DERIVATIVES OF SINGULAR INNER FUNCTIONS

Michael R. Cullen

Let U denote the open unit disc $\{z: |z| < 1\}$, and let T denote the unit circle $\{z: |z| = 1\}$. For $0 , the Hardy class <math>H^p$ consists of all functions f analytic in U for which

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta$$

is finite. An analytic function f is said to be of bounded characteristic (f ϵ N) in case

$$\sup_{0 < r < 1} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \left| f(re^{i\theta}) \right| d\theta$$

is finite, and to be in class B^p (0 < p < 1) if

$$\frac{1}{2\pi} \int_0^{2\pi} \int_0^1 |f(re^{i\theta})| (1-r)^{1/p-2} dr d\theta$$

is finite. It is well known that $H^p \subset N$ [4, p. 16], and that $H^p \subset B^p$ for 0 [5, p. 415].

A singular inner function is a function of the form

$$S(z; \mu) = \exp \left(-\int \frac{e^{it} + z}{e^{it} - z} d\mu(e^{it})\right),$$

where μ is a positive measure on T, singular with respect to Lebesgue measure on T (see Chapter 5 of [6] for details). Recently, much attention has been given to the factorization and boundary properties of functions with derivatives in H^P (see [1], [2], and [3], for instance). In [2], J. G. Caughran and A. L. Shields have raised the problem of finding conditions on the singular measure μ sufficient to insure that S'(z; μ) \in H^P for some p > 0. Is it possible that S'(z; μ) \in H^{1/2}? Does there exist a singular inner function S(z; μ) such that S'(z; μ) \in H^P and the distribution function of μ is continuous? Theorems 1 and 4 of this paper give conditions on μ sufficient to insure that S'(z; μ) belongs to H^P or N, and they answer the latter question in the affirmative. Theorem 2 shows that in case S'(z; μ) \in H^{1/2}, the support σ (S) of μ must be perfect and may not be a Carleson set. Recall that a Carleson set is a closed subset of T that has measure zero and whose complement is the union of open

arcs of lengths ϵ_n , where $\sum \epsilon_n \log 1/\epsilon_n < \infty$. Finally, we use Theorem 4 to give an example of a singular inner function whose derivative is in H^p (p < 1/4) and whose support is a perfect non-Carleson set.

Received October 29, 1970.

Michigan Math J. 18 (1971).

THEOREM 1. Let $S(z; \mu)$ be a singular inner function with support $\sigma(S)$, and suppose the complement of $\sigma(S)$ in T is the union of arcs of lengths ϵ_n .

- (1) If $\sigma(S)$ is a Carleson set, then $S'(z; \mu) \in N$.
- (2) If 0 < k < 1 and $\{\epsilon_n\} \in \ell^k$, then $S'(z; \mu) \in H^p$, where p = (1 k)/2.

Proof. Let $f(z) = -\int \frac{2e^{it}}{(e^{it} - z)^2} d\mu(e^{it})$. Then, since $S'(z; \mu) = S(z; \mu) f(z)$, $S' \in N$ if and only if $f \in N$, and if $f \in H^p$, then $S'(z; \mu) \in H^p$. Let

$$d(\theta) = dist(e^{i\theta}, \sigma(S)).$$

For $r \ge 1/2$ and $e^{it} \in \sigma(S)$,

$$|e^{it} - re^{i\theta}|^2 \ge \frac{1}{2} d(\theta)^2$$
,

since $1+r^2-2r\cos(\theta-t)\geq \frac{1}{2}(2-2\cos(\theta-t))$. Consequently, $\left|f(re^{i\theta})\right|<\frac{c}{d(\theta)^2}$ for some constant c independent of r and θ . It is easily verified that

$$\int_0^{2\pi} \, \log^+ \frac{1}{d(\theta)^2} \, d\theta \, < \infty \quad \text{if and only if} \quad \sum_{n=1}^\infty \, \epsilon_n \, \log \frac{1}{\epsilon_n} < \infty \, .$$

Also,

$$\int_0^{2\pi} \frac{1}{\mathsf{d}(\theta)^{2p}} \, \mathsf{d}\theta < \infty \quad \text{if and only if} \quad \sum_{n=1}^\infty \, \epsilon_n^{1-2p} < \infty \, \text{ and } \, 0 < p < 1/2 \, \, .$$

Thus, if $\{\varepsilon_n\}$ $\in \ell^k$, then S'(z; μ) $\in H^{(1-k)/2}$, and the proof is complete.

Remark. Minor modifications of the argument above show that in case $\sigma(S)$ is a Carleson set, $S^{(n)}(z;\mu) \in N$ for all n. In case $\{\epsilon_n\} \in \ell^k$, $S^{(n)}(z;\mu) \in H^p$, where $p = \frac{1-k}{n+1}$.

COROLLARY. Let f be analytic in U, with f' ϵ H¹. Then all derivatives of the singular inner factor of f are functions of bounded characteristic.

Proof. It is shown in [3, Theorem 1] that $\sigma(S)$ is a Carleson set.

THEOREM 2. Suppose $S(z; \mu)$ is a singular inner function with $S'(z; \mu) \in H^{1/2}$. Then $\sigma(S)$ is not a Carleson set and is perfect.

Proof. If $\sigma(S)$ is a Carleson set, then, by a result of Caughran [1, see the remark following Theorem 1], $S'/S \in H^{1/2}$. But the function $f(z) = S'(z; \mu)/S(z; \mu)$ has the anti-derivative

$$F(z) = -\int \frac{e^{it} + z}{e^{it} - z} d\mu(e^{it}).$$

By a result of Hardy and Littlewood [5, p. 415, Theorem 33], F' ϵ H^p (0 \epsilon H^{(1-p)/p}. Consequently, F(z) ϵ H¹. Since μ is singular, $\lim_{r \to 1}$ F(re^{i θ}) is pure imaginary almost everywhere. This is a contradiction, since

$$F(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|e^{it} - z|^2} F(e^{it}) dt$$

whenever $F \in H^1$ (see [5, pp. 33-34]).

For the second part, write $\mu = \mu_1 + \mu_2$, where μ_1 is the point mass measure at an isolated point $e^{i\theta_0}$ of $\sigma(S)$ and $\mu_2 = \mu \mid \sigma(S) - \{e^{i\theta_0}\}$. Then

$$S(z; \mu) = S(z; \mu_1) S(z; \mu_2),$$

and consequently

$$S'(z; \mu) = S(z; \mu_1) S'(z, \mu_2) + S'(z; \mu_1) S(z; \mu_2)$$
.

The first term is bounded in a small neighborhood of $e^{i\theta_0}$, and $|S(z; \mu_2)| = 1$ in this neighborhood. If $S'(z; \mu) \in H^{1/2}$, then the function

$$|S'(z; \mu_1)| = \frac{c}{|e^{i\theta_0} - z|^2}$$
 a.e.

would be in $L^{1/2}$, a contradiction. Thus, $\sigma(S)$ must be perfect.

It follows from Theorems 1 and 2 that if $\sigma(S)$ satisfies the condition $\{\epsilon_n\}$ $\in \ell^k$ for all k>0, then $S'(z;\mu)\in H^p$ (p<1/2), but $S'(z;\mu)\not\in H^{1/2}$. Cantor sets satisfying this condition are easily constructed (use intervals of length proportional to n^{-n} , for example). In case $\sigma(S)$ is the classical middle-third Cantor set translated to T, then Theorem 1 gives the relation $S'(z;\mu)\in H^p$ for $p<\frac{1-(\log 2)/(\log 3)}{2}=0.1845...$

The following theorem shows that no restrictions on μ are needed in order that $S'(z; \mu) \in B^p$ (p < 1/2):

THEOREM 3. $S'(z; \mu) \in B^p$ for all p < 1/2.

$$\textit{Proof.} \ \left| S'(re^{i\theta}; \mu) \right| \leq \int \frac{2}{\left| e^{it} - re^{i\theta} \right|^2} d\mu(e^{it}) \leq \frac{2}{1 - r^2} \int_T \frac{1 - r^2}{\left| e^{it} - z \right|^2} d\mu(e^{it}).$$

Since the function defined by the integral is positive and harmonic, it follows that

$$\int_0^{2\pi} \left| S'(re^{i\theta};\,\mu) \right| d\theta \le c/(1-r), \mbox{ where c is a constant independent of r. The re-$$

sult now follows, since $\int_0^1 (1-r)^{1/p-3} dr$ is finite if and only if p < 1/2.

We conjecture that it is impossible for $S'(z; \mu)$ to belong to $B^{1/2}$, and since $H^{1/2} \subset B^{1/2}$, it is impossible that $S'(z; \mu) \in H^{1/2}$.

The following theorem gives a criterion that makes use not only of $\sigma(S)$, but of μ as well.

THEOREM 4. Let μ be a singular Borel measure on T, and define $\alpha(t) = \mu(\left\{e^{i\,\theta}\colon 0 \leq \theta \leq t\right\}).$ Suppose $\alpha(t)$ has constant value c_n on the complementary interval of length ϵ_n , and that $\left\{c_n\epsilon_n\right\} \in \ell^k$ for some k < 1/4. Then $S'(z;\mu) \in H^p$ for all p < 1/4. Moreover, $S'(z;\mu)$ can not belong to the class $H^{1/2}$.

Proof. As in Theorem 1, it is sufficient to prove that $f(z) \in H^{p}$, where

$$f(z) = -\int \frac{2e^{it}}{(e^{it}-z)^2} d\mu(e^{it})$$
.

Fix z with |z| < 1, and let $g(t) = \frac{e^{it}}{(e^{it} - z)^2}$. Then, by partial integration,

$$f(z) = \frac{-2\mu(T)}{(1-z)^2} + 2 \int_0^{2\pi} \alpha(t) g'(t) dt.$$

Suppose T - $(\sigma(S) \cup \{1\}) = \bigcup_{n=1}^{\infty} \{e^{it}: a_n < t < b_n\}$, and $\alpha(t) = c_n$ on (a_n, b_n) . Since

$$\int_{a_n}^{b_n} \alpha(t) g'(t) dt = c_n (e^{ib_n} - e^{ia_n}) \frac{z^2 - e^{i(a_n + b_n)}}{(e^{ia_n} - z)^2 (e^{ib_n} - z)^2},$$

it follows that

$$\left| f(z) \right| \, \leq \frac{\, M_{\, 1} \,}{\, \left| \, 1 \, - \, z \, \right|^{\, 2}} + \, M_{\, 2} \, \sum_{n=1}^{\, \infty} \, c_{n} \, \epsilon_{n} \, \frac{\, 1}{\, \left| \, e^{\, i \, b_{n} \, - \, z \, \right|^{\, 2} \, \left| \, e^{\, i \, a_{n} \, - \, z \, \right|^{\, 2}}} \, ,$$

where M_1 and M_2 are constants independent of z.

Now $\{c_n\epsilon_n\}\in \ell^p$ for all $p\geq k$, since $(c_n\epsilon_n)^k\geq (c_n\epsilon_n)^p$ for $c_n\epsilon_n<1$. One can now easily complete the proof by using the Cauchy-Schwarz inequality together with the elementary facts that

(1) if
$$0 and $x, y \ge 0$, then $(x + y)^p \le x^p + y^p$,$$

(2) if
$$|\beta| = 1$$
, then $\int_0^{2\pi} \frac{1}{|\mathbf{r}e^{it} - \beta|^{4p}} dt \le \int_0^{2\pi} \frac{1}{|e^{it} - \beta|^{4p}} dt = A_{4p}$, where A_{4p}

denotes a constant independent of β and finite for p < 1/4.

For the second part, if $S' \in H^{1/2}$, then $f(e^{it}) \in L^{1/2}$, since |S| = 1 a.e. on T. Since $f \in H^p$ for p < 1/4, this is sufficient to imply that $f \in H^{1/2}$. A contradiction follows exactly as in Theorem 2.

Example. The following is an example of a singular inner function S for which $\sigma(S)$ is perfect and is not a Carleson set, while $S' \in H^p$ for p < 1/4. On $[0,\,2\pi]$, let $\big\{(a_n\,,\,b_n)\big\}$ be a sequence of intervals converging to 0 with $b_{n+1} < a_n$ and b_n - a_n proportional to $1/n(\log\,n)^2$. Then

$$\sum_{n=2}^{\infty} (b_n - a_n) \log \frac{1}{(b_n - a_n)} = \infty .$$

On $[0,2\pi]$, construct a perfect set E of measure zero by removing intervals I_n of lengths δ_n satisfying the condition $\sum_{n=1}^{\infty} \delta_n^k < \infty$ for k > 1/5. For n > 1, let E_n be the copy of this set in $[b_n$, $a_{n-1}]$. On $[a_n$, $b_n]$, define $\alpha(t) = n^{-5}$. On $[b_1$, $2\pi]$, define $\alpha(t) = 1$. Finally, on $[b_n$, $a_{n-1}]$, define $\alpha(t) = \beta_n(t)$, where $\beta_n(t)$ is a continuous,

singular, nondecreasing function such that $\beta_n(b_n) = n^{-5}$, $\beta_n(a_{n-1}) = (n-1)^{-5}$, and the support of the corresponding measure is E_n . If μ is the resulting measure on T and $S(z;\mu)$ is the corresponding inner function, then $\sigma(S)$ is perfect and is not a Carleson set, and

$$\sum_{n=1}^{\infty} (c_n \, \epsilon_n)^k < \left(\sum_{n=1}^{\infty} \, \delta_n^k \right) \left(\sum_{n=1}^{\infty} \, n^{-5k} \right) + \sum_{n=2}^{\infty} \, n^{-6k} (\log \, n)^{-2k} + (2\pi - a_1)^k \, ;$$

the right-hand side is finite for k>1/5. Hence, Theorem 4 implies that $S'(z;\mu) \in H^p$ for p<1/4 and also that $S'(z;\mu)$ is not in the class $H^{1/2}$.

Two unpublished results of Caughran and Shields should be mentioned. First, when $\sigma(S)$ is a Carleson set, the derivatives $S^{(n)}(z;\mu)$ are in the class N^+ (see [4, pages 25-28]). It follows that $S^{(n)} \in H^p$ if and only if the radial limit function $S^{(n)}(e^{it}) \in L^p$. Second, if S is a singular function, then S'/S is not in the class $B^{1/2}$. Note that the proof of Theorem 3 shows that S'/S is in B^p , for all p < 1/2.

REFERENCES

- 1. J. G. Caughran, Factorization of analytic functions with H^P derivative. Duke Math. J. 36 (1969), 153-158.
- 2. J. G. Caughran and A. L. Shields, Singular inner factors of analytic functions. Michigan Math. J. 16 (1969), 409-410.
- 3. D.J. Caveny and W. P. Novinger, Boundary zeros of functions with derivative in H^p. Proc. Amer. Math. Soc. 25 (1970), 776-780.
- 4. P. L. Duren, Theory of HP spaces. Academic Press, New York, 1970.
- 5. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II. Math. Z. 34 (1931), 403-439.
- 6. K. Hoffman, Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.

Louisiana State University Baton Rouge, Louisiana 70803