THE COVERING THEOREM FOR UPPER BASIC SUBGROUPS
Paul Hill

All groups considered in this paper are primary abelian groups. We follow the
notation and terminology of [1]. Recall that a subgroup B of G is a basic subgroup
of G if it has the following properties:

(i) B is a direct sum of cyclic groups,
(ii) B is pure in G,
(iii) G/B is divisible.
Let r(G) denote the rank of a group G, and set

r, = min {r(G/B): B is a basic subgroup of G} .
If B is a basic subgroup of G such that r(G/B) = T, then B is called an upper
basic subgroup of G. As L. Fuchs has mentioned in [1, p. 105], upper basic sub-
groups are important because an upper basic subgroup B of G, together with
r(G/B), may reveal much more information about the structure of G than can be
conveyed by an arbitrary basic subgroup.

A. R. Mitchell [6] has proved the following for reduced p-groups. If B; and B;
are upper basic subgroups of G; and G, respectively, then B; + B, is an upper
basic subgroup of G; + G2. If B is an upper basic subgroup of a high subgroup H
of G, then B is also an upper basic subgroup of G. Left open in [6] was the question
whether each basic subgroup is contained in an upper basic subgroup. In his review
of Mitchell’s paper, in the Zentralblatt (166, p. 292), P. Grosse stated “whereas the
author could not prove that a basic subgroup B of G is contained in an upper basic
subgroup whenever G is a reduced p-group he paved the way to this (hopefully cor-
rect) statement.” In this paper we settle the question affirmatively, but travel a dif-
ferent (unpaved) route. The solution comes as an immediate corollary to a structure
theorem (Theorem 3) that gives almost complete information about basic subgroups
that are not upper in relation to upper basic subgroups. The main result of the
paper, however, is the following. If G is a divect sum of cyclic groups and if B and
B' ave basic subgroups of G such that G/B £ G/B', then theve exists an automor-
phism 7 of G such that w(B) = B'. We cast this result in slightly more general form
(Theorem 1). The proof involves extending height-preserving automorphisms on
subgroups; for related results, see [2] and [3].

THEOREM 1. Let G be a primary grvoup, and let G = Gg+ H, wherve H isa
divect sum of cyclic groups. Suppose that Bg is a basic subgvoup of Gg. Let
B=Bg+ A and B'=Bg+ A' be basic subgroups of G. There exists an autonoyr-
phism 7 of G that is the identity on Go and maps B onto B' if and only if

() G/{Gy, B} = G/{Gg, B'}.
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Proof. Condition (I) is obviously necessary, but its sufficiency is not trivial.
We shall begin the proof with some preliminary remarks. Both A and A' are iso-
morphic, in a natural way, to basic subgroups of H. Therefore A= H = A'| since H
is a direct sum of cyclic groups. Write

H=2 {h;}, A=2{a}, A =2 {a}.
I I

I

Note that G/{G,, B} is divisible, since G/B is divisible. Thus we can write

G/{Go, B} = 2 D; and G/{Goy, B'} = 27 D§,
. J J

where Dj = Z(p~) = Dj for each j; in view of condition (I), we can use a common
index set J. Observe that {Go, B} and {Gog , B'} are pure subgroups of G. It is
convenient to choose the index sets I and J to be the smallest possible ordinals.
-Thus we let

I

{a: @ is an ordinal of cardinality less than r(H)},
J = {a: @ is an ordinal of cardinality less than r(G/{Gg, B})}.

In this connection, we remark that the theorem follows immediately if either I or J
is vacuous. If J is vacuous, then Gg + A = G = Ggo + A', and we obtain the desired
automorphism of G by mapping A isomorphically onto A'. Observe that J C 1
(compare H = G/Gg to G/{Go, B}). If I is finite, then Go+ A =G = Gog + A', since
a finite group cannot have a proper basic subgroup; for notational convenience we
therefore assume that I is infinite.

The proof of the theorem is a two-stage induction proof. The first stage of the
induction is the following. Let 7o denote the identity map of Gg. Suppose that
v € T and that for each a <y, we have a subgroup G, of G and a height-preserving
automorphism 7, of G (all heights are computed with respect to G) such that
Gy C Gg and 7g is an extension of 7y if @ <8 <7y. Assume, for each @ <y, that
na(Ga N B) = Gg N B'. Further, assume that the following conditions are satisfied
for suitable subsets I(a) of I and J(a) of J.

(1) Gy = Go+ 2 {n},
(a)

(2) Gy N B =By+ 27 {a;},
I(a)

(3) Gy NB' = By + 21 {al},
(@)

(4) {GG!; B}/{G07 B} = Z Dj,

J(a)
® {Ga» B}/{00, B} = Z D},

J(a)
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If v is a limit ordinal, we define G, = Ua<.), Gq , and we let 7, denote the auto-
morphism of G, such that 7, [ Gq = mg for each a < y. The induction hypotheses

continue to hold for a <y if we let I(y) = Ua<-y (@) and J(y) = Ua<.}, J(a). The
nontrivial case arises when y - 1 exists, and here we employ the second stage of the
induction to pass from y - 1 to y. Of course, we could keep the induction technically
alive by taking G, = G _) and 7y =7y ], but there is no point in that. For we want
the subgroups G, eventually to exhaust G. Thus it is appropriate to add the follow-
ing condition to the induction hypotheses:

(6) If o+1<vy,then @ € {a+1).

For notational convenience in working with the secondary induction, we write
B=v-1.

Assume that K and L are finite extensions of Gg and that ¢: K>—> L isa
height-preserving isomorphism from K onto L such that

(*) #KNB)=LNB'.

We need to extend ¢ to a height-preserving automorphism 7, of a subgroup G,, con-
taining both K and L such that conditions (1) to (6) hold for o <y and such that
ﬂ-y(G.y N B) = Gy N B'. In particular, we want 8 to belong to I,,. Let x € G. We
claim that there exist finite extensions K' and L* of K and L (both containing x)
and a height-preserving isomorphism ¢*: K¥ >—>> L* that extends ¢, with the ad-
ditional property ¢*(K* N B) = Lt N B'. Because of the symmetry of K and L, it
suffices to show that we can do this with x in K* (but not necessarily in L%); by a
second application we can put x into L. Thus we want to extend ¢ to a height-
preserving isomorphism ¢t from Kt = {K, x} into G such that

oHK* N B) = ¢1(KY) N B'.

Without loss of generality, we assume that the element x is not in K, but that
px is in K, and that among the elements of the coset x + K, the element x has maxi-
mal height in G. (Such an element is called a proper element with respect to K.)
There is no problem at all in exchanging representatives of the coset x + K, but we
must verify that the coset x + K does indeed have an element of greatest height; it
does because K is a finite extension of a direct summand Gg of G. Let h(x) denote
the height of x, and let h(x) =n. If h(p(x +k)) >n+ 1 for some k € KN p"G, we
assume that h(px) > n + 1; in other words, if among the elements of the coset x + K
that are proper with respect to K there exists y such that h(py) > n + 1, then we
choose x to have this property. First we shall consider the other case.

Case 1. h(px) =n + 1. There are two subcases.

Subcase A. x +k € B for some k € K. Choose yg € p*G so that ¢(px) = pyo;
this is possible, since ¢ preserves heights. If yo+ k) € B', set y=yo. If
Yo + ¢(k) ¢ B', observe that p(yo + ¢(k)) = ¢(p(x +k)) € pB’, and let
yo + ¢(k) = b' +t, where b' € B' and pt = 0. Since B' is a basic subgroup of G,
we can write t=c' +z, where ¢' € B'[p] and z € p?*1 G[p]. Set y =yo - z. Then
y + ¢(k) € B'. Extend ¢ by mapping x onto y.

Subcase B. x+k € B for no k € K. Choose yg € p"G so that ¢(px) = pyo. If
yo +¢(k) ¢ B' for all k € K, let y=yo. If yo+ ¢(k) € B' for some k € K, consider
p(x +k). The homomorphism ¢ maps p(x +k) onto p(yg + ¢(k)) € pB'. Hence
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p(x +k) € pB. Write x +k=b+s, where b € B and ps=0. Now s ¢ {B, K};
otherwise, Subcase B would be voided. We claim that there exists t € G[p] such
that t ¢ {B', L}. First, notice that this is certainly the case if K = Gg (= L), for by
the induction hypothesis, G/{B, Gg} = G/{B', Gg}. Since {B, Gg} and {B', Gg}
are pure subgroups of G, it follows that

{Glpl, B, Gg}/{B, Gg} = {clp], B', Gg}/{B', Gg}.
The isomorphism ¢: K >—> L, induces an isomorphism
{B, K}/{B, Gg} >—> {B', L}/{B', Gg}.
Thus

{G[p]: B, GB}/{{ B, K} [p]7 B, GB} = {G[p], B|, GB}/{B" L}[p]7 BI, Gﬁ} ’

and since the left-hand side is not zero, it follows that

{G[pl, B, Gg} # {{B', L}[p], B', Gg}.

Therefore, there exists t € G[p] such that t ¢ {B', L}. Choose b' € B'[p] so that
t - b' € pr*! G. Define y =yo +t - b', and note that y ¢ {B', L}. Thus
y +é(k) ¢ B' for all k € K. Extend ¢ by mapping x onto y.

Case 2. h(px) > n+ 1. Again, there are two subcases.

Subcase A. x+k € B for some k € K. Choose w € p*'! G so that pw = ¢(px).
By the usual argument, some z € G[p] is proper with respect to L and has height
exactly n. Set yo=w+z. If yo+ ¢(k) € B, let y=yo. I yo + ¢(k) ¢ B', define y
in terms of yg exactly as in Case 1, Subcase A. Extend ¢ by mapping x onto y.

Subcase B. x+k ¢ B for all k € K. Define yg in the same way as in the pre-
ceding case, yo=w+z. If yo+¢(k) ¢ B' forno k e K, let y=yo. If yo+¢k) ¢ B
for some k € K, observe that ¢(p(x +Kk)) € pB'. Hence p(x + k) € pB. Write
X+k=b+s, where b € B and ps =0. Since s ¢ {K, B}, there exists t € G[p]
such that t ¢ {L, B'}; the argument is the same as in Case 1, Subcase B. Again, we
let y=yo+t-b', where b' € B'[p] and t - b' € p"*1G[p]. Extend ¢ by mapping x
onto y.

In all four cases, the extension ¢ of ¢ to K™ = {K, x} is a height-preserving
isomorphism from K' into G such that ¢"(K' n B) = ¢"(K*) N B'. This completes
the secondary induction, and it is actually all we need to complete the first-stage in-
duction. The argument that this suffices to finish the first-stage induction is out-
lined below.

Since each of the summands in the 2J-summations involved in conditions (1) to
(5) is either finite or countably infinite, we can take ascending sequences

G‘B:'KOEKIE'“EKHE."
and

GB—_-LocLIC...ELnE...

of finite extensions of Gg such that U Kn = U L, and such that there exists a se-
quence ¢,: K,, >—> L, of height-preserving isomorphisms that also ascend
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(¢,4+1 extends ¢,) and have the property ¢,(K, N B) = L, N B'. Furthermore, if we

let Gy = U Kn= ULn, then we can choose the groups K, and L, so that conditions
(1) to (5) hold for @ =y, where I(y) and J(y) are countable extensions of I(8) and
J(B), respectively. (For a discussion of the details on how to do this, see [5]; the
technique involved is sometimes referred to as the back-and-forth method of Hill
and Megibben.) We can meet the final requirement, condition (6), by letting
h e K; N Ly, for then condition (1) implies that B € I(7). Let 7, = sup {¢n}. Since
we have retained the important condition ﬂy(G-y N B) = G, N B', the first-stage in-
duction goes through, and we thereby obtain an automorphism of G that maps B onto
B'.

COROLLARY 2. Let G be a primary group, and let G = Go + H, wheve H is a
divect sum of cyclic groups. Suppose that B is a basic subgroup of G such that
B N Gqg is a basic subgroup of Go. Then theve exists a decomposition G = Gg+ K
of G such that B = (B N Gg) + (B N K).

Proof. Let Bg=BN Gg. Then B/Bg is isomorphic to a subgroup of H. Since
H is a direct sum of cyclic groups, B/Bg is a direct sum of cyclic groups, and since
Bo is pure, it follows that B = Bg + A for some A C B. Since

B/Bo < G/By = (Go/Bo) +H,

it follows that B/Bg is isomorphic to a basic subgroup Hy of H such that

G/(Bg + Hp) = G/B. By Theorem 1, some automorphism 7 of G maps Bg + Hg onto
B = Bg + A and is the identity on Gg. Setting K = n(H), we have the relation

G = Go + K. Setting C = n(Hg), we find that B = By + C. Since C C K, the corollary
follows.

Remavk. We wish to acknowledge with appreciation an observation made by the
referee. Corollary 2 is an easily proved proposition without Theorem 1; therefore
Theorem 1 is not essential for the proof of the covering theorem (but it has applica-
tions elsewhere).

THEOREM 3. If G is a p-group and B is a basic subgroup of G, then
G=Gyg+K and B=(BNGy+(BNK),

wheve B N Gg is an upper basic subgvoup of Go and K is a divect sum of cyclic
groups.

Proof. Let r(B/B,) = m, where B, is an upper basic subgroup of G. Let B be
an arbitrary basic subgroup of G. Then G = Gg + H, where H is a direct sum of
cyclic groups, |Gg| < max {&g, m}, and B N Gy is a basic subgroup of Gy ; the
argument is a simple application of the back-and-forth method. According to Corol-
lary 2, there exists a decomposition G = Go + K such that B = (B N Gg) + (B N K).

If |Gp| = m, then each basic subgroup of Go (in particular, BN Go) is obviously an
upper subgroup, for K is a direct sum of cyclic groups and r(G/B,) = m. Thus the
theorem is proved, except for the case where m is finite. In this case, Gy is count-
able. Suppose that r(Ggy/(B N Gg)) =n > m. It follows from [4] that Gg = Gg + L,
where BN Gop=(BN Gy) +(B N L) and L is a direct sum of cyclic groups and
r(Go /(BN Ggy) = m. Write G = Gg+ (L +K). Then BN Go is an upper basic sub-
group of Go. Since B = (B N Gg) + B N (L +K), the theorem is proved.

COROLLARY 4. Let G be a primary group. Each basic subgroup of G is con-
tained in an upper basic subgroup of G.
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Proof. Let B be a basic subgroup of G, and let G = Gg + K, where BN Gg is

an upper basic subgroup of Gg and K is a direct sum of cyclic groups such that

B =(B N Gg) + (B NK). Then (B N Gg) +K is an upper basic subgroup of G con-
taining B.
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