THE CAUCHY PROBLEM WITH INCOMPLETE
INITIAL DATA IN BANACH SPACES

H. O. Fattorini and A. Radnitz

1. INTRODUCTION

Throughout this paper, E denotes a complex Banach space, and A represents a
closed operator whose domain D(A) is dense in E and whose range is in E. We as-
sume that the resolvent set p(A) is not empty, in other words, that for some com-
plex number A the operator R(A; A) = (AI - A)~! is everywhere defined and bounded.

We study the problem of existence and uniqueness of solutions of the nth-order
operational differential equation

(1.1) ul?(t) = Au(t) (t>0)
that satisfy an estimate of the form

(1.2) |u(t)] = 0O(e®’) ast—+w
and the initial conditions

(1.3) ulk)(0) = y € E (kea).

Here, w denotes a real number, n is an integer (n > 1), and « is a predetermined
subset of the set {0, 1, -+, n - 1}. We also study the dependence of the solutions on
the incomplete set of initial data (1.3). (By a solution of (1.1) we mean an E-valued
function u that has n continuous derivatives and satisfies (1.1) for t > 0.) This is a
generalization of the usual Cauchy problem, where growth conditions of the type (1.2)
are absent but where @ in (1.3) consists of all the integers 0, 1, ---, n - 1, in other
words, where each of the values u(k)(0) (k=0, 1, **-, n - 1) is preassigned. In
order to delineate clearly the results in the present paper, we sketch briefly the
available results in the usual case. We say that the problem

(1.4) uld(t) = Au(t) (£>0),
(1.5) ulk)(0) = v, (O0<k<n-1)

is well posed if solutions of (1.4), (1.5) exist (their initial data ug, uy, =+, uy_3
arbitrarily chosen in a given dense subspace of E) and depend continuously on

ug, u;, v, u,_1. For n =1 the problem (1.4), (1.5) is well posed if and only if A
generates a strongly continuous semigroup (see [12, especially Chapter I, Section 2,
Theorem 2.8] and [7, Part I, Theorem 4.1]). Generators of strongly continuous
semigroups are in turn characterized by the theorem of E. Hille and K. Yosida (see
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[12, Chapter I, Theorem 2.10] or [6, Chapter VIII, Theorem 13]). In the case n = 2,
A must be the generator of a cosine function (or abstract cosine function; see [7,
Part II, Theorem 5.9]). Operators of this type are characterized by a result some-
what similar to the theorem of Hille and Yosida ([16, Theorem 4.6], [5, Teorema 1];
see also [7, Part II, Theorem 3.1] for a different proof). Finally, when n >3, A
must be bounded (see [7, Part II, Theorem 3.1], where this condition is obtained as a
particular case of a result valid in certain linear topological spaces; see also [3],
[4], [8] for generalizations in different directions). Some results of roughly the same
type are available for the problem (1.1) - (1.2) - (1.3); in order to gain some insight
into them, it will be useful to examine in detail the case where E is the complex
number field and where A is the operator of multiplication by a complex number a;
that is, we examine the equation

(1.6) w2 au(t).

If a = 0, the general solution of (1.6) is a polynomial of degree at most n - 1;
consequently, the existence of solutions of (1.6) and (1.2) for arbitrary initial data
(1.3) will be possible only when w > 0 (except in the case w =0, m=1, a@ = {0}).
On the other hand, solutions of (1.6) and (1.2) will be uniquely determined by their
initial data only if w < 0 (or, again, in the exceptional case w =0, m =1, a = {0}).
This suggests that existence and (or) uniqueness of solutions of (1.1), (1.2), (1.3) will
imply in certain cases that 0 € p(A). Indeed, we can establish such a result (see the
comments following inequality (2.42)).

If a # 0, the general solution of (1.6) is

n-1
1.0 ult) = 22 c; e? bt ,
j=0
where cg, €7, ***, €,_1 are arbifrary constants, b is any of the nth roots of a, and

v = e2Ti/n | 1t is then plain that solutions of (1.4) and (1.2) with m preassigned
initial data exist if and only if

(1.8) at least m of the numbers b, b, y2b, -+, y2-1b le in the half-plane R < w.

Clearly, this condition will never be satisfied—no matter what the value of a—
for certain combinations of n, m, and w, namely,

(1.9) w <0 m>][n+1)/2],
(1.10) w =0, n even, m > (n+2)/2

(here [p] denotes the integral part of p). This result has a counterpart for the gen-
eral equation (1.1) (Corollary 2.4). On the other hand, for w > 0 and

m > [(n + 1)/2], condition (1.8) holds only if the number a lies in a certain bounded
region of the complex plane, a result that can be extended in a suitable form to the
equation (1.1) (Corollary 2.5). Finally, in the cases

w>0 and m =[n/2] [n/2]+1,

condition (1.6) places some restrictions on the location of a; for the general equa-
tion (1.1), these restrictions are satisfied by p(A), the spectrum of A (Theorem 2.1).
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The restrictions, somewhat strengthened and combined with bounds on the growth of
the resolvent R(A; A), constitute the basis for sufficient conditions on A for the
existence and uniqueness of solutions of (1.1), (1.2), and (1.3) (see the various re-
sults in Section 3).

On the other hand, a brief examination of (1.5) shows that solutions of (1.4)
satisfying the growth condition (1.2) are uniquely determined by m of their initial
data if and only if

no more than m of the numbers
(1.11)
b, ¥b, -+, ¥y2-1b lie in the half-plane X < w.

Condition (1.11) cannot be satisfied, regardless of the value of a, if
w>0 and m < [n/2].

Unfortunately, as Lemma 3.2 shows, there is no clean-cut extension of this result to
the equation (1.1), except for particular choices of A (for instance, when A is
normal: see Proposition 3.3)).

We note that there is no special reason for the choice of the function e*® in the
growth condition (1.2), and that the function could be replaced—at least in the formu-
lation of the problem—by any positive function K(t). However, since the main re-
sults in Section 2 are based on the theory of the Laplace transform, it is not clear
whether they would be valid in this degree of generality.

The Cauchy problem with incomplete initial data, as examined in this paper, is
somewhat similar to the “reduced Cauchy problem of order n and defect m - n”
(“probléme de Cauchy réduit d’ordre n et de défaut n - m”) considered by E. Hille
in [10]; although the growth condition (1.2) is absent there, Théoréme 7 in [10] is re-
lated to the results in Section 3 of the present paper. More closely related to our
treatment is A. V. Balakrishnan’s study of the generation properties of fractional
powers of certain operators [2]. In fact, the case w =0, n=2, m=1, ¢ = {0} of
our formulation of the Cauchy problem with incomplete data is examined in detail in
[2]; there, the main result is a sufficient condition for existence and continuous de-
pendence, of which our results in Section 3 are an outgrowth. We obtain our results
by the same means, that is, by using the fractional-power theory developed in (2], or,
rather, a simplified version developed in [12] for the special case where the opera-
tor A is invertible.

On the other hand, the results in Section 2 seem to have no direct ancestors in
the literature. These results are generalizations of some of the theorems contained
in A. Radnitz’s thesis [15]. While in [15] the existence, uniqueness, and continuous
dependence on incomplete initial data are assumed, we only assume existence, in the
present paper. This makes the results more general, although there is naturally
some loss of detail.

The equation (1.1) has been studied in [1], although in a different vein. The re-
sults and the methods in [13] also have some relation with ours; the problem studied
in [13] is that of “solving backwards” an abstract parabolic equation.

The Cauchy problem for certain partial differential equations has been exten-
sively studied in formulations that are very close to that in the present paper. We do
not attempt here to give a complete account of these studies; a fairly complete
bibliography (up to 1965) can be found in [16].
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We give a brief account of the type of problems that are considered in [16]. The
equations studied there are of the form '

o0
(1.12) ultly) = 22 P ulkd) (>0,
k=0 '
where Py, P;, -+, P,_; are partial differential operators with constant coefficients

that act in a space Q of distributions (or generalized functions). The formulation of
the Cauchy problem in [16] is essentially the same as our formulation, although con-
dition (1.2) is replaced by

|u(t)| = O(tP) as t— <

for some integer p that may depend on u. We note that our results cannot be ap-
plied to the problems in [16]; in fact, the equation (1.12) is of a form more general
than (1.1), and, moreover, the spaces Q are not in general Banach spaces.

In Section 4, we use our results to answer some questions about partial differ-
ential (and more general) equations. The first of these questions can be roughly
formulated as follows: How many of the partial derivatives u, uy, uy of a bounded
solution of the partial differential equation

Uttt = Uxx ~ U

(the solutions are defined in (-« < x < w, 0 <t < «)) can be arbitrarily preassigned
for t =0? (See Section 4 for a precise formulation.) We ask then the same question
about the integro-differential equation

uttt = Ugye ~ u+Bu,

where B denotes a suitable integral operator. Finally, we illustrate by means of a .
third example the limitations of our results.

The authors are glad to acknowledge their indebtedness to the referee for bring-
ing [16] to their attention, also for several substantial improvements in the presen-
tation of this paper. '

2. NECESSARY CONDITIONS FOR EXISTENCE

As in Section 1, n and m denote positive integers (1 < m < n), and w denotes a
real number.

By A(n, m, w) we denote the set of all complex numbers A such that exactly m
of the nth roots of A lie in the half-plane %y < w; we shall also write

n

A¥n, m, w) = U Aln; k, w), Afn, m, w) = € A0, m, ),

k=m

where # indicates the complement. Clearly, A*(n, m, w) (respectively, A (n, m, w))
consists of all X € C such that at'least m (fewer than m) of the nth roots of A lie in
ftiu <w. Some properties of these sets will be discussed later in this section. A
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more complete description of the sets A(n, m, w) can be found in [15], together with
illustrations for some particular values of the parameters.

2.1 THEOREM. Lel a be a subset containing m elements of the set
0,1, .-, n-1}, ky a fixed element of o a positive integer, and w a veal num-
y 4y ’ y B0 s P

berv. Let A be a closed operator defined in a dense subset of E, and suppose that
for some € > 0

-1)"p(A) " A¥n,n-m+1,-w-¢)#¢,

wheve (-1"p(A) = {x; (-1)®x € p(A)}. Assume that for every u € D(AP) there
exists a solution u(-) of

(2.1) ulnl(t) = Au(t)

in t > 0 such that

(2.2) u%)0) = 0 for k € @ and k %Kk, u(ko)(O) = u,
(2.3) lut)] < Ke®t (t>0),

wheve K (not w) may depend on u(-). Then

(2.4) A*n,n-m+1, ~w - ) C (-1)"p(A)

Jor each € > 0. Moreover,

(2.5) |R(x; A)u| < Ke! |)\|—(n—l-k0)/n
Jor x € An,n-m+1, -w - &) and u € D(AP) (K may depend on u, but for each u
it is independent of € and 2).

Proof. Suppose X € A¥n,n- m+1, -w - ¢£). Then there are (at least)
n - m + 1 nth roots of A in the half-plane %y < -w - &¢. Clearly, we can write them
in the form

(2.6) W, Vi, vep, o, yRTmpy,

where u is a particular root of A and y = e27i/n | Now let

n-m

(2.7) nlt, A) = 2 cj(h)e(”j“)t,
j=0

where the coefficients cj()\) are chosen in such a way that

-1-k
(2.8) DXn(0,2) =0 ifn-1-kep, D, 250, = (-1)

n-kg+l1

(here Df indicates differentiation of order p with respect to t, and the set 8 con-
sists of all integers in {0, 1, ---, n- 1} not in @). To see that this choice is pos-
sible, observe that (2.8) will hold if the coefficients Cj satisfy the system of

n - m + 1 linear equations
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n-m n-m )
(2.9) pk EO ¢;¥% =0 ifn-1-keB§, pnl-ko Z()) cj,)(n'l-kw = (-1)* ko1
j= i=

The determinant of this system is
(2.10) A = p?det {p¥},

where j=0,1, -, n-m, where n-1-ke€ guU {ko}, and where a denotes the
sum of the values k. But the determinant in the right-hand side of (2.10) is a Van-
dermonde determinant, hence not zero. Accordingly,

a0 = Kq 1| Ky >0).
We have the relation
¢;(0) = A()/AM),

where A;() is the determinant obtained from A(A) by replacing its jth column with
the right-hand side of (2.9). Clearly,

a0 = g 07,
where b= 2k (n-1-ke ). Consequently,

(2_11) |CJ(A)| - KJ |u|“(n-—1-k0) _ KJ Ihi-(n-l-kO)/n

’

where K;j is a constant depending on a, ko, and j.

We observe that if more than n - m + 1 of the nth roots of A lie in the half-
plane % A < w, then the choice of the m - n + 1 roots (2.6) is not unique, since we
need no longer use consecutive roots; this shows that A does not necessarily give a
complete determination of n( -, A). To remove this ambiguity, we shall always sup-
pose that a definite choice of the roots (2.6) has been made.

Suppose now that u € D(AP), that u( - ) is one of the solutions associated with u
in the statement of Theorem 2.1, and that A is a fixed element of p(A). For each A
in the open region

An,n-m+1,-w-0) = U Ao, n-m+1, -w - g),
£>0

define
(2.12)  f(x;u) = 5 7(t, A R(Ag; A)Pu(t)dt = R(rg; AP 5 n(t, M u(t)dt.
C 0

Clearly, the integral exists; moreover, by virtue of (2.11), there exists a constant K
such that

' ~{n-1-
(2.13) | (o1 - A)PE(, w)| < Kol |2 "7 ko)/m

for A € A*(n, n-m+1, -w-¢g). Observe next that
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(2.14) IR ; APu®At)| = |R(; APAU)| < |R(rg; APA| |u(t)].

Thus, in view of (2.3), |R(xo; A)Pu(n)(t)| = 0(e¥") as t — »©. Assume for the mo-
ment that w > 0 (this restriction will be removed later). Then, as t — o,

wt s
o (k) ) O(e%Y) if w>0,
|R(Ao; A)Pu(t)] =
ot* 5 if w=0,

for 0 <k <n. We integrate the first integral in the right-hand side of (2.12) by
parts n times, and we observe that

Den(t, A) = An(t, A),
and that, if € >0 and X € A¥n,n - m + 1, -w - ), then
[DEn(t, M| = O™ @) a5 t e,

for all k > 0. It follows that

n-1

% ()L pILK)y 0, M) R(v 5 A)Put(0)
k=0

M, u)

I

(2.15) o
+ P | 0 VRO APu™
0

(-1 R(xg; A)Pu+ (-1)"Af(A, v),

in other words, that
(2.16) ((-1)®AI - A) (2, u) = R(xg; A)Pu

for u € D(AP), x € A¥(n,n-m +1, -w - 0). As for the case w <0, it is clear that
the integrations by parts required in (2.15) will be permissible as soon as we estab-
lish the following result.

2.2 LEMMA. Suppose that 6> 0 and that u( - ) is a function with values in E,
defined and n times continuously diffeventiable in t > 0. Assume that

(2.17) ut) = 0 as t— o,

(2.18) lu®)t)| < Ke-0t (t>0).
Then theve exist constants Lg, Liy, -+, L, such that
(2.19) lulk)t)| < KL 21 ke 0 (1>1)

Jor k=0,1, >, n-1,

Pyroof. We use induction on n. When n = 1, we can write
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u(t) = - S u'(s)ds t>0).

t

This implies that

lu(t)] < K Sme'ﬁsds = (K /o)e =0
:

as required. Assume now the result has been established for k =2, ---, n- 1. Then
n-1 .
ut) = 2 & u&(m-+ 1 (t - s~ ulr)(s)ds
k! m-1)!
k=0 0
n-1 K
(2.20) = 2L Juk)) +———— S (-s)n-k-lylnk(g) ds
k! (n - 1!
k=0
n-1 n-1

k o0

where
1 <0
u = u(k)(O) +m So (-S)n'k'lu(n)(s) ds.

Using (2.18) in the integrals in the right-hand side of (2.20) and noting that

o0

(2.21) S s¥e % ds = (-1)kDi(e~%/6) < M t¥e™® (1 >1)
t

for suitable constants M, (k =0, 1, ---), we see that (2.17) implies
Ug =4y = *** = U1 = 0.
Clearly, (2.20) and (2.21) yield the estimate (2.19) for k = 0. Differentiating (2.20),

we obtain the formula

n-1

u@)__Z)

tkl 00( )n-k-l (n) )d
& DI -k- nx& -8 ut™(s)ds

b}

n-1
+< 27
1 - - !
k=ok.(n k 1)-.

(- l)n—k- 1

-l ylnkyy

Accordingly, |u'(t)| — 0 as t — ., Applying now to u'(t) the result for n - 1, we
obtain all the inequalities (2.19).
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We resume the proof of Theorem 2.1. The underlying idea in what follows is to
continue the resolvent R((-1)"; A) to all of A*n,n - m + 1, -w - 0) by means of
equality (2.16). There are, however, certain technical difficulties. First, the ex-
tension in (2.16) is pointwise; second, it exists only for u € D(AP), and third, what is
extended is not R((-1)®A; A) but rather R{xg; A)PR((-1)"A; A). To get rid of the
first difficulty, we use the following extension argument.

2.3 LEMMA. Let X be a complex Banach space, let D1 and D, be two domains
in the complex plane (D1 C D), and let A — F(A) be a function with values in the
space % (X) of bounded opevators in X, defined and analytic in Dy . Assume that for
every u € X the X-valued function » — F(A)u admits an analytic extension
X — f(A, u) to all of D . Then F( - ) admits an Z(X)-valued analytic extension
G( - ) to all of D3, defined by

(2.22) G(\)u = f(x, u) .

Proof. Let U be a bounded domain in the complex plane, such that U N D; # @
and Cl1 U C Dz. Clearly, it is sufficient to show that for each such U the function
F( - ) can be extended to D; U U in the way described in Lemma 2.3. Let (U, X)
be the Banach space of all X-valued functions f( - ) that are analytic in U and con-
tinuous in Cl U, with the norm |f| = sup { ]f(h)ﬁx : A € ClU}, and let
A2 X — (U, X) be the operator defined by

Alu = f()\., U.) .
It is easy to see that .# is linear and closed; since it is defined everywhere in X, an
application of the closed-graph theorem shows that it is bounded. But this plainly
implies that for every A € U the operator defined by (2.22) is bounded. On the other

hand, it follows again from (2.22) and from Theorem 3.10.1 in [11] that G( - ) is
analytic as an £ (X)-valued function in U.

We shall now apply Lemma 2.3 in the following situation. X will be the space
D(AP) endowed with the norm

lulg = [T~ A)°]

(verification that X is a Banach space is simple). The domains will be

D; = (-1)"p(A) N A¥n,n-m+1, -w - 0),

D, = A¥n,n-m+1, -w-0).
The function to be extended is
(2.23) F(A) = R(xg; APR((-1)"2; A) (A€ Dy).
Since for u € X we have the relations
[FMuly =[R2 A)u| g = [ROG; AP(-1)"25 A) (AT - A)Pu|
< |F(A)| Q(E)lul)(’

it is clear that F(A) € £(X) for all A € D;. That F( - ) is analytic—as an Z(X)-
valued function—follows immediately from the
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analyticity of R(- ; A) and from the fact that R(xy; A)P maps E continuously into
X. In the same way it can be proved that f( - ; u) —as an X-valued function—is
analytic in D, for all u € X; on the other hand, it is clear from (2.16) that f( - ; u)
is an extension of F( - Ju to all of D,. From Lemma 2.3 it follows that there exists
a function G( - ) with values in £(X), defined and analytic in

Afn,n-m+1, -w - 0),

that coincides with R(xg; A)PR((-1)"X; A) in D;. For X € D] and u € D(A%P) we
have the equality

(2.24) (oI - APGM)u = GO) (oI - A)Pu

(a consequence of the definition of G(A) in D 1). Since both sides of (2.24) are
analytlc in E, (2.24) must hold for all A € D,. Accordingly, if u € D(A%P) and
X € A¥(n, n—m+1 - w - 0), then

(2.25) |G (oI - A)Pu|g = [(RoI- APGMu|R = |G u]y
2.25
- < Kluly = K|(aI- A)Pu|.

But (3 I - A)PD(A%P) = D(AP) = X; thus the preceding inequality implies that G()\) is
bounded in the norm of E. Accordmgly, G(2) can be extended to all of E as a
bounded operator, and we shall denote this operator by G(A) By the definition of G

(2.26) © ((-1)®A - A)G(M)u = R(xg; A)Pu

for u € X. But, since A is closed, G(\) is bounded, and X is dense in E (all in the
norm of E), we can extend (2.25) to every u € E. This shows in particular that

(2.27) G(\)E c D(AP*Y).

Next, let u € D(APt1), An argument similar to the one used to establish (2.24) shows
that

(2.28) ((-1)™AI - A)G(A)u = G ((-1)™AI - A)u

forall A € A¥n,n-m+1, -w- 0). Now, givena u € D(A) and a particular X,

choose a sequence {v.,} in X such that v,, — ((-1)2AI - A)u. If we then set
U, = R((-1)2X; A)v,,, it is clear that

u, —u and ((-1)"AI-A)u,, — ((-1)*AI - A)u.

m

Making use of (2.28) for each n, and then letting n — <, we see that this equality
holds for all u € D(A). An argument along thé same lines shows that (2.24) can be
extended to all u € X, in other words, that

(2.29) (AoI- APEGMWu = G (ApI- APu  (ue X).

Finally, we combine the preceding steps. For A € A¥n,n-m+1, -w - 0),
define

(2.30) R(A) = (\I - A)PG(X) .
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‘1t follows from (2.27) and from the closed-graph theorem that R(A) is bounded; it is
also clear that

R(ME C D(A).
Premultiplying (2.26) by (AgI - A)P, we obtain the equation
((-1)2AI- A)RMu=u (ue E),
and using (2.28), we see that
R(A)((-1)2AI - A)u =u  (u € D(4)).

This evidently shows that R(A) = R((-1)* A; A), and this completes the proof of (2.4).
As for the estimate (2.5), observe that if u € D(AP), then, by virtue of (2.12) and
(2.30),

R((-1)"x; A)u = (AgI - A)Pf(A, u).

Applying (2.13), we obtain (2.5) immediately.
2.4 COROLLARY. Assume that either
(a) n is even, w <0, and m > n/2, or
(b) n is even, w =0, and m > (n+2)/2, or
(c) n is odd, w <0,and m > (n+1)/2.
Then theve ave no opevators A satisfying the assumptions in Theovem 2.1.

Proof. (a) If m >n/2 and w <0, then n - m+1 < (n+2)/2, and
A¥n,n-m+1, -w-¢)=C if € is so small that - w - € > 0. Consequently, it
follows from (2.5) that if A satisfies the conditions in Theorem 2.1, then p(A) = C.
On the other hand, (2.5) shows that R(}; A)u is bounded in C for u € D(AP). By
Liouville’s theorem, R(A; A)u is then constant, a contradiction if u # 0. To prove
(b), observe that if m > (n +2)/2, then n - m +1 <n/2. It is not difficult to see
that if

-1

€>0 and |A|an(sin%)

’

then A € A*(n, n - m +1, -¢). This shows that p(A) OC\ {0} and that

(2.31) IR A)u| < K |>\|'(“'k°)/n

when u € D(AP). If kg #0, then (n - kg)/n <1 and the (possible) singularity of
R( - ; A)u at A =0 is removable; in this case, the proof ends like that of (a). If
kg =0, R( - ; A)u may have (at most) a pole of order 1 at the origin. Since it
vanishes at infinity, we see that

(2.32) R(A; A)u = Aty

for some ug € D(A). It follows that (AT - A)R(x; A)u=ug - A"l Auy = u, which im-
plies that Aug =0 and u=ug. Since A is closed and D(A) is dense in E, A = 0.
But in that case, the only bounded solutions of (2.1) are constants, which precludes
the choice (2.2) unless kg =0, o = {0}, and m = 1; this is absurd, in view of
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the condition m > n/2 + 1. As for (c), observe that in this case
n-m+1< (n+1)/2.

If w<0 and € >0 is suchthat -w - £ >0, then An,n-m+1, -w - £) = C, and
the proof ends like that of part (a). If w =0, we need only observe that exactly as in
(b) there exists a constant k > 0 such that A € A*n,n - m + 1, - §) if [A| >ke®.
The proof ends like that of (b).

We observe that (because of the identification above of the regions
A*¥n,n-m+1, -w - €£)) the hypothesis on p(A) in Theorem 2.1 reduces to

p(A) #+ O,

which was assumed to hold from the beginning.
We look next to the same range of m for positive w.

2.5 COROLLARY. Let w > 0. Assume that A satisfies the assumpiions in
Theorvem 2.1 when either

(a) n is even and m > (n+2)/2 or
(b) n is odd and m > (n+ 1)/2.
Then A is bounded.
For the proof we shall need the following result.

2.6 LEMMA. Let A be a closed operator defined in a dense subset of E such
|thTt (@) 0(A) is bounded, (b) for every u in a dense set D and for all lavge enough
A’ b

(2.33) |R(A; A)u| < K|u|™,
whevre both the constant K > 0 and the integery m may depend on u. Then A is

bounded.

Proof. Let a >0 be such that o(A) C {x; |)\| <a}. Then R( - ; A) can be
developed into a Laurent series about «,

[e]

(2.34) R(A; A) = 22 APA,

n=-oo

that converges in %A > a (in the £(E)-norm), the coefficients A, being the elements
of Z(E) given by

(2.35) An=gm § 0 W IRGG MO =, - 1,01, 00)
|A|=a

(in particular, it follows from (2.35) that A, E C D(A) for all n). Substituting (2.34)
in the identity (AI - A)R(X; A; A) =1 and equating coefficients in the series thus ob-
tained, we are led to the equations

(2.36) A; = AAp +1,

(2.37) Al = AA, (n#0).
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Making use of (2.37) for n < 0 and of the fact that A u =0 when -n is large enough
and u € D (immediate consequence of (2.33)), we obtain the equation

A jqu=-=Agu=0; since A, is a bounded operator, A, = 0. We then see from
(2. 36) that Al =1, A, = A, which shows that A itself belongs to Z(E), as we
claimed.

Proof of Corollary 2.5. (a) In this case, n - m +1 <n/2. But
Afn,n-m+1, -w - &) is the complement of a bounded region; thus the result fol-
lows from the est1mate (2.5) via Lemma 2.6. The proof of (b) is entirely similar.

2.6 Remark. We point out that Theorem 3.1 fails to yield significant informa-
tion on p(A) when m is much smaller than n (as we shall see later in Lemma 3.2,
this is due to the nature of the problem and not to the method of proof). We make
this precise in what follows. First, let n be even, m < n/2. Then,
n-m-+1>(n+2)/2, and clearly the set A*{n,n - m+1, -w - €) is empty if
w >0 for all € > 0 and bounded if w > 0 (and - w - € > 0). In the last case, we
obtain the existence of R(X; A) in a neighborhood of the origin. On the other hand,
if m =n/2 and w > 0, then again A*n, n- m +1, - w - &) = @, and we obtain no in-
formation. In the case where n is odd, the situation is more or less similar; for if
m < (n+1)/2, then n - m +1 > (n +1)/2, and then the set An,n-m+1, -w - €)
is empty for w > 0 and bounded for w < 0.

We end this section by showing that in certain cases that will be of interest
later, the region A* can be completely identified without much trouble, and the in-
equality (2.5) can be written in a more manageable way.

Throughout the remainder of this section, we assume that w = 0. Then it is not
difficult to see that

C\{y;r=9,7>0} ifn=4k and k>1,
(2.38) A*n, n/2,0-0) =
C\{xxr=n,n<0} ifn=4k+2and k>0.

If n=4k and A € A¥(n, n/2, 0 - 0), then X € A*(n, n/2, - €), where
£ = |)\| 1/ngip |(arg A)/n| (here arg A is taken in the interval (-7, 7]). Consequent-
ly, if the conditions of Theorem 2.1 are satisfied for m = (n + 2)/2 then R(A; A)
exists for all A #7 (n > 0), and it satisfies the inequality

(2.39) IR A)u| < Klsin%(arg A A -(n-ko)/n

for each u € D(AP). When n = 4k + 2, the results are the “mirror image?” of the
previous ones, and we omit the details. Finally, assume that n is odd and that
m = (n+1)/2. Then R(\; A) exists in the domain

{M; x>0 ifn=4p+1andp>1,
(2.40) -A*n, (n+1)/2, -0-0) =

{n ax<ol ifn=4p+3 and p>0.
In the first case, if A € - A*(n, (n+1)/2, -0 - 0), then A belongs to
-A*n, (n+1)/2, -w - €), where & < || l/nsinglﬁ (% - |arg A| ) . Accordingly, if
u € D(AP), then

1 -1 m(n-ko)/
(2.41) |R(x; A)ul SK(smz—n(%— |arg Al)) ||
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Again, the case m = (n - 1)/2 is the reflection through the imaginary axis of the
present one, and we omit it.

A typical application of inequalities (2.39) and (2.41) follows. Assume that A
satisfies the conditions of Theorem 2.1, with n even, m = (n+2)/2, and w =0 (no
other restriction on @). Let T be a line that is contained in A*(n, n - m +1, 0 - 0)
and passes through the origin. Then it follows from (2.39) and from the uniform-
boundedness theorem that

(2.42) |R(; A)R(; AP < K|A]7°

for A € T', where K is a convenient constant and 6 = (n - kg)/n < 1 (Ag is any fixed
element of p(A)). But

R(x; A)R(N; AP = (g - )"L(R(X; A)R(Ag; A)P~1 - R(2g; A)P);

thus (2.42) holds near the origin if we replace p by p - 1. Iterating the argument,
we arrive at the estimate

|IR(; A)| < K'[A]70

for (say) A € T" and |A| < 1. But by virtue of [6, Corollary VI 3.3], we must have
the inequality |R(x; A)| > [r|-1 if 0 € o(A); this shows that 0 € p(A), in other
words, that A has a bounded inverse. A similar result can be obtained on the basis
of (2.41) in the case where n is odd and m = (n + 1)/2 (for results on the existence
of A-1 in other cases, see Remark 2.7).

2.1 Remark. Results of the type proved here—but generally stronger—are
proved in [15] under stronger assumptions on the equation (2.1). Essentially, it is
assumed there that conditions (I) and (II) in the next section hold. On the basis of (I)
and (II), certain operator-valued solutions of (2.1) (the propagators) are constructed;
with their help it is proved, among other things, that the subspace D in condition (I)
must contain D(A), that (I) and (II) imply (I) for the adjoint equation u(n)t) = A*u(t)
in the dual space E*, and that in all cases p(A) must contain the origin. Also, the
estimate (2.5) is shown to hold uniformly on u for all u € E. In the case m =1, it
is proved that A = B®, where B is a semigroup generator. For proofs of this and
other results, the reader may consult [15].

3. SUFFICIENT CONDITIONS

As before, let @ denote a subset of the set {0, 1, -, n- 1}, and let m be the
number of elements of @. To avoid repetition, we shall say that A € ®(n, o, w)
provided the following two conditions are satisfied.

(I) The initial-value problem

(3.1) ulnkt) = Au(t) (t>0),
(3.2) lu(t)] < Ke®t (t>0),
(3.3) u(k)0) = u (x € @)

has a solution u( - ), for each uyx (k € @) in a dense subspace D of E (K may de-
pend on u( - )). :
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(m) I {un( -)} is a sequence of solutions of (3.1) that satisfy (3.2), and if

ulko) - 0 (ke @),
then

e @tu, () — 0

uniformly in t > 0. (Note that (II) implies uniqueness of solutions of (3.1) having the
same initial data (3.3) and satisfying the growth condition (3.2); on the other hand, no
uniqueness assumption is made on solutions of (3.1) that do not satisfy the growth
condition.) Although it might be interesting to separate the existence and uniqueness
questions, in what follows—as was done in Section 2—we combine them for reasons
of brevity. Likewise, all the results in this section will refer to the case where (1)
and (II) are satisfied for all a having a fixed number of elements m; to simplify the
notation later on, we define

3(n, m, ) = [V 2@, o, ),
o

where the intersection is taken over all sets @ with m elements.

3.1 LEMMA. Assume that A = B™ wheve (a) 0 € p(B), (b) for every k
(0 <k <m - 1), KB (y = e27Ti/n) genevates a strongly continuous semigroup T -)
such that
(3.4) | T 0] < Ke®*  (t>0),

(¢) f m<k<n-1 and wl ) satisfies the conditions

(3.5) u'(t) = ¥XBu(t) (t>0)
and
(3.6) lu(t)] = O(tPe®?t) ast—w,

then u(t) =0 (t > 0).
Then A € &(n, m, w).

Proof. Let a be a subset of {0, 1, -, n - 1} containing m elements. If

Yo, V1, ***, Vin-1 € D(B") = D(A), then the function
m-1

(3.7) u(t) = 27 Tj(t) v
j=0

is a solution of (3.1) and satisfies the growth condition (3.2). It also satisfies (8.3) if

m-1
(3.8) 20 75kvj = B"kuk k€ a).
j=0

Just as in the scalar case, we can easily see that the system of linear equations (3.8)
has a unique solution, its determinant 173X} (0 < m - 1, k € &) being nonzero; if
uy € D(BK), then the theorem of Rouché and Frobenius implies that v; € D(B"), as
required. Moreover, there exists a constant K (depending only on «) such that
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(3.9) lv;l <X 20 Jw| (0<Lj<n-1).
kew

Therefore it follows from (3.7) that

(3.10) l§)| < K'e®t 27 |u|,
ke o

where K' is a constant independent of u; (k € a).

To verify (II), let u( - ) be any solution of (3.1) satisfying the growth condition
(3.3) and such that

(3.11) ko) =0 (kea).
Define
it) = B™u(t) = A~lut) (t>0).

Then @( - ) satisfies (3.1), (3.2), and (3.11). Moreover, since T(®)t) = u(t), we also
have the estimate

|[d@)t)| = O(e®t) as t— w.
Applying Lemma 2.2 and the preceding comments, we see that for 0 <k <n - 1,
O(e®t) if w>0,
[ul)t)| = { o™k if w=0,
o(tn-k-lewty  if ¢ < 0
as t — oo; that is, all the derivatives of u of these orders satisfy condition (3.6).

Then so do the functions
n-1

(3.12) ut) = 27 Y9Balt)  (0<k<n-1).
| i

But it follows from a direct computation that u,( - ) satisfies the condition
u(t) = ¥*Bult) (>0, 0<k<n-1),

and it follows from (b) that

(3.13) wlt) =0 @(t>0, m<k<n-1).

From (a) and a well-known result in the theory of semigroups [12, Chapter 1, Theo-
rem 2.7] it follows that

(3.14) ult) = Te(®u0) (>0, 0<k<m-1).

We now write (3.12) for t = 0; using (3.13) and (3.11), we obtain the equation
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(3.15) 27 KiBiglido) =0 (m<k<n-1).
jdo

Since det {¥®} (j ¢ @, m <k <n - 1) is not zero, (3.15) implies that Gk)0) = 0
for 0 <k <n- 1. By (3.12), u(0) = 0 for all k; accordingly, it follows from (3.14)
that u(t) =0 (t >0, 0 <k <n - 1). Finally, observing that

§(t) = ug(t) + - +uy(t),

we see that @( - ) —and a forfiori u( - ) —vanishes identically.

The uniqueness property just established implies that every solution of (3.1),
(3.2), (3.3) satisfying the condition

(3.16) ulk)(0) € D(B2K) (k€ @)

must be given by formula (3.7), where vg, ***, V4.1 are solutions of (3.8); in view
of (3.9), this implies condition (II). As for solutions u( - ) that do not necessarily
satisfy (3.16), the previous reasoning applies to u(t) = A-1 (t); thus U must be given
by (3.7). But then, as we see by premultiplying by A, the same formula holds for

u( - ). Together with (3.9), this clearly implies condition (II). The proof of Lemma
3.1 is now complete.

We first use Lemma 3.1 to investigate the possibility of extending the nonexist-
ence results of Section 2. In Section 1, we observed that for certain choices of
the solutions of (3.1) satisfying the conditions (3.2) and (3.3) are never unique if the
number of initial conditions is too small; we now show that this result cannot be ex-
tended to the general case. In fact, we prove that the class &(n, m, w) is never
empty, except in the cases ruled out by the results of Section 2.

3.2 LEMMA. Suppose w is a veal number, m and n ave integevs such that
1<m<n, and D is a domain in the complex plane such that

(i) 0 ¢ C1D,
(ii) 5D ¢ {y; 9r<w} for 0<k<m-1,
(iii) y*D N {x; fA D> w}# @ for m <k <n- 1.

Then theve exists on opevator B (= By ) in a separvable Hilbert space H such that
A=B" € &(n, m, w).

Proof. Let H be the space of all analytic functions { — u({) in D such that

{ Ju®)?ao < =,
D

and let H be endowed with the scalar product

(3.17) (al ), () = | w(©)¥@ao
D

(here do denotes the area differential in R% £ C). Then H is a (nontrivial) Hilbert
space and a subspace of the Lebesgue space LZ(D). (For proofs, see [14, Chapter V,
Section 10]. The only nontrivial property to be established is completeness-of H. It
can be proved with the aid of Poincaré’s inequality



308 H. O. FATTORINI and A. RADNITZ
(3.18) lu(®)] < 771/2p 1 uly,

valid for all u € H and all £ € D; here p denotes the distance between { and the
boundary of D.)

Define an operator B in H by the equation

(3.19) (Bu) (§) = ¢u(f),
where D(B) is the set of all u € H such that the mapping £ — £u(f) also belongs to

H. It is easy to see that p(B) consists exactly of the closure of D; in particular,
B-l exists and is given by the equation

B-luw() =¢lu®) (ueH).
For 0 <k <m - 1, define Ty by the formula
(T w)(©) = ¥ Stu() > 0).

Simple manipulations show that Tx( - ) is a strongly continuous semigroup whose
infinitesimal generator is yXB; moreover,

(3.20) |T(t)] < e® (>0, 0<k<m-1).

We have now verified conditions (a) and (b) in Lemma 3.1. As for (c), let
m <k<n -1, and let u( - ) be a solution of the equation

u'(t) = ¥*Bu(t)) (t>0).
A simple reasoning based on Poincaré’s inequality (3.18) shows that u, as a function

of the two variables t and ¢, must be continuously differentiable with respect to t
for fixed ¢ in D, and that it must satisfy the differential equation

2t 8 - g, 2.

It follows that

k
(3.21) u(t, £) = e¥ Stu(o, t).
Assume now that u(0, {) is not identically zero in D. Since a nonzero analytic func-
tion can vanish only at isolated points, it is clear that we can use (iii) to show the
existence of three positive numbers 6, €, w' (w' > w) and a point 3 in D such that
(3.22) {pa=okg -l <0 c {yar>wl,
(3.23) |u(o, ©)| > & for |¢- ¢l < 8.

But now it follows from (3.21) that if t > 0, then

(3.24) [ult, - ),12-1 > S 2 ¥ (Ykmtl u(0, C)lzdc > re?e?¥'t,
: D
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Accordingly, u( - ) satisfies (3.6) only if u(0) = 0; in view of (3.21), this implies that
u(t) =0 for all t > 0. Consequently, {¢) in Lemma 3.1 holds, and the proof of Lemma
3.2 is complete.

We point out that corresponding to each triple (n, m, w) we can find a region D
satisfying the conditions in Lemma 3.2, unless w < 0 and either

(3.25) n is even, m > n/2
or
(3.26) ~ nisodd, m>m+1)/2.

In fact, if w >0, or if w < 0 but m and n are related by neither (3.25) nor (3.26),
the region A(n, m, w) defined at the beginning of Section 2 has nonempty interior,
which can then be taken as D. Geometric considerations make it clear that D can-
not exist when w < 0 and (3.25) or (3.26) holds; observe that this also follows from
Corollary 2.4, which implies that &(n, m, w) = @ for these values of m, n, w, except
for the case where w =0, n is even, and m = (n +2)/2. We shall discuss this ex-
ceptional case later (Theorem 3.8). Observe also that the region D defined by (3.27)
is unbounded—thus the corresponding operator B (and the operator A = B") is un-
bounded—except in the case where w > 0, n is even, and m > (n +2)/2 or n is odd
and m > (n + 1)/2. But it is a consequence of Corollary 2.5 that for these values of
m, n, and w, each A € ®(n, m, w) is bounded. This shows that the operator A pro-
vided by Lemma 3.2 in these cases is bounded, not because of the particular nature
of A but because of the nature of the problem.

A final comment concerning the uniqueness of solutions of (3.1): The following
proposition implies that if w > 0 and m is small with respect to n, then the class
&(n, m, w) does not contain any normal operators in Hilbert space.

3.3 PROPOSITION. For each integer n (n> 1), each integer m (m < n), and
each veal number w,a normal opevatoy A in a Hilbevt space H belongs to the class
®(n, m, w) if and only if 0 € p(A) and o(A) C A(n, m, w) U N, where N is a set of
A-spectral measure zevo.

The proof is elementary but not trivial. It can be found in [15], together with
additional information on the examples mentioned after the proof of Lemma 3.2 and
on the regions A(n, m, ). We shall only observe that since A(n, m, w)=¢@ if w >0
and either n is evenand m <n/2 or n is odd and m < (n - 1)/2, Proposition 3.3
implies that no normal operator in Hilbert space belongs to &(n, m, w) for these
values of n, m, w.

We end this section with some results giving sufficient conditions for an opera-
tor A to belong to ®(n, m, w) for various values of n, m, and w. To avoid 2-dimen-
sional geometric complications, we shall consider only the case w = 0; extension to
different values of w is not unduly difficult.

As before, A is a closed operator defined in a dense subspace of E. We shall
say that A belongs to H(¢) (0 < ¢ < 7) if 0 € p(A),

(3.27) {x; larg A > ¢} < p(a),
and
(3.28) IR(; &) < K|a|!

for some constant K> 0 and Iarg hl > ¢ (here, arg XA is taken in the interval

(-, w]).
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3.4 THEOREM. (a) If n=4p+2 (p=0, 1, ), then B(x) C &(n, n/2, 0).
(b) f n=4p (p=1,2, --) and - A € E(n), then A € &(n, n/2, 0).
(¢c) fn=4p+3 (p=0,1, ) and A € B(n/2), then A € &(n, (n+ 1)/2, 0) and

-A € &, (n-1)/2,0).

(d Ifn=4p+1 (p=1,2, =) and A € E(n/2), then A € &(n, (n - 1)/2, 0) and
-A e &(n, (n+1)/2, 0).

We shall prove Theorem 3.4 by showing that the conditions of Lemma 3.1 are
satisfied for some convenient nth-root of A. We need several auxiliary results.

3.5 LEMMA. If 0< ¢ <u, A € H(¢), K denotes the constant in (3.28), and ¢’
is a rveal number such that
¢ - arcsin(1/K) < ¢' < ¢,
then A € E(¢").
Proof. If Mg € p(A), then R(A; A) exists for | - x| < 1/|R(xp; A)], and it is
given by the series

(3.29) R(A; A) = 27 (Ag - VPR ; AP
n=0

therefore we have the estimate

|R(xo; A)|
3.30 R(x; A)] < '
(3.30) IR A)] < 1-|x-20] |R(xo; A

Assume now that Iarg Al > ¢', and let
(3.31) Ao = Atixtan(o - ¢')

(the + sign is used when %X > 0, the - sign when 9% < 0). Then it is easy to see
that

| 20| < 1
K = |R(xg; A)|

(3.32) J|argno] > ¢ and |A-ag] =|xo|sin(e - ¢") <

Consequently, formula (3.29) is applicable and shows that X € p(A); since
|xo| = l)\l/cos (¢ - ¢'), the estimate (3.30) now yields the estimate

IR(\; A)] < K - K cos (¢ - ¢') ,
=~ a1 - K-lsin(p-¢)) [a] (1 - K-lsin(g - ¢7)

which shows that A € H(¢'). This ends the proof of Lemma 3.6.

Suppose now that ¢ > 0 and A € H(¢). From Lemma 3.5 and the fact that
0 € p(A), we deduce that there exists a number & > 0 such that the contour

T ={x; |arg(x - €)| = ¢}
lies entirely in p(A) and the inequality

(3.33) |R(; A)] < K|A|-?
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holds on T and in its interior (the region to the left of T). Given 5 (0 <7 < 1),
we now follow [12, Chapter I, Section 5] and define

—n - .
(3.34) AT = o S TR\ A)dn,

where T is oriented clockwise with respect to its interior, and where A~" denotes a
fixed branch of the multi-valued function A — A~ | which is analytic in (say) the
complex plane minus the negative real axis. A few simple manipulations with
(3.34)—familiar from the functional calculus of bounded operators—show that

(3.35) A= (A (=12, ),

(3.36) AT A2 2 pTm2) ) g >0

(see [12, Chapter I, Section 5] for details on these and other computatmns related to
(3.34)). Observe that if A”Tu =0 for some u € E and some 5 > 0, it follows from
(3.36) and (3.35) that (A-!)»u =0 for any integer n (n > 7n); this is posmble only if
u = 0. On the other hand, it also follows from (3.36) that A" ED A™™E (7 and n
as before). Therefore the range of A" is dense for all . Making use of this and
of the previously established one-to-one character of A~ N, we can define, for n > 0,

(3.37) AT = (A"M)-1,

which will thus be a closed operator defined in a dense subset of E. It is a conse-
quence of (3.36) that for each integer n > 1, (A-1/n)n=A-1 for n=1, 2, -**; taking
inverses, we see that

(Al/n)n = A

and this justifies the notation Al/n. A fundamental property of A7 for 0 <7 <1
is that R(A; A7) exists for |arg Al > n¢ (at least), and that it is there given by the
formula

1 1

27i -
1 r A pn

(3.38) R(x; A") = R(y; A)dp

(see [12, Theorem 5.3] for a proof). By means of convenient deformations of the
contour of integration in (3.38), it can also be proved that :

|IR(; AT)| < K |[a]7!
in |arg )\] > n¢. Putting together all the previous remarks, we can state the follow-
ing proposition.
3.6 LEMMA. If 0< ¢ <7 and A € E(¢), then A" € E(n¢) for 0 <n <1.

W]e need one more result (for a proof, see [12, Theorem 3.8] or [11, Theorem
12.8.1}]).

3.7 LEMMA. Assume that R(\; A) exisis for R > w and that for some con-
Stant K >0

(3.39) IR A)] < K/|IA-w] (2> w).
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Then A generates a strongly continuous semigvoup T( ) (which can be extended
analytically to a sector containing the half-line t > 0) such that

|T(t)] < Ke®'t  (t>0)

Jor all w' > w; herve K denotes a constant depending on w'.

Proof of Theorem 3.4 (a). Assume that A € E(n). Then, by Lemma 3.5,
A € H(¢) for some ¢ < 7. It follows from Lemma 3.6 that A1 /n e E(¢/n), and as a
consequence of the definition of the classes H, if we set

B = y(n+2)/4A1/n (y = ezm/n),
then
(3.40) -B, -yB, -, _,},(n-Z)/ZB € H(1/2).

It is a consequence of Lemma 3.5 that if C is an operator in E(7/2), then -C satis-
fies (3.39) for some w < 0. It follows from Lemma 3.7 that the operators

B, vB, 72 B, y(n-2}/2 B in (3.40) generate uniformly bounded semigroups
To , s Trn_2)/2 - We have now verified assumptions (a) and (b) in Lemma 3.1.
As for (c), let n/2 <k <n - 1, and let u,( * ) be a solution of the equation
(3.41) u(t) = ¥ *Bult) (t>0)

such that

(3.42) |ue(t)] = O(t®) ast— e,

Let @i be the Laplace transform of ug, that is, let

o0

(3.43) ) = S e Muy(t)dt .

' : 0
Clearly, Ui () exists and is analytic for %X > 0; moreover, for each £ > 0, (3.42)
and a simple estimation of (3.43) show that there exists a constant K¢ such that
(3.44) ly W] < Kg(an?1 (sa>e) .
If we integrate (3.43) by parts and use (3.41), we see that Uy(A) € D(A) and
(3.45) (AL - ¥R B)G(A) = u(0) (%A >0).

Returning to the definition (3.40) of B and using the fact that Al/n € H(¢/n), we
see that if n/2 <k <n - 1, then

(3.46) o(vAB) c {x; 0r>e}

for some € > 0, and that

(3.47) |R(x; ¥8B)| < K/(1+ |A])

for some K> 0 in %A <g. From (3.45) and from the fact that the strip 0 < A <¢

is contained in p(yXB), we now deduce that Gy(}) = R(A, kB)uy(0) in the strip; ac-
cordingly, Gy ( - ) is an analytic continuation of R(x; v k B)u,(0) to the entire plane.
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By virtue of (3.44) and (3.47), this continuation increases (at most) like a polynomial
as l?\[ — o, By Liouville’s theorem, it must be a polynomial, with coefficients in
E which, again in view of (3.47) must vanish identically. By the well-known unique-
ness property of Laplace transforms, ug(t) = 0 for all t > 0. This ends the proof of
(c) and thus of part (a) of Theorem 3.4. :

The proofs of parts (b), (¢), and (d) are entirely similar, and therefore we shall
only sketch them. In part (b), one takes

B = ,},(n+2)/4(_A)1/n - ,yn/4(ei‘lr/n(_A)l/n).

In case (c), we take

yntl}/4p1/n if m=(m+1)/2,
B = ‘
1)/ 4 A)l/n jp = (n - 1)/2 .

Finally, in case (d), we use the operator

y(n+3)/4Al/n if m=(n-1)/2,
B = .
3N A )/ i m=(m+1)/2 .
This ends the proof of Theorem 3.4.

We close this section with a result that settles the case where E is a Hilbert
space, n is even, and m = (n + 2)/2 (as before, we assume that w =0).

3.8 THEOREM. Suppose E = H is a Hilbert space, n is an even integer, and
= (n+2)/2. Then A € &(n, m, 0) if and only if
(3.48) A=Ql(9"%Q;
wheve S is a self-adjoint operator such that S > ¢l for some ¢ > 0 and wheve Q is
a bounded, invertible, self-adjoint operator.

Proof. If A is given by (3.48) and u( - ) isa soluti(_)n of the equation
(3.49) u()(t) = Ault),
then 1u(t) = Qu(t) is a solution of the equation |
(3.50) aht) = (-s)/24(t) ;

conversely, the map u( - ) = -1§( - ) transforms solutions of (3.50) into solutions of
(3.49). On this basis, it is not difficult to prove that A € &(n, m, 0) if and only if
(-S)2/2 € &(n, m, 0), and this last inclusion is assured by Propos1t1on 3.3 whenever
S satisfies the cond1t1ons in Theorem 3.8.

Assume now that A € &(n, m, 0). For any u € D and any t > 0, define C by the
formula

Ct)u = ult),

where u( - ) is the bounded solution of (3.49) that satisfies the conditions
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(3.51) : u(0) = u,
(3.52) : w'(0) = u"(0) = -+ = ul*-1)(0) = 0.

Using conditions (I) and (II) in the definition of the classes ®, we see that C(t) is
well-defined and bounded in D for all t > 0, and that it can thus be extended to a
bounded operator in all of E (which will be denoted by the same symbol). It is also
a consequence of (II) and of the denseness of D that the function t — C(t) is strongly
continuous and bounded for t > 0. If u( - ) is any solution of (3.49) that satisfies
(3.52), then

(3.53) u(t) = C(t)u(0).

This follows from the definition of C( - ) when u € D, and from a simple approxi-
mation argument in the general case. Observe also that

(3.54) | co) = I.

We now extend C( - ) to the entire real axis by setting C(t) = C(-t) for t < 0. It
follows from the form of the initial conditions (3.52) that for each u € D the function
t — C(t)u is a solution of (3.49) in (- «, ©). Now, given u € D and a fixed real num-
ber t, let u(s) = C(s +t)u+ C(s - t)u. Then u( - ) is a solution of (3.49); by virtue of
the formula (3.53), we must have the relations

C(s+t)u+C(s - t)u = u(s) = C(s)u(0) = 2C(s)C(t)u;
using once again the denseness of D, we obtain the relation
(3.55) C(s+t)+C(s -t) = 2C(s)C(t).

Combining the preceding equality with (3.54) we see that, in the nomenclature of [16],
C(t) is a cosine function. We have already observed that

(3.56) |ci)] <K
for t > 0 and therefore for all t. It follows from [9, Theorem 4.1] that
(3.57) Ct) = Qlcos(tS)Q (-o0o <t < ),

where Q is self-adjoint, bounded, and invertible, and where S is self-adjoint and
nonnegative.

Observe next that as a consequence of the comments preceding and following in-
equality (2.42), we can assume that 0 € p(A). Now let u € D and v(t) = A-1 C(t) u.
Since v( - ) is a solution of (3.49) satisfying the initial conditions (3.52) and
v(0) = A-1lu, we see from (3.53) that A-1C(t)u = C(t) A-1u; since D is dense in E,
we must have the relation ‘ :

A-lc@t) = c)A-L.
Again, suppose that u € D. Then
(3.58) ct)A-lu = A-1C)(t)u = C(t)u.

Integrating, we see that
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n-1
t .
i .
(3.59) C(t)A~lu = (IFITST SO (t - s)*-1C(s)uds + 2 ;—, clilo)a-lu.
! j=0 3
Let ¢g, ¢1, ***, $n-1 be continuous functions with support in 0 <t < 1, say, and

such that

(tomat = 1o ©<i<n-1,0<K<n-1).

Multiplying both sides of (3.58) by ¢,(t) and integrating the resulting equality, we
immediately see that C(k)J(0)A-1 is a bounded operator for 0 <k <n - 1; conse-
quently, (3.58) must hold for all u € E. Differentiating n times, we see that C( - )u
is a solution of (3.49) for all u € D(A). In particular,

(3.60) cm)O)u = Au  (u € D(A)).

Going back to (3.57) we see (by a simple application of the functional calculus
for self-adjoint operators) that C( * )u is n times continuously differentiable if and
only if

Qu € D((-9)*/2) and C™NO)u = Q1 (-8)*/2Qu .
This, combined with (3.60), shows that
(3.61) AcQl(sn/2q.
To show that the inclusion in (3.61) can be strengthened'to equality, we need only ob-

serve that, because the set o(Q-1(-S)n/2Q) = o((-8)n/2) is contained. in
(-1)n/2 >0, o(A) N o(Q-1(-s)n/2 Q) = @. If 2o belongs to the intersection, then

(oI- A)D(A) = (oI- Q! (-8)/2Q) D(A)’

=E = (I - Q1 (-5"2Q)DQ 1 (-5)/2Q) ,

which clearly contradicts the fact that xgI.- Q‘l (-S)n/ 2 Q is on(?—to-one unless
D(A) = D(Q-1 (-8)7/2 Q). That (-1)»/28 > €I follows from the invertibility of S.
(Note that (-1)»/28-1 =Q-1A-1Q).)

3.9 Remark. By essentially the method used in Theorem 3.8, it is possible to

show that if A satisfies conditions (I) and (II) at the beginning of the present section,
then the subspace D in condition (I) contains D(A). See [15] for details.

4. EXAMPLES
a) We consider the partial differential equatibn

93u 92u

4.1 L 22 -
(4.1) ot3  ax?

-u

in P={(t, x) e R%;t>0, -0 <x <}. We shall look for solutions of (4.1) (that is,
ordinary real-valued functions u(t, x) defined in P and having there continuous par-
tial derivatives ug, u,, Uy, Uy, U, and satisfying (4.1)) such that
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(4.2) u is bounded in P,
(4.3) lim Iu(t, x)l =0 (|x| —s ©0)
for all t > 0.

Corresponding to N=20, 1, -*- we denote by C%N) the space of all real-valued,
N times continuously differentiable functions u( - ) defined in - » < x < « such that
ult)(x) — 0 as |x| — o when 0 <n <N, We seek an answer to the following ques-
tion:

What is the number m of boundary values of partial derivatives of u,

2
-’ u (0,
otz

(4.4) u(0, x), gg (0, x), %),

that can be arbitrarily assigned (for example, in C%N) for large enough N) and for
which (4.1) has a unique solution satisfying (4.2) and (4.3) and possessing these
boundary values?

Observe first that the problem does not change if we admit complex-valued
solutions and initial data. In fact, existence for real initial data implies existence in
the complex case: to see this, separate the initial data into real and imaginary
parts, solve (4.1) for each, and recombine. The same holds for uniqueness; if u is a
complex solution of (4.1), (4.2), and (4.3) having m of its initial data zero, then so
are %u and Su. On the other hand, assume that solutions exist in the complex case;
then, if u is a solution with real boundary values, then %u is a solution with the
same boundary values, and it is clear that uniqueness in the complex case implies
uniqueness in the real case.

Let then E be the space of all continuous, complex-valued functions u( - ) that
are defined for all real x and tend to zero when lx — o endowed with the norm

I_ulE = sup  |u(x)].
—oo < x o0

Clearly, E is a Banach space. Define a linear operator A in E by the formula
(Au) (x) = u"(x) - u(x),

where D(A) consists of all the functions in E having two continuous derivatives that

again belong to E. Clearly, D(A) is dense in E. It is (essentially) proved in [6,

Chapter VIII] that every complex number X not in the interval (-, -1] belongs to
p(A) and that

1 « _ 1/2
(4.5) (R(x; A)u) (x) = 20 r D72 S_w e~ (A1) |n| u(x +n)dn .

A moment’s reflection shows that there is a correspondence
u(t, -) <> @(t)(-)

between solutions of (4.1), (4.2), (4.3) and E-valued solutions (in the sense of the
previous sections) of the operational equation
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am(t) = A(t)

that are bounded in t > 0. Therefore we can apply all the results previously derived
(observe also that D(AP) = Cg‘p) , where C is defined similarly to Cg, but with
reference to complex-valued functions).

From the possible choices m =1, 2, 3, the case m = 3 is immediately ruled out
by Corollary 2.4, even without the uniqueness condition; more generally, Corollary
2.5 shows that m = 3 is inadmissible even if the boundedness condition (4.2) is
relaxed to

(4.6) lux, t)] < Ke?t ((x,t) € P)

for some real number w. Consider now the case m =2 = (3 +1)/2. It follows from
Theorem (2.1)—again, we do not use the uniqueness assumption—that if A is any
complex number such that at least two of its cube roots lie in the half-plane

fu < -e<0, then -1 € p(A). But this means that each negative real number belongs
to p(A), and this is absurd. If (4.2) is replaced by (4.6), we conclude that every nega-
tive number with sufficiently large absolute value belongs to p(A), which is again
absurd. The only case left is

m=1=(3-1)/2.
It is easy to see that (4.4) implies
(4.7) IRG; A)] = A+ 1|2 (@ + 17177,

and that this last inequality implies in turn that -A € E(n/2). It follows from Theo-
rem 3.4 (c) that A € &(3, 1, 0), and this shows that our question has an affirmative
answer in the present case. Observe also that by using Theorem 3.4 in full force
we may take the initial data in D(A)—instead of taking them in an unspecified C(N )
and that we have continuous dependence of the solutions on any one of their boundary
values. In other words, there exists a constant K > 0 such that each solution

u( -, - ) of (4.1), (4.2), and (4.3) satisfies the condition

lut, )| <K sup [¢x)] (t, x) € P),
-0 < x < 0

where ¢ is any one of the boundary values (4.4).

b) To emphasize that our methods apply not only to partial differential equa-
tions, we consider now the integro-differential equation

a3 22 « -blx-
(4.8) —a—tgu(t’ X) = —a;%(t, x) - u(t, x) +a S e |- u(t, n)dn,

~-00

where a and b are constants (b > 0). About the equation (4.8) we ask the same
questions that we asked about the equation (4.1). In other words, we want again to
determine the number m of boundary values of partial derivatives (4.4) that can be
arbitrarily assigned and for which (4.8) has a solution in P that satisfies (4.2) and
(4.3) and has the preassigned boundary values.

We can reduce the equation (4.8) to an operational differential equation in the
space E by a reasoning similar to that of Example a). This time, we obtain the
operational equation
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u"(t) = (A+B)ult).

The operator A is defined as in Example a), whereas the bounded operator B is
defined by the formula

(Bu) () = a ePlE N ymydn  (wem).

-00

It is easy to see that |B| =2|a|/b.
Assume that
(4.9) |B] =2]al/pb <1,

and let r be a positive real number such that IBI <1-r. It is easy to see that the
minimum of

[ROG A - = |a+ 1|2 g +1)1/2)

in the half-plane A > -r equals 1 - r. Then, by a well-known perturbation result
[10], the resolvent R(\; A + B) exists and is given there by the formula

o0

(4.10) R(A; A+ B) = 27 R(\; A)(BR(; A (%A > -1),

n=0

where the series in the right-hand side of (4.10) converges in the topology of Z(E).
From (4.10) we obtain the estimate

Bl

~1
Re; A+B)| < (1-7=5) RO A)]  (ea>-n).

Using this estimate, we obtain for the equation (4.8) results analogous to those es-
tablished in Example a) for the equation (4.1). We leave the details to the reader.

We make some further comments concerning equation (4.8). The results we
have obtained are based only on the fact that IB < 1; clearly, they will be valid for
any bounded operator B of norm less than 1. For the case BI > 1, we cannot de-
cide whether A + B € ®(3, 1, 0), at least not without a more careful examination of
B. On the other hand, we can deduce by essentially the same methods that the cases
m =2 and m = 3 are inadmissible for equation (4.8). The details are again omitted.

¢) The last example illustrates some of the limitations of our results. More
precisely, it shows that there is a wide gap between the necessary conditions of
Section 2 and the sufficient conditions of Section 3.

Instead of (4.1) or (4.8), consider now the equation

a3u . azu
11 Zu_ (2
(4.11) at3 ox2

or the equivalent operational equation in E,

(4.12) ' u"(t) = iAu(t),
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where A is defined as in Example a). We can still deduce that the case m = 3 is
inadmissible; in fact, this result does not depend at all on the operator in the right-
hand side of (4.12). But our methods do not allow us to decide whether the cases

m =1 and m =2 are admissible. In fact, a few simple computations show that iA
satisfies the necessary conditions of Section 2 both for m =1 and m =2. On the
other hand, iA does not satisfy the sufficient conditions in Section 3, either for n=1
or for n = 2.
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