ON THE MARX CONJECTURE FOR A CLASS OF CLOSE-TO-CONVEX FUNCTIONS

J. A. Pfaltzgraff

We let $G(z) \prec H(z)$ (|z| < R) mean that G(z) is subordinate to H(z) in |z| < R in the sense that G(z) and H(z) are regular in the disk |z| < R, and for each fixed r < R, the image of the disk $|z| \le r$ under G(z) is contained in its image under H(z). Let S_{α}^* ($0 \le \alpha < 1$) denote the class of functions that are starlike of order α in the open unit disk $E = \{z: |z| < 1\}$; that is, f(z) belongs to S_{α}^* if and only if f(z) is regular in E, f(0) = 0, f'(0) = 1, and

$$\Re \left\{ zf'(z)/f(z) \right\} > \alpha$$

for every z in E.

In 1932, A. Marx [3] conjectured that for every $f(z) \in S_0^*$, the function f'(z) is subordinate to k'(z) in E, where $k(z) = z/(1-z)^2$ is the Koebe function. B. Pinchuk [5] and R. McLaughlin [4] have studied the corresponding conjecture for the classes S_{α}^* , namely that $f'(z) \prec k_{\alpha}'(z)$ in E for every $f(z) \in S_{\alpha}^*$, where

$$k_{\alpha}(z) = z/(1-z)^{2-2\alpha}$$
.

For each $\alpha \in [0, 1)$, McLaughlin [4] has determined a number r_{α} (0 < r_{α} < 1) such that the Marx conjecture for S_{α}^{*} holds in the disk $|z| \le r_{\alpha}$. The constant $r_{0} = 0.736 \cdots$ in [4] had been discovered earlier by P. L. Duren [1]. For $\alpha = 1/2$, it was shown that $r_{1/2} = 0.81046 \cdots$ [4]. In this note, we consider a class of close-to-convex functions that contains $S_{1/2}^{*}$ as a proper subclass, and we show that for every f(z) in this class, the relation $f'(z) < k'_{1/2}(z)$ holds in the entire disk E.

For $0 \le \alpha < 1$ and $0 \le \beta < 1$, we say that $f(z) \in \mathcal{K}(\alpha, \beta)$ if and only if

- (i) f(z) is regular in E, f(0) = 0, f'(0) = 1, and
- (ii) for some $g(z) \in S_{\beta}^*$,

$$\Re \left\{ zf'(z)/g(z) \right\} > \alpha$$

for every z in E. We note that $\mathcal{K}(\alpha, \beta)$ is a subclass of the class of close-to-convex functions of order α and type β introduced by R. J. Libera [2]. Instead of condition (ii), Libera required that (1) hold for some g(z) such that ag(z) ϵ S $_{\alpha}^{*}$ for some complex number a of modulus 1 [2, Definition (1.2)]. The class S $_{\alpha}^{*}$ is the subset of functions f(z) ϵ $\mathcal{K}(\alpha, \alpha)$ such that g(z) = f(z) in (1).

We shall need the Herglotz representations for the classes S_{β}^{*} and $\mathcal{K}(\alpha, \beta)$. Let I denote the class of nondecreasing functions with total variation 1 on the interval $[0, 2\pi]$. It is well known that $g \in S_{\beta}^{*}$ if and only if

Received August 14, 1970.

This research was supported by Army Research Office Grant No. DA-ARO-D-31-124-G1151.

Michigan Math. J. 18 (1971).

(2)
$$g(z) = z \exp \left\{ -2(1-\beta) \int_{0}^{2\pi} \log(1-ze^{-it}) dp(t) \right\}$$

for some p(t) \in I (see, for example, [5]). If $f \in \mathcal{K}(\alpha, \beta)$, then

(3)
$$zf'(z)/g(z) = \alpha + (1 - \alpha) P(z),$$

where $g \in S_{\beta}^*$ and $P(z) = 1 + c_1 z + \cdots$ is regular and has positive real part in E. By the Herglotz theorem, there exists a function $m(t) \in I$ such that

(4)
$$P(z) = \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} dm(t) = -1 + \int_0^{2\pi} \frac{2}{1 - ze^{-it}} dm(t).$$

We shall simplify the appearance of our formulas by using the notation

$$\ell(z, t) = \frac{1}{1 - ze^{-it}}$$
 and $L(z, t) = \log \ell(z, t) = \log \frac{1}{1 - ze^{-it}}$.

By (2), (3), and (4), we have that $f \in \mathcal{K}(\alpha, \beta)$ if and only if there exist functions m(t) and p(t) in I such that

$$f'(z) = \left\{ 2\alpha - 1 + 2(1 - \alpha) \int_0^{2\pi} \ell(z, t) dm(t) \right\} \exp \left\{ 2(1 - \beta) \int_0^{2\pi} L(z, t) dp(t) \right\}$$

$$= (2\alpha - 1) \frac{g(z)}{z} + 2(1 - \alpha) \frac{g(z)}{z} \int_0^{2\pi} \ell(z, t) dm(t).$$
(5)

THEOREM. Let $f \in \mathcal{K}(\alpha, \beta)$, and let g be a function in S_{β}^* such that

$$\Re \left\{ z f'(z)/g(z) \right\} \, \geq \, \alpha \qquad (z \, \epsilon \, \, E) \, .$$

Then

(6)
$$\frac{f'(z) + (1 - 2\alpha)g(z)/z}{2(1 - \alpha)} < \frac{1}{(1 - z)^{3-2\beta}} in E.$$

Proof. We rearrange terms in (5) and take the logarithm to obtain

$$\log \left[\frac{f'(z) + (1 - 2\alpha) g(z)/z}{2(1 - \alpha)} \right]$$

$$= (3 - 2\beta) \left[\frac{1}{3 - 2\beta} \log \left\{ \int_{0}^{2\pi} \ell(z, t) dm(t) \right\} + \frac{2(1 - \beta)}{3 - 2\beta} \int_{0}^{2\pi} L(z, t) dp(t) \right].$$

For each z in the disk $|z| \le r$ and any $m(t) \in I$, the integral $\int_0^{2\pi} \ell(z, t) dm(t)$ is a complex number in the closed disk bounded by the circle

$$C_r = \{ \ell(r, t) : 0 \le t \le 2\pi \}$$
.

Hence $\log\left\{\int_0^{2\pi}\ell(z,t)\,dm(t)\right\}$ is in Ω_r , the closed convex set bounded by the curve $\gamma_r=\{L(r,t)\colon 0\leq t\leq 2\pi\}$ (γ_r is convex, since $\log(1-z)$ is a convex function on E). Similarly, the convexity of γ_r implies that

$$\int_0^{2\pi} L(z, t) dp(t) \in \Omega_r$$

for every z in $|z| \leq r$ and every p(t) ϵ I. Therefore, for all z in $|z| \leq r$ and p(t), m(t) ϵ I, the quantity in brackets on the right in (7) is a point in Ω_r , since it is a convex combination of two points in the convex set Ω_r . Hence, by (7), we have that

(8)
$$\log \left[\frac{f'(z) + (1 - 2\alpha)g(z)/z}{2(1 - \alpha)} \right] < (3 - 2\beta) \log \frac{1}{1 - z}$$

in E. Exponentiation of both sides in (8) preserves the subordination relation and yields the desired conclusion (6).

COROLLARY 1. If $f \in \mathcal{K}(1/2, 1/2)$, then

$$f'(z) < (1 - z)^{-2} = k'_{1/2}(z)$$
 in E.

Since $S_{1/2}^*$ is a proper subset of $\mathcal{K}(1/2, 1/2)$, the result of Corollary 1 includes the Marx conjecture for $S_{1/2}^*$. The validity of the Marx conjecture for $S_{1/2}^*$ also follows from the inequality

$$\Re \sqrt{f'(z)} > 1/2$$
 (f $\in S_{1/2}^*$, z $\in E$)

proved by Marx [3, p. 62].

COROLLARY 2. If $f \in S_{\alpha}^*$ and $\lambda = 1/(2 - 2\alpha)$, then

(9)
$$\lambda f'(z) + (1 - \lambda) \frac{f(z)}{z} < \frac{1}{(1 - z)^{3-2\alpha}} = \lambda k'_{\alpha}(z) + (1 - \lambda) \frac{k_{\alpha}(z)}{z}$$

in E.

Remarks. Since the representation formula (2) implies that f(z)/z is subordinate to $k_{\alpha}(z)/z$ ($f \in S_{\alpha}^*$), it would seem that (9) should be helpful in settling the Marx conjecture for S_{α}^* ; but we have made no progress with this line of reasoning for $\alpha \neq 1/2$. Although (9) may not lead to a proof of the Marx conjecture, it may be possible to improve the results of McLaughlin [4] for α near 1/2 (λ near 1) with the aid of (9). We also note that the two sides of (9) are convex combinations ($0 \leq \lambda \leq 1$) of the functions involved only for $0 \leq \alpha \leq 1/2$. For starlike functions, (9) yields the interesting relation

$$f'(z) + f(z)/z < k'(z) + k(z)/z$$
 $(f \in S_0^*, z \in E)$.

Finally, we mention that replacement of $\mathcal{K}(\alpha, \beta)$ in our theorem by Libera's more general class of close-to-convex functions of order α and type β yields a theorem, where (6) is replaced by the conclusion

$$\frac{f'(z) + (e^{i\phi} - 2\alpha)g(z)/z}{2(\cos\phi - \alpha)e^{i\phi}} < \frac{1}{(1-z)^{3-2\beta}} \quad \text{in } \mathbf{E} \,.$$

REFERENCES

- 1. P. L. Duren, On the Marx conjecture for starlike functions. Trans. Amer. Math. Soc. 118 (1965), 331-337.
- 2. R. J. Libera, Some radius of convexity problems. Duke Math. J. 31 (1964), 143-158.
- 3. A. Marx, Untersuchungen über schlichte Abbildungen. Math. Ann. 107 (1932), 40-67
- 4. R. McLaughlin, On the Marx conjecture for starlike functions of order α . Trans. Amer. Math. Soc. 142 (1969), 249-256.
- 5. B. Pinchuk, On starlike and convex functions of order α . Duke Math. J. 35 (1968), 721-734.

University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27514