for each torsion-free, totally disconnected group X. We now wish
to show that H = (G/Gg)" is connected. Let Hgp denote the component of the identity
of H, and observe that the sequence

Ext(R/Z, Hy) —> Ext(R/Z, H) —> Ext(R/Z, H/H,)
is exact. Since Ext(R/Z, H) = Ext(G/Gqg, Z) = 0, it follows from the latter exact se-

quence that Ext(R/Z, H/Hp) = 0. We claim, however, that H/H, = Ext(R/Z, H/Hy),
and thus that H/Hy = 0. To see this, consider the exact sequence
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0 = Hom (R, H/Hy) —> Hom (Z, H)HO) —> Ext(R/Z, H/Hy) —> Ext(R, H/Hy).
The needed result follows from the equalities
H/Hqy = Hom (Z, H/H) and Ext(R, H/Hg) = 0.

Thus H = Hy and H is connected. Since (G/Gg)" cannot contain R™, for m > 0, it
follows from [7, page 389] that (G/Gg)" is compact. Thus G/Gg is discrete and
torsion-free. By [7, page 395], G = Gy ® (G/Gy). We now compute the structure of
Go and G/Gg . First write Gg = R®(® C, where C is compact and connected. Since
7 is discrete and torsion-free, Ext(C, Z) = 0. As above, Ext(R/Z, C*) = C". Since
Ext(C, Z) = Ext(R/Z, C"), we see that C* = 0. Thus Gg = R™. Finally, we compute
G/Gg . Since Ext(G, X) =0 for each torsion-free group X, Ext(G/Gg, F) = 0 for
each discrete free group F. Since each discrete group B is an epimorphic image of
some free group, Ext(G/Gg, B) = 0. Consequently, G/Gg is a projective object in
the category of discrete abelian groups, and therefore it is free. Thus G/GO = @o Z
and G = Gog D (G/Gg) = R®*(® (@, Z). The theorem follows.

The following theorem is a consequence of the proof of one of the theorems in
our joint paper with Griffith [2]. Since part of the proof of that theorem is rather
brief, we elaborate that portion of it here for clarity. The remainder of the proof
may be found in [2].

THEOREM 3. If G is a totally disconnected grvoup in £ such that Ext(X, G) =0
Jor each compact totally disconnected group X, then G is discrete.

Proof. Let G denote a totally disconnected group of Z such that Ext(X, G)=0
for each compact totally disconnected group X. Let K denote any compact open sub-
group of G. The sequence

Hom (X, G/K) —> Ext (X, K) —> Ext(X, G) —> Ext (X, G/K)

is exact, and since X is compact and G/K is discrete, Hom (X, G/K) is a torsion
group. Thus Ext(X, K) is a torsion group. Since it is also a cotorsion group [4,
page 235], Ext (X, K) is the direct sum of a bounded group and a divisible group.
Since X~ and K” are torsion groups, it follows from [4, page 237] that the group
Ext(X, K) = Ext (K", X") is reduced. Thus Ext(X, K) is a bounded group for each
compact, totally disconnected group X. Now let B denote a basic subgroup of K”.
Then Ext(B, J) is a bounded group, for each discrete torsion group J.

Let B =(®), B, , where B, is cyclic of order n, , for each A. Let n denote a
positive integer such that n Ext(B, B) = 0. Then

n II,(B/nyB) =0 and nBy CnBNBy CnyBNB) CnBy =0

for each A. Thus B is bounded, and K* = B(® D for some divisible torsion group
D. But the boundedness of Ext (K", J) for a discrete torsion group J implies that
Ext (D, J) is bounded for each discrete torsion group J. If D were not zero, it would
follow that D contains some Z(p«), and thus that the group

Ext(®, Z(p~), J) = Il Ext(Z(p=), J)

is bounded for each J. Since each p-group is contained in @0 Z(px), for some o,
the group Ext(A, J) is bounded for each discrete p-group A and each discrete
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o0
torsion group J. That this is nonsense in case A =J = @ Z(pl) is clear from the
i=1
computation
o0 [+ 0]
Ext(A, J) = II Ext(z(), 9 = II [3/6}0)].
i=1

i=1

[>e]
The group II;_; [3/(p'J)] is clearly not bounded. Thus D = 0 and the group K" is
bounded. It follows that K is a bounded group, and thus that each compact open sub-
group of G is bounded. One may now refer to the proof of Theorem 4.2 of [2] for the
remainder of the proof that each compact open subgroup K of G is finite. The theo-
rem follows.

Let Jp denote the compact group of p-adic integers, and let Q denote the dis-
crete group of rational numbers under addition. Then Q" is the solenoidal group
¥, described by Hewitt and Ross [7, page 404].

THEOREM 4. If G is a group in &, then Ext(G, T) = 0 for each torsion group
T in £ if and only if there exist a positive integev m and cavdinals \, |1, and ©
such that

c=rm@ (I 5)®(112) @, 2.
m

Proof. Assume that G is a group in & such that Ext (G, T) = 0 for each tor-
sion group T in &. We first show that G = G, ® (G/GO). The structure theorem
for locally compact abelian groups implies that G = R™ () H, where H contains a
compact open subgroup (see [7, page 389]). Clearly, Hy is compact, and thus (Hg)”
is discrete. Since (Hy)" is discrete, (H/Hy)" is an open subgroup of H”. Thus, if

*) (H/H,)" HY —> (5"

splits algebraically, then it also splits topologically. Note, however, that for each
torsion group T the sequence

Hom (H,, T) —> Ext(H/Hy, T) —> Ext(H, T) = 0

is exact, and that for a discrete group T, Hom (Hy , T) = 0. Thus, for each discrete
torsion group T, Ext(H/H,, T) = 0. For each n,

0 = Ext(H/Hy, Z,) = Ext(Z,, (H/Hy)") = (H/Hg)"/n(H/Hg)" .
Thus (H/H,)" is a divisible group, and (*) splits. It follows that
G = Rm@Ho@(H/Ho) = Go@(G/Go) .
We now obtain the structure of Hy. Clearly, for each n,
0 = Ext(Hy, Z,) = (Hg)"/n(Hp)",

and (Hg)" is a divisible group. Thus Hj is a compact, connected, and torsion-free

group. It follows that Hy = H“ 2, for some cardinal u.
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At this point, we need only compute the structure of H/Hp. Let K = (H/Hg)",
and observe that we have already shown that K is divisible. For each compact,
totally disconnected group C, C” is a discrete torsion group, and there exists an
exact sequence

Ext (C, Kg) —> Ext(C, K) —> Ext(C, K/K).

Since Ext(C, K) = Ext (H/Hgp, C*) = 0, we see that Ext(C, K/Kg) = 0. By Theorem 3,
K/K, is discrete. Since K, is open and divisible, K = Ky ® (K/Kg). It follows that
Ext ((Kg)”®, T) = 0 for all torsion groups T. By Griffith’s solution of the Baer prob-
lem [5], we see that (Kg)" is free. Thus H/Hj = (Kg)" P (K/Kp)", where (Kp)© is
free and K/K; is a discrete divisible group. Since H/H, is totally disconnected, it

can contain no copy of Q”; thus H/Hy =@, Z @ Hh J,,. Therefore

c-rm@ (IIz,) @@, z>®(I} 5,).
n

Conversely, since R™ @ ((®, Z) is a projective object in £,
Ext(R™"@ (@, 2), T) =0

for each torsion group T. Thus the theorem will follow if we can show that

Ext (D", T) = 0 for all discrete divisible groups D and all torsion groups T. Since
Ext (D", T) = Ext(T", D), it suffices to show that T is totally disconnected (see [2]
for a proof that discrete divisible groups are injective among totally disconnected
groups). To show that T" is totally disconnected, we show that its identity compon-
ent (T%), is trivial. Now (T")y = R™ @ C for some compact connected group C
(see [7, page 389]). There exists an epimorphism T —> ((T")g)"; thus R™ and C*
are homomorphic images of T. Since T is a torsion group, R™ = 0. Since C is
compact and connected, C* is discrete and torsion-free. Thus C* =0 and (T"), =0,
as was to be proved. The theorem follows.

This brings us to the final stage of our program. It is the purpose of this sec-
tion of the paper to investigate the groups that we shall call £-cotorsion groups.
Recall that a discrete group G is a coforsion group if and only if Ext(X, G) =0 for
all discrete torsion-free groups X. The theory of cotorsion groups was developed
by D. K. Harrison [6], and an account of this theory may be found in the book [4] by
Fuchs.

A locally compact abelian group G will be called an Z-cotorsion group if and
only if Ext(X, G) = 0 for each torsion-free group X in Z.

THEOREM 5. A group G in £ is an Z-cotorsion group if and only if G/Gy is
an L-cotorsion group.

Proof. Let G and X denote groups in £, and let X denote a torsion-free group.
First observe that the sequence

Ext(X, Gg) —> Ext(X, G) —> Ext(X, G/Go)

is exact; thus, if we can show that Ext(X, Gg) = 0, then it will follow that

Ext (X, G) = Ext (X, G/Gg). The theorem is a clear consequence of the last equation.
Now X =R" (@Y, where Y contains some compact open subgroup K. Thus we have
an exact sequence
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(*) EXt(Y/K, Go) —> Ext (Y, Go) —>> Ext (K, Go) .
Also, G, = R™ (@ C for some compact connected group C; thus

Ext (K, GO) = Ext(K, C) = Ext(C*,K*) =0
and
Ext (Y/K, GO) = Ext(Y/K, .OiGO) =0,

where #Gg denotes G stripped of its topology (recall that Gg, being connected, is
divisible). It follows from the sequence (*) that Ext (Y, Gg) = 0. The theorem fol-
lows.

COROLLARY 6. Each connected group in & is an Z-colovsion group.

THEOREM 1. If G is an Z-colorsion group, then (G/Gg)/K is a discrete divis-
ible torsion group for each compact open subgroup K of G/Gg .

Proof. By Theorem 5, it suffices to prove the theorem for totally disconnected
Z-cotorsion groups. Let G denote such a group and K any compact open subgroup
of G. First we shall show that G/K is a torsion group. We do this by showing that
the identity component Hg of the group H = (G/K)” is trivial. Consider the exact
sequence

(*) Ext (H/Hgy, D) —> Ext(H, D) —> Ext(Hg, D)
for discrete divisible D. Since D" is a compact and torsion-free group,
Ext(H, D) = Ext(D", H") = Ext(D", G/K) = 0

(we use the fact that G/K is an #-cotorsion group). It follows from (*) that
Ext(Hp, D) = 0. But if B is any discrete group, then B € D for some D, and there
exists an exact sequence

Hom (H, , D/B) —> Ext(H,, B) —> Ext(H,,D) = 0.

Since Hy is connected and D/B is discrete, Hom (Hy, D/B) = 0. Thus
Ext(H,, B) = 0 for each discrete group B. It follows that

(Hy)® = Ext(R/Z, (Hy)") = Ext(H,, Z) = 0

and Hy = 0. This implies that G/K is a torsion group.

We now show that G/K is divisible. Since G is a cotorsion group, so is G/K.
Recall that if a group is both a torsion group and a cotorsion group, it is the direct
sum of a bounded group and a divisible group (see Fuchs [4]). Let G/K=B@®D,
where B is a bounded group and D is a divisible group. We show that B=0. If B
is not zero, then B =(@{Z, B;, where B; =@0_ Z(n;) for some positive integer n,

1

and some nonzero cardinal o;. Clearly, Ext(X, B;) =0 for each i and for each
torsion-free group X. Thus X*/n; X" = 0 for each i and each torsion-free group X.
By a modification of a construction by Hewitt and Ross [7, page 393], one obtains a
locally compact, abelian, torsion-free group X for which X" is not n;-divisible (ac-
tually, Hewitt and Ross show that such an X exists for which X" is not 2-divisible).
This contradiction shows that B = 0 and that G/K =D is a divisible group. The
theorem follows.
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COROLLARY 8. If G is an %-cotorsion group, then G/Gq is a projective
limit of discrete, divisible tovsion groups. '

Pyroof. Each totally disconnected group G in & is a projective limit of groups
of the form G/K, where K denotes a compact open subgroup of G. The corollary
follows from this and the theorem.

COROLLARY 9. A compact abelian group is an L-cotovsion group if and only
if it is connected.

Proof. Let C be a compact abelian #-cotorsion group. We show that C is
connected, by showing that C/Cg is trivial. By the theorem, (C/Cy)/K is divisible
for each compact open subgroup K of C/Cy. Butif K is a compact open subgroup
of C/Cqy, then (C/Cy)/K is finite. Thus K = C/Cy is the only compact open sub-
group of C/Cy. But C/Cy, being totally disconnected, has a neighborhood basis of
compact open subgroups at 0. Thus C/Cg is trivial and C is connected. The con-
verse is clear from Corollary 6.

COROLLARY 10. A discrete abelian grvoup is an Z-cotorsion group if and only
if it is a divisible torsion group.

Proof. It is an immediate consequence of the theorem that each discrete Z-
cotorsion group is a divisible torsion group. Conversely, assume that A is any
divisible group and that X is a torsion-free member of &. Consider the exact se-
quence

(*) Ext (X/X,, A) —> Ext(X, A) —> Ext(X,, A).

Since X/Xj is totally disconnected and A is discrete and divisible,
Ext(X/Xp, A) =0. Let X3 =R™* @ C, for some compact, connected group C. Since
A" is totally disconnected and C” is a discrete, divisible group,

Ext(Xy, A) = Ext(C, A) = Ext(A*,C") = 0.

It follows immediately from (*) that Ext (X, A) = 0. This completes the proof of the
corollary.

THEOREM 11. A group G in & is an ZL-colorsion grvoup if and only if the
totally disconnected group G/Gg is an Z-cotorsion group. A totally disconnected
group H of & is an Z-cotovsion group if and only if

(1) as a discrete abelian group, H is a cotorsion group,

(2) whenever K is a compact open subgvoup of H, then H/K is a discrete,
divisible tovsion gyvoup, and

(3) whenever K is a compact open subgvoup of H and E is the divisible hull of
a product of p-adic groups, then the connecting homomorphism

dr: Hom (E, H/K) —> Ext(E, K)
1S suvjective.

Proof. The first statement in the theorem is a restatement of Theorem 5. It
follows from Theorem 7 that if H is an %-cotorsion group and is disconnected, then
conditions (1) and (2) of Theorem 11 are satisfied. To see that (3) holds, recall that
the divisible hull of a torsion-free group is torsion-free, and that thus Ext(E, H) =0
(see Hewitt and Ross [7, page 419] for a description of the topology carried by the
divisible hull of a group). It follows from the exact sequence



54 RONALD O. FULP

Hom (E, H/K) > Ext(E, K) —> Ext(E, H)

that the connecting homomorphism 9 is surjective.

Conversely, assume that (1), (2), and (3) hold. We show that H is an Z-cotor-
sion group. Let K denote any compact open subgroup of H, and let D = H/K. Then
D is a discrete, divisible torsion group, and hence, by Corollary 10, Ext(X, D} =0
for each torsion-free group X in &. Thus, in the exact sequence

3
Hom (X, H/K) —> Ext (X, K-> Ext(X, H —> Ext(X, D),

o is surjective. It follows that Ext (X, H) is zero in case the group Ker ¢ =Im oy
is all of Ext (X, K). Thus it suffices to show that 9y is surjective for each torsion-
free group X. Let X denote any torsion-free member of £. By a remark of Hewitt
and Ross [7, page 418], X=R*@ C@ T, where C is a compact, connected group,
and where T is a totally disconnected group. We show that Ext (R®(® C, H) = 0.
From this it will follow that 9y is surjective if o1 is surjective. Thus we show
that Ext (C, H) = 0. Consider the exact sequence

(*) Ext (C, K) — Ext(C, H) —> Ext(C, D).
Since C” is a discrete divisible group and K" is a discrete group,

Ext(C, K) = Ext(K*, C*) = 0.
Since D" is a totally disconnected group and C” is a discrete and divisible group,
Ext(C, D) = Ext (D", C*) = 0. By (*), Ext(C, H) = 0. We have shown that it suffices
to prove that the connecting homomorphism

o : Hom (T, K/K) —> Ext (T, K)

is surjective. Now let E* denote the minimal divisible hull of T, topologized as in
Hewitt and Ross [7, page 419]. Since T is a totally disconnected group, E* is also
totally disconnected. Moreover, E*/T is discrete. Consider the commutative dia-
gram

Hom (E*, H/K) —> Hom (T, H/K) —> Ext(E*/T, H/K) —> Ext (E*, H/K)

S

Ext (E¥*, K} ——> Ext(T, K) 0 0

Since H/K is a discrete, divisible group and both E* and E*/T are totally discon-
nected groups, it follows from [2] that Ext (E*/T, H/K) =0 and Ext(E*, H/K) = 0. If
BE* were surjective, it would follow from the five-lemma that 9., is surjective. By

[7, page 421], E* =@ Q@ E, where E is the divisible hull of a group that is a prod-
uct of p-adic groups. Since H is a cotorsion group,

Ext (@, Q, H) = Ext(®, Q, FH) =0,

where ¥ H denotes H stripped of its topology. It follows that 9 E* is surjective

whenever 9y is surjective. But by (3), 9 1s surjective. Thus 9y is surjective and
the theorem follows.
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Remark. Although Theorem 11 gives a characterization of Z-cotorsion groups,
this characterization is not completely satisfactory. We feel that conditions (1) and
(2) of the theorem are reasonable conditions. In particular, the condition (1) is a
purely algebraic condition, and much is known about cotorsion groups. Actually this
structure is almost as well known as is the structure of discrete torsion groups (see,
for example, Fuchs [4]). The condition (3) of Theorem 11 needs some illumination.
In the presence of our other conditions, it is clearly equivalent to the condition that
Ext(E, G) = 0 whenever E is the minimal divisible hull of a product of p-adic
groups. We do not know the structure of these groups. Actually, it may well be that
conditions (1) and (2) imply (3).
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