SETS OF UNIQUENESS ON THE PRODUCT
OF COMPACT GROUPS

J. E. Coury

Let X = H:Z 1 X, be the product of countably many non-Abelian,' compact,
topological groups, and let i denote Haar measure on X. Let f,, be a coordinate
function of V(n) where V(n) different from 1, is a continuous, unitary, irreducible
representation (CUIR) of X,. For X = (x;, x2, **-) in X, define f(X) to be f,(x,).

A subset C of X is called a set of uniqueness with respect to a regular method
S of summability (or briefly, a Ug-set) if S-summability to 0 on the complement of

C of a series 2 cnf,, with complex coefficients ¢, implies that ¢, = 0 for each n.
Otherwise, C is called a set of multiplicity (an Mg-set).

Let d, be the dimension of the representation space of V(n) and set
M = sup {d,: n> 1}. We prove that if M < and u(C) < 1/2M, then C is a Ug-set.
If M = o, then every subset of X of measure 0 is a set of uniqueness. We also
demonstrate that if each X, is connected, then every subset of X of measure less
than 1/2 is a Ug-set.

1. PRELIMINARIES

Let g, and p denote normalized Haar measure on X, and X, respectively, and
write the identity element of X as e =(e;, ez, ***), where e, is the identity in X, .

For each n, choose @, in X, so that there exists a continuous, unitary, irre-
ducible reg)resentation v(n) of X, on a Hilbert space H, of dimension d,, > 2, for

which Vg’ # 1. (That such a choice is possible in every compact non-Abelian group
. n

G can be demonstrated as follows. Let a, b € G be such that ab # ba; then
aba~!b-1 is not the identity in G. By [2, (22.12)], we can find a CUIR V of G such
that Vaba'l b1 #I. If V were one-dimensional, we could conclude that

4 1=V, V, Vv =1, contrary to our choice of V.) It follows that a_ #e_.

aba~1b-
For v{n) let {‘é(ln), R E((in)} be an orthonormal basis of H,, such that
n

vglri gn) = ap)e() fork=1,2,,4d

n?»

where |7‘1(<n)! =1. Since V(®) = I, there exists an element q € {1, 2, ---, dn} for

which ?\((ln) #1. For such a q and arbitrary p # q, define the complex-valued
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function f, on X by f,(%) = v{8)(x,), where v{Z)(x,) is the coordinate function
<V)(<rr11) gp) E%n)> . The resulting set {f,} is orthogonal.

Definition. Let S=(a) (i, j=1, 2, --) denote a regular method of summabil-
ity, and let the sequence {fn} have the properties listed in the introduction. Corre-
sponding to each sequence {c,} of complex numbers, we define the set

0

E(S)(cn) =J{%eX: 2 c,f,(X) is S-summable to 0O

n=1
For each element y in X, define
ECNc) -y = {x-5:x ¢ ENc)}.

When confusion seems unlikely, we shall denote these sets by E(S) and E(S).§,

2. SETS OF UNIQUENESS IN X

We now prove a principal theorem from which we derive the existence of unique-
ness sets in X. Our restriction on the measure of E(S)(c,) is necessary: without it,
the theorem is false, as we demonstrate in the discussion that follows Corollary 2.

It is convenient to state the following lemma (we omit its proof).

LEMMA 1. If S+ (aij) is a vegular method of summability, then

©0
lim E ami =1

m-—e i=p

Jor p=1,2, .

THEOREM 1. Suppose that M = sup {d,: n > 1} < . (By the previous discus-
sion, M >2.) Let {cn}:=1 be a sequence of complex numbers, and suppose that
E(S)(c,) has Haar measure exceeding 1 - 1/2M. Then ¢, =0 for n = 1,2, ---.

Proof. For the fixed elements @, in X, defined in the previous section, set
a,=(e;, ez, ***,en-1, ®n, €nt1, ***). Since 1 - 1/2M > 3/4, we infer that
ES) n E(S) @, # @ for each n > 1. In fact, writing

wES N EG 7)) = wES) - wWES N @\ ES) 7))

and noting that p(X\ E(5) o) = X\ ES) < 1/2M, we conclude that
p(ES) N ES) @) >1- 1/M.

Let r be a positive integer. We claim that there exists some
z e ES)NES @, (z=y &) with § in E(S) for which f.(§-&,) #0, that is,
v%}c'l)(yr -a,) #0. For suppose not; then v%}[l)(yr -a,) =0 for every y € E(S) such that
y.a, € ES). write F, for E(S)n E(S)-@,.. Let Py = Pi(F,) be the projection
into Xy of F.; thatis, let

P, = {yr -a,. € X.: there exists y € E(S) with rth coordinate Ve

such that y - &, € ES} .
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Under our assumption, vég) is zero on P, . By the first paragraph, u(¥,.) > 1 - 1/M;

since F. C I k=1 Pk, we conclude that u(P,) > 1 - 1/M. Consequently,

2 2
l/dr = S |V§)I<‘1)l dp,. = S |V{)1;1)! du, < “‘r(Xr\ Pr) <1/M.
Xr Xr\Pr

Therefore d,. > M, a contradiction.

Thus there exists a § € E(5) such that 7 - O, € E(S) and v(r)(yr a,) #0. Since
qu Ny o) = )\(r) (r)(yr) and since h(r) # 1, we infer that fr(y ay) #1:(3).

By definition of E(S), O'm(y) — 0 and o (y- ar) — 0 as m — o, where, if S is
given by the matrix (a,ij),

o i
o, =2 a_.s. and S; = Ecnfn

Assume not all the coefficients ¢, are 0, and let q be the least integer for which
cq # 0. By the previous paragraph, there is an element 7 ¢ E(S) 0 E(S)- aqg

(z=y-0q) with y € E(S) for which fq(¥ - @q) # fq(¥). It satisfies the relations

o« i
Om(T Bg) = 20 am;siF g = 2 ap;| 2 cufy(f-dg)
. i:q n:q

—

= Z) Ami quq(gf-(_l!q) - quq()_f) + E cnfn(ﬁ)

i=q n=q ]
= cqfof - @q) - £oP)] - 20 ami+ 0, (F)
i=q

Passing to the limit as m — « and using Lemma 1, we see that
Cq[fq(§7 - aq) - fq(gr)] = 0.
Since f4(y-@qg) # £4(¥), we conclude that cq = 0, a contradiction. Thus each coeffi-

cient is zero, and the theorem is proved.

COROLLARY 1. Suppose that M = sup {d: n> 1} < o, and let C be a subset
of X of measure less than 1/2M. Then C is a Ug-set for each vegulay summability
method S.

THEOREM 2. LetM be as above, and suppose that M = ». If E(SNc,) has
Haar measuve 1, then every ¢, is zevo.

Proof, We retain the notation of Theorem 1. For every (fixed) positive integer
n, we have the relation p(E(S)) = y(E(S).-&@,) = 1. It follows that

;J.(E(S) N E(S).an) =1,

whence (3 (Py) =1 for all k; in particular, p (P,) =1.
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For each n > 1, we shall show, as in the proof of Theorem 1, that there exists
7 € ES) 0 glS). on, (z=y-ap) w1th y e ES ) for which f,(y - an) # 0; that is,

(n)(yn a,) # 0. If this is not the case, then vga) is zero on P, and hence

2 2
Van= § bl § R e < i B =0

n n n

a contradiction. Thus such an element z exists. The proof is now concluded ekactly
as in Theorem 1.

COROLLARY 2. Let M be defined as in Covollary 1, and suppose that M = «,
Then every subset of X of measure 0 is a Ug-set.

The essence of the proof of Theorem 1 is that the coordinate function vga) can-

not be zero on a subset of the group X,,, if that set has large enough measure. Two
questions arise in this connection:

(i) Let G be a compact topological group, with normalized Haar measure (U,
and suppose that V is a CUIR of G on a Hilbert space H, with orthonormal baS1s
{&,, -+, £4} . Can it happen that for each pair of indices p and q in {1, 2, ---, d},
the group G contains a set C of positive measure such that qu(x) = ngq, £p
for each x in C? Can each of the sets C have measure greater than 1/2?

(ii) More generally, can qu(x) be constant on such a set C?

The proof of Theorem 1 indicates that the answer to (i) is negative if the measure
of C is large enough. Further, if H has dimension d = 2, then v_, cannot assume
the value zero on a set C of measure greater than 1/2, for this would imply that

1/2 = 1/d =S |vpql® du = SG\C vpq |“dp < G\ ©) < 172
G

If d > 3, however, the answer to (i) is affirmative. The alternating group A4 admits
such a representation V, of dimension 3, for which the coordinate function v33
vanishes on a set of measure 2/3 (see [3, p. 49]).

In the case d = 2, it is possible for vpq to be constant (necessarily nonzero) on a
set of measure greater than 1/2: there exists a CUIR V of the symmetric group S3
for which v,, assumes the value -1/2 on a set of measure 2/3.

3. SETS OF UNIQUENESS ON CONNECTED PRODUCT SPACES

Next we investigate the conditions under which the conclusion of Theorem 1, and
hence that of Corollary 1, can be made independent of the constant M, that is, 1nde—
pendent of the dimension of the representation space of each v (n), To this end we

shall find it expedient to determine when the set { x € G <V gq, p> = 0} has Haar
measure 0, where V is a CUIR of the compact group G. Theorem 3 shows that it is
sufficient to assume that G is connected. For the proof of this result, see [1].

THEOREM 3. Let G be a non-Abelian compact topolotical group, with (normal-
ized) Haar measure U, and let V be a continuous, unitavy, ivveducible vepresentation
of G, with V #1. Define'the set C = {x € G: {V, &, £,) =0}, wheve &, and £,
denote elements in an ovthonormal basis for the representation space of V.
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If G is connected, then ju(C) = 0 for every choice of &, and &4 .

With the aid of Theorem 3, we can prove that the conclusions of Theorem 1 and
Corollary 1 remain valid with M replaced by 1 if the product space X is connected.
We first prove the following lemma.

LEMMA 2. Let X, and X satisfy the conditions in the intvoduction, and sup-
pose that each X, is connected. If E(S)(cn) has Haay measuve gveatey than 1/2,
then each c, is zero.

Proof. Define @, as in the proof of Theorem 1. Since u(E(S)) > 1/2, the in-
equality p.(E(S) N E(Sr} - @y) > 0 holds for each n, and it follows from Theorem 3
that f,, cannot vanish throughout E(S) n E(S). o, . Thus there exists an element
¥ -0n in ES) with § in ES) such that (¥ - @y) #0. It follows that
f,(y -@,) #£ (y), and this implies, as in the proof of Theorem 2, that ¢, is zero.

COROLLARY 3. With the notation as in Lemma 2, suppose that each X, is
connected, and let C be a subset of X of measure less than 1/2. Then C is a set of
uniqueness for each vegular method of summability.

Because a series that converges to a value B is S-summable to B, for each
regular method S of summability (see, for example, [4, vol. I, p. 74]), it follows
from the definition that a Ug-set is a set of uniqueness with respect to ordinary con-
vergence (called a U-set). Similarly, an M-set is an Mg-set for each regular
method S.

With the aid of the following theorem, we shall show, in Theorem 5, that the no-
tions of U-set and Ug-set coincide if the product space is connected. (Although we
shall not prove it here, we mention in passing that the converse is also true; that is,
if X is not connected, then there exists a U-set that is not a Ug-set for each
method S.)

THEOREM 4. Let X be the product of countably many compact and connected
non-Abelian groups, and suppose that the set E(S) (c,) has positive Haar measure in
X. Then theve exists a positive integer N such that c, is zevo for every n > N.

Proof. The function ¥ — p(E(S) n E(S) .x) is continuous on X (see [2, (20.17)]).
Since w(E(S)) is positive, it follows that u(E(S) n E(S) -x) is positive for all % in a
sufficiently small neighborhood of the identity e in X. By the way in which the ele-
ments @, were defined, we conclude that p(E(S) n E(S).@,) is positive for all suf-
ficiently large values of r, say r > N.

As before, let Py denote projection into X, and write E,. for E(S) n E(S). a,.
Then py(Pr(E,)) > 0 for each r > N and every k; in particular, u (P.(E,)) > 0.
Since P,(E.) has positive measure, vgl;l) cannot vanish throughout P.(E.), in view of
Theorem 3. Thus E, contains an element z =y- @y, with y € E(S), such that
f.(z) #0, whence f(y-a,) #£.(y).

Since ¥ and y - @, differ only in the rth coordinate, we have the relations

2 eyl @) -5, @l=0 (@<r),
n=1

i

27 e [, @) -5, 3] = c, [£.(7-2,) - 5] (A>7).

n=1
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Thus, for all m, we obtain the formula

n=]

0§ ) -0 () = 2 ay | 2 e, (f,Ga,)- fn(if))J
i=1

(E ami) “Cr [£.(y - @) - fr(gy)]

i=r

Passing to the limit as m — « and appealing to Lemma 1, we conclude that ¢, = 0.
Because r > N is arbitrary, the proof is complete.

THEOREM 5. Let X be the product of countably many compact and connected

non-Abelian groups, and suppose that C is a subset of X of measure less than 1.
The following statements are equivalent:

(i) C is a U-set (M-set);
(ii) C is a Ug-set (Mg-set) for some vegular summability method S;
(iii) C is @ Ug-set (Mg-set) for every regulay method S.

Pyoof. That (i) is equivalent to (ii) for both U-sets and M-sets follows from
the facts that S-summability to a value B implies convergence to B and that ordi-
nary convergence is a regular summability method. To prove the theorem for sets
of uniqueness, we must show that (ii) implies (iii). Thus let S and T be regular
methods of summability, and suppose that C is a Ug-set. If a series is T-summable
to 0 on X\ C, it follows from Theorem 4 that this series is finite. Thus the series
converges to 0 on X\ C and is therefore S-summable to 0 on this set. Therefore
each coefficient is zero, and hence C is a Ug-set.

To show that (ii) implies (iii) for sets of multiplicity, we simply note that since
the complement of C has positive measure, every series that is S-summable to 0
outside C must be finite and is therefore summable to the same value by all regular
methods.
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